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Abstract—Connected embedded systems have added new con-
veniences and safety measures to our daily lives –monitoring,
automation, entertainment, etc–, but many of them engage in
disciplines with a direct impact on human lives –healthcare, auto-
motives, avionics–. Designing these systems with a comprehensive
model-driven design process, from requirement elicitation to
iterative design, can help detect issues, or incongruities within the
requirements themselves earlier. This paper discusses how safety,
security, and performance requirements should be assured with a
systematic design process, and how these properties can support
or conflict with each other as detected during the verification
process.

I. INTRODUCTION

Many embedded systems now have communication inter-
faces [1] offering a larger attack surfaces for attackers, as
demonstrated for example by recent attacks using remote
connections (cellular, wifi) on cars [2], [3], or on drones [4].
Attacks have also targeted important industrial systems, as
demonstrated by the Stuxnet, Flame, and Duqu [5] attacks. All
of these examples demonstrate the safety risks posed by flaws
or vulnerabilities in connected systems. Safety itself is still an
important constraint to handle by itself, as demonstrated by the
well-known software bugs in Ariane 5 or the Knight Capital’s
$440 million loss due to a fault in their trading software.

Thus, designing embedded systems implies a need to com-
ply with many different requirements and the presence of
both hardware and software components [6]. Not only must
we assure that the system will always behave safely and is
protected against attackers, we must also consider the real-time
performance for timing-critical devices, the cost and size of the
architecture, and power consumption as many of these devices
have limited battery life [7]. Model-Driven Engineering with
verification can help detect flaws earlier, specify the system,
and better analyze the overall system, which individual tests
cannot do [8]. And by detecting flaws earlier during the design
process, we avoid the costly fixes after mass production [9].

The paper discusses how the requirements of Safety, Se-
curity, and Performance support or conflict with each other,
and how to consider them together. It presents how TTool,
the toolkit supporting SysML-Sec, keeps the entire modeling
and verification process within a single toolkit, thus ensuring
that there is only one set of models, helping to minimize the
amount of rework at each change and [10].

A summary of this design methodology is presented in Fig-
ure 11. We start by considering the requirements of the system,
focusing on the safety, security, and performance ones in this
paper. Next, the system is designed with these requirements
in mind, and then to confirm that all requirements are met,
the system is verified with formal methods or simulations. As
shown in flowchart at the bottom, the satisfaction of one cate-
gory of requirement does not mean that other categories are not
impacted. For instance, if a security requirement is satisfied,
but because of the security mechanisms that were introduced
to fulfill this requirement, some safety requirements are are
not satisfied anymore, then another iteration on the system
must be performed with many different options — some of
them are discussed in the paper — e.g. we can modify our
design, such as changing the HW/SW Partitioning for better
performance, adding safety and/or security mechanisms, etc.
We should also be cognizant of the possibility that satisfying
one requirement causes the system to violate another. For
example, encryption and other security algorithms occupy a
latency to perform, and some may be time-consuming enough
that adding them shall cause the system to violate performance
properties, which in turn shall lead to unsafe function (inability
to avoid an obstacle). We therefore should perform all relevant
verifications after each change to be certain that our model
meets the specifications. Then, when all requirements are
finally satisfied, the model can be refined until code can be
automatically generated or software can be developed.

Section II discusses related work on methods to verify
the properties of a system. Section III presents the modeling
and verification approach of SysML-Sec. Section IV discusses
how verification identifies violations of requirements, and how
safety, security, and performance properties can conflict with
one another. Finally, Section V concludes the paper.

II. RELATED WORK

Many works have been proposed for designing embedded
systems to fulfill industrial standards.

The MontiSim framework provides a tool for the modeling
of requirements and systems, supporting various simulation
tools for different domains, including autonomous vehicles
[11], [12]. However, they use Component and Connector

1This figure is further explained in section IV
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Fig. 1. Overview of Methodology Considering Safety, Security, and Performance Requirements Together

models, and performs simulations based on a fixed hardware,
focusing on the detailed software implementation and behav-
ior, and they lack high-level design and formal verification
capabilities.

Other toolkits are specialized for automotive systems, such
as Medini, which supports safety analysis and design based on
ISO26262. It supports the entire methodology, from analysis
phase activities including hazard and risk analysis, HAZOP
checklists, safety level determination, requirements diagrams,
to architectural and system modeling in SysML. It also allows
import and conversion to Rhapsody, Enterprise Architect, and
Matlab/Simulink models. It supports simulation and proba-
bilistic analysis of faults, but not security analysis [13].

Many other design methodologies handle the complete de-
sign flow of embedded systems, from analysis, to design space
exploration, and prototype code generation, such as [14]–[16].
[17] is a development environment with extensions so it can be
customized for different domains. They all support modeling
requirements and systems, and offer model-checking including
simulation and formal verification capabilities. Unlike our
toolkit, they also do not model or verify security properties.

AADL takes safety and performance requirements into
account during design, as supports various analysis [18]. It
also has been extended for modeling security for access

control both in its hardware partitioning and software-based
communications [19].

