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ABSTRACT

This paper describes a simple and fast algorithm for remov-

ing occlusions that may occur in multiple views of a scene.

In contrast to many methods of the literature, no assump-

tion is made on occlusion shapes, colors or motions. In-

stead, this new method assumes that the background can be

re-warped using an homography and that the reflectivity is

quasi-Lambertian. After geometric and photometric align-

ments, three methods are evaluated. A median based method,

a novel algorithm based on maximal clique detection and a ro-

bust PCA method are compared on real and simulated image

sequences. This comparison shows that the new clique-based

method provides the best performance in terms of quality and

reliability.

Index Terms— Image reconstruction, multi-image pro-

cessing, mask removal, occlusion detection, background esti-

mation, non-linear filtering.

1. INTRODUCTION

When photographing a famous monument or a scenery, many

people experience the difficulty that some object occludes the

scene or that someone wander into the view they wish to cap-

ture. Often, by the time one person moves out another one

moves in. In such a situation, taking a picture without oc-

clusions becomes tricky and time-consuming. This paper, as

illustrated in figure 1, aims at proposing a simple, fast and

reliable method to solve this problem by combining several

photographs.

Several works have yet addressed this problem. Some authors

focus on specific kinds of obstacles such as raindrops [1, 2, 3],

reflections [4, 5, 6, 7], grids and fences [8, 9]. Some authors

use a very dense sequence of images to deduce a depth map

by optical flow and keep the farthest away surface [10]. Alter-

natively, some authors rely on specific dense sensor configu-

rations that allow for a statistical decision [11]. If areas of the

scene are never observed, an ultimate strategy consists in in-

painting missing areas [12, 13] after a mask detection scheme

has been performed. Yet, inpainting strategies are prone to

errors, yielding artefacts in the reconstructed background. In

addition, in many situations the framerate is not high enough

to allow for a reliable optical flow computation or the assump-

tions on the mask shapes don’t hold true. For all of theses

Fig. 1. On top: two frames of an image sequence after geo-

metric and photometric alignments. Bottom left (resp. right)

the proposed solution, (resp. right) the RPCA method. The

red circle enlights a defect in the RPCA reconstruction.

reasons, we believe that a simple, fast and reliable algorithm

should be proposed.

Roughly, the solution proposed in this paper relies on the

combined motions of the photographer and the masks to en-

sure that the sequence reveals the entire background one or

several times. By geometrically and photometrically aligning

the images we form a stack of images. Consequently, for each

pixel we obtain a stack of values and decide what the back-

ground is. As we shall see, the method proposed in this paper

assumes no specific shape, color, motion or texture for the

occlusions. In addition, the proposed algorithm is simple, fast

and, as we shall see in section 4, compares advantageously

with a more sophisticated approach such as robust PCA [14].

Outline of the paper: Section 2 details the geometric and

photometric alignments of image sequences. Section 3 dis-

cusses a new method for background detection based on

a meaningful clique detection. Section 4 provides a com-

parative evaluation of the proposed algorithm and of two

related methods: a median based method and a robust PCA

(RPCA) based method. Section 5 discusses further refine-

ments. A webpage with an implementation, image sequences

and numerical results is available [15].



2. PROPOSED METHOD

We first detail the assumptions we shall use in section 2.1.

Subsections 2.2 and 2.3 detail the methods used to align geo-

metrically and radiometrically the image sequences.

2.1. Framework and Assumptions

As we have seen in section 1, many methods in the litera-

ture consider specific kinds of obstacles or occlusions such as

raindrops, fences or grids. In contrast, we posit assumptions

on the object of interest that we shall call hereinafter underly-

ing background or just background. We suppose that we are

given an image sequence such that the background 1) is quasi-

Lambertian and 2) can be re-warped to a given reference im-

age. Assumption 2) holds true if the scene is planar, like in

our experiments, or if the camera undergoes a rotation around

its optical center. Note that we do not make any assumptions

on the background content, its color distribution, continuity

or texture. Instead, we expect it to be quasi-Lambertian so

that there is no significant color difference when looking from

different positions. A limitation of the above assumptions is

that the algorithm proposed in this paper cannot be expected

to perform well when observing background with reflecting

surfaces or specular reflectors like mirrors. We expect almost

constant lighting conditions during acquisition.

2.2. Geometric Alignment

The approach we employ for this step is straightforward. A

reference frame is chosen. The assumption 2) allows us to

resample the observed frames on the reference frame using

an homography [16] and bi-linear interpolation. The ho-

mography parameters are computed using RANSAC [17] on

SIFT matches [18]1. We expect that the homography with the

largest number of matches corresponds to the background.

2.3. Chromatic Alignment

Under the quasi-Lambertian assumption, we expect the dif-

ferent images to have close colorimetric values at seen back-

ground pixels. However, we experience differences that de-

pend on many uncontrolled factors between images. In addi-

tion, the camera white-balance algorithm also tends to mod-

ify the color content between images. The observed color

distribution depends not only on the background but also on

the masks or occlusions. Thus, we cannot use standard color

transfer algorithms [19] to equalize the images. To solve the

problem, we determine color transfer mappings between im-

ages. Indeed, digital camera conversion from input intensities

to output vectors can be approximated by an invertible func-

tion [20]. Following [21], we use an order two polynomial

model to compute this color transfer mapping. As we shall

1A SIFT match is defined by distance to the 1st neighbor ď 15 ˆ

distance to the 2nd neighbor.

see, this choice often gives good results. Experiments show

a poor correlation between channels. Hence, we compute a

mapping for each color channel independently (in agreement

with standard white-balance algorithms). The polynomial co-

efficients are computed from three pairs of SIFT matches, ob-

tained from the geometric alignment, using a RANSAC strat-

egy to robustify the selection.

3. IMAGE RECONSTRUCTION

After the geometric and photometric alignments described in

sections 2.2 and 2.3, we obtain a stack of aligned images

Φpxq “ tIipxq, i P t1, . . . , nuu (1)

defined @x P Ω Ă R
2, where @x, Iipxq P R

3. To estimate

the background, for each pixel x P Ω, we need to decide

which value Ĩpxq represents best the background. In this sec-

tion, we detail two possible strategies to estimate Ĩpxq. The

first one uses a median-based decision criterion (section 3.1).

Section 3.2 formalizes and gives an algorithm for the second

method that we propose. Another option to estimate Ĩpxq con-

sists in using a RPCA algorithm. Due to length constraints

of this paper, this option is not detailed here and we refer

to, e.g., [14] for a detailed explanation. Experimentally, the

clique based algorithm is shown to perform better than the

median and the RPCA based method in most cases, see sec-

tion 4.

3.1. Median Based Algorithm

Median decision is known as a robust way to decide among

samples when the noise is unknown. In our case, it would

work assuming that more than 50% of pixels belong to the

background. Yet, it requires a suitable generalization to deal

with color images. Several choices are available to define the

median value of vectorial samples. A trivial choice would be

to apply a one dimensional median filter to each color chan-

nel. However, this choice leads to wrong colors. Thus, we

use the median filter proposed in [22], namely

arg min
ĨpxqPΦpxq

n
ÿ

i“1

›

›

›
Iipxq ´ Ĩpxq

›

›

›

2

2

, (2)

which can be easily computed with standard algorithms [23].

3.2. Clique Based Algorithm

As we’ve just seen, the median based decision has limited

performances due to its quite stringent assumptions. We wish

to propose a new strategy to overcome these limitations. We

would like to assume no specific model for the signal, the

masks or the proportion of masks over background in Φ. To

do so, we notice that if several images reveal the background

at a given pixel, their values will be close to each other. Con-

sequently, for each pixel x P Ω, we look for a dense subset,

or clique, of Φpxq. We define a dense clique as follows.



Definition 1. (Dense clique) Let v1, . . . , vn P R
3 and V :“

tv1, . . . , vnu. A clique C ĂV such that card V“m is said

dense if @ vPC its ḿ 1 nearest neighbors in V are in Cztvu.

For every x P Ω, the cliques given in definition 1, applied

with Φpxq, can be computed using algorithm 1. As we have

Data: Set Φpxq (see (1)), positive integer m

Result: Dense clique set Spxq.

Set S “ H and compute the n ˆ m matrix M made

with indexes of nearest neighbors (NN) of Iipxq s.t.

@iPt1,. . ., nu, rowpM,iq“pi,1st-NN . . .,m´1th-NNq.

for i=1,. . . , n do

Compute the set E1 :“ tMpi, 1 : mqu
for j=2,. . . , m do

Compute the set E2 :“ tMpMpi, jq, 1 : mqu
if E1 ‰ E2 then

Break

end

if j==m then

S :“ S Y E1

end

end

end

return S

Algorithm 1: Dense clique computation.

argued, if groups of images are displaying similar values, then

one of these groups can reasonably be assumed to be the back-

ground. To discriminate between these groups or cliques, we

use the following definition.

Definition 2. (Meaningful clique) We posit the same setup

as in definition 1. Let σT ą 0 be a given threshold. We say

that a clique C is meaningful if C is the largest dense clique

Cm such that @k P t2, . . . , card Cm ´1u there exists dense

clique C̃, card C̃ “ k and var Cm ď σT or a dense clique of

minimal variance such that card C “ card Cm ´ 1.

A clique that satisfies definition 2 can be computed by algo-

rithm 2. Mathematically, it is possible to observe two mean-

ingful cliques. Yet, in practice this situation never occurred

during our experiments. We are now in a position to give

an algorithm estimating Ĩpxq given Φpxq: compute (2) with

Cpxq obtained with algorithm 2. We now turn to the numeri-

cal evaluation of the proposed algorithm.

4. EXPERIMENTS

We compare three algorithms on real and simulated image se-

quences. Algorithm 2 is always applied with σT “ 15 for

images valued in t0, . . . , 255u3. This value was found em-

pirically using table 1 (see also subsection 4.1). The median

based method consists in computing (2) on the aligned image

sequence (1). The RPCA method consists in applying [24].

Data: Set Φpxq (see (1)), treshold σT .

Result: Meaningful clique Cpxq.

Set n :“card Φpxq, m :“2, s :“0, Spre :“Scur :“H
do

Set Spre :“ Scur, Scur :“ Algorithm 1 pΦpxq,mq,

m :“ m ` 1 and s :“ card Scur

while s ě 2

Compute σ2 :“

"

`8 if Scur “ H
σ2 :“ var C, for C P Scur

if σ2 ď σ2

T
then

return C P Scur

else

return argminCPSpre
var C

end

Algorithm 2: Meaningful clique computation.

Image 1 Image 2 Image 3 Image 4

Seq.1
Before 49.71 43.21 48.36 44.68
After 14.48 13.32 15.05 12.18

Seq.2
Before 10.28 16.08 17.99 11.00
After 8.57 8.02 10.47 9.85

Seq.3
Before 18.07 15.96 15.86 15.68
After 6.14 5.61 5.18 5.47

Table 1. RMSE before/after pre-processing for 3 sequences

of 4 images. RMSE after alignment is roughly below 15.

We use the implementation given in [25]. The next section

discusses the acquisition protocol. More experiments can be

found in [15].

4.1. Acquisition Protocol and Pre-Processing

Image sequences were acquired in a short time span, with a

Canon 80D and a Sigma 30mm/f1.5 DC HSM lens. Dur-

ing the acquisition we ensure that the line of sight points

toward the background and the focus is set on it (manually

or automatically). Camera settings (ISO sensitivity, aperture

and shutter speed) are manually set to avoid automatic cam-

era adjustments. Each image is then corrected from geomet-

ric distorsions. We use a specific commercial software Dx-

OLab [26] to perform this camera and lens dependant cor-

rection. Table 1 gives the RMSEpI0, Iq :“ 1?
card Ω

}I0 ´

I}2 after the alignment methods described in subsections 2.2

and 2.3. From table 1 we conclude that the pre-processing de-

tailed above yields a significant decrease in terms of RMSE.

4.2. Experiments

We first give quantitative results on simulated sequences and

exhibit results on real image sequences, preprocessed with the

method of subsection 4.1. All results can be downloaded from

the website [15].



1 2 3 4 5

Seq.1

Clique 91.1 3.2 0.0 0.0 0.0

Median 96.7 57.8 0.0 0.0 0.0

RPCA 97.8 79.8 0.0 0.0 0.0

Seq.2

Clique 26.0 0.0 0.0 0.0

Median 77.4 0.0 0.0 0.0

RPCA 98.1 0.0 0.0 0.0

Seq.3

Clique 0.0 2.1 0.0 0.0

Median 0.0 60.7 0.0 0.0

RPCA 100 99.9 98.4 97.9

Table 2. Error rates for three noiseless simulations with

clique, median and RPCA methods. The percentage of er-

roneous decisions as a function of the number k of observed

backgrounds is given. Blue cells indicate that for sequences

2 and 3 the background is seen at least twice. These three

sequences have 5 images so the median decision is correct if

k ě 3.

4.2.1. Simulated Experiments

We simulated occlusion as follows. We used three back-

ground images that will be used as ground-truth. For these

backgrounds, we superimposed numerically random occlu-

sions to generate an observed sequence. We then added white

Gaussian noise to these sequences. We wish to provide a

quantitative comparison between the clique based method,

the median based method and the RPCA method. To do

so, we denote, hereinafter, by I0 the ground-truth and Ĩ the

estimated background. The pixels where the background is

observed k P t1, . . . , nu times, in a sequence of n images,

are given by the set

T pkq :“ tx P Ω : ϕpxq “ ku, (3)

where ϕpxq :“ card ti P t1, . . . , nu : }Iipxq ´ I0pxq}
2

ă εu
and ε ě 0 is some threshold. For k P t1, . . . , nu, the error

rate is defined by

Rpkq :“
card

!›

›

›
I0pxq ´ Ĩpxq

›

›

›

2

ă ε
)

card T pkq
. (4)

Tables 2-3 give the error rates for four simulated sequences in

the noiseless and noisy cases. In these experiments the clique

method based on algorithm 2 always performs better.

4.2.2. Experiments with Real Sequences

We give comparative results on real image sequences of our

own in figure 2. We recall that the experimental protocol and

pre-processing is given in subsection 4.1. We notice, at vari-

ous positions where the background is occluded several times,

that the clique based method performs better than the me-

dian or the RPCA methods. We recall that an implementation

and more experiments, on which similar conclusions can be

drawn, can be found in [15].

1 2 3 4 5

Seq.1

Clique 94.7 10.5 8.4e-2 2.9e-3 0.0

Median 97.4 61.8 2.0e-2 0.0 0.0

RPCA 92.7 71.9 5.3e-2 4.5e-3 2.7e-3

Seq.2

Clique 47.6 8.5e-2 5.5e-3 0.0

Median 80.3 1.7e-2 0.0 0.0

RPCA 89.3 0.0 0.0 0.0

Seq.3

Clique 0.0 6.7 1.4e-2 0.0

Median 0.0 63.3 5.9e-3 0.0

RPCA 94.7 53.7 59.3 51.3

Table 3. Error rates (%). Noisy simulations with σ “ 5

additive Gaussian noise. The table is organized as Table 2

(ε :“ 35). The clique method always performs better or very

similarly.

Fig. 2. Real sequences. From left to right: two aligned

frames, the clique, the median and the RPCA method. The

red circle enlights defects in median and RPCA results.

5. CONCLUSION

A new algorithm for occlusion detection and restoration was

proposed. The algorithm is based on a temporal non-linear

filter that relies on a meaningful clique computation. This

new algorithm is fast, simple and robust. This algorithm

was demonstrated to compare advantageously with a color

median, as well as with a much more sophisticated method,

RPCA. Notably, no assumption was made on the occlusion

shapes, textures, colors or motions. A future work could

generalize the approach to a spatio-temporal filtering method.
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