SecureUML enables the design and analysis of secure
systems by adding mechanisms to model role-based access
control [20]. Authorization constraints are expressed in Object
Constraint Language (OCL) for formal verification. Our secu-
rity model focuses on protecting against an external attacker
instead of access control. In contrast to formula-based con-
straints or queries, our approach to security analysis relies on
graphically annotating the security properties to query within
the model.

UMLSec [21] is a UML profile for expressing security
concepts, such as encryption mechanisms and attack scenarios.
It provides a modeling framework to define security properties
of software components and of their composition within a
UML framework. It also features a rather complete framework
addressing various stages of model-driven secure software
engineering from the specification of security requirements to
tests, including logic-based formal verification regarding the
composition of software components. However, UMLSec does
not take into account the HW/SW Partitioning phase necessary
for the design of e.g. IoTs, nor the relation between safety and
security.

In summary, many tools can consider Safety, Security, and



Performance-based modeling and verification individually, but
few consider all at the same time for designing embedded
systems.

III. HW/SW PARTITIONING WITH SYSML-SEC

A. SysML-Sec Method

The SysML-Sec Methodology was developed for the design
of safe and secure embedded systems [22] with extensions to
SysML in order to better capture security aspects in particular
during the HW/SW partitioning phase. The latter intends to
split the functions of a system between software compo-
nents (Operating Systems, application code) and hardware
components (processors, FPGA, hardware accelerators, buses,
memories, . . . ). SysML-Sec is supported by TTool, an free and
open-source software (FOSS) that offers modeling, verification
and code generation capabilities [23].

The method is separated into three phases, starting with the
Analysis Phase which considers the needs of the system and
attacks/failures it may face. Next, the HW/SW Partitioning
phase designs high-level functions and hardware, and then
maps the functions to hardware components. Lastly, the de-
tailed behavior of each function is designed in the Software
Design phase. Simulation and formal verification at each phase
ensures the system meets requirements. To ensure that the final
software is in accordance with the modeling specification, code
can be automatically generated from models.

B. Partitioning in SysML-Sec

In greater detail, partitioning involves determining the high-
level function and architecture of the system, and then deter-
mining which hardware components are used to execute each
function or relay each communication. The system is modeled
as a series of functions, or tasks, and the communications
between them. The abstract behavior of each task is then
modeled with activity diagrams. Algorithms are modeled only
by their execution time, ignoring the implementation details,
and communications are modeled only as the amount of data
they send, ignoring the exact attributes and values of the com-
munication. Architectures are modeled as a set of execution
nodes, CPUs, FPGAs, hardware accelerators, communicating
on buses, bridges, and storing data on memories. Hardware
components are abstractly modeled, and characterized by
scheduling policy, frequency, and estimated parameters like
cache miss frequency.

Once the partitioning models are developed, the system can
be simulated and formally verified. Security properties, for
example, can be analyzed with ProVerif [24]. Our high-level
simulation allows us to measure the load, or usage percentage,
of hardware components, as well as latencies between tagged
events [25].

C. Verification

The verification of a partitioning model relies on two model
transformation techniques.

• A model transformation translates partitioning model into
a C++ code. A predictive simulation engine can be linked

to this code in order to obtain performance metrics e.g.
the min/average and max latency between two events.
The same C++ code can also be linked to a model-
checking engine in order to evaluate safety properties,
e.g. reachability and liveness properties.

• Another model transformation translates a partitioning
model into a ProVerif specification. The soundness of
this model transformation has been partially proved [26].
Confidentiality, authenticity and integrity properties can
be formally verified. Figure 2 shows a TTool model
annotated with security verifications performed on a log-
ical communication channel (named GPSData) between
two functions. The security verification with ProVerif
dialog window is shown on the left. Whenever a security
property is proved as non-satisfied, an execution trace
demonstrating the attack is generated.

D. Design Space Exploration

Design Space Exploration helps us consider possible design
options based on a set of metrics [27]. A design space
exploration engine — partly based on the simulation engine
described in previous subsection — reduces the manual work
in building and evaluating each individual model, and instead
automatically generates all possible models varying parame-
ters such as number of CPUs, mapping of tasks to CPUs,
algorithms used, etc.

The Design Space Exploration of TTool scores each map-
ping based on metrics such as CPU and bus load, runtime,
and etc. To better help with determining the performance of a
secured system, our tool can instead generate and evaluate the
secured model based on the security annotations. The scoring
of a design based on safety properties is under development.

IV. SAFETY, SECURITY AND PERFORMANCE

Many of our studies on the relationship between safety,
security, and performance focused on the autonomous vehicle
of Institut Vedecom, which is perfectly safe (even if come
fake videos of the VEDECOM car crashing on a circuit could
be found on Internet, but they are fake videos), secure, and
is the most efficient vehicle to roll this earth [28], but these
discussions can be applied to many real-time safety-critical
systems.

As shown in figure 1, the requirements on either safety,
security or performance can lead to introduce mechanisms that
may induce violations of requirements of another category. We
will now detail how the violation of another category can be
handled, and then we will precisely study the impact of precise
mechanisms. This study will be performed for each category.

A. Security aspects

1) Non-satisfied security requirements : If security require-
ments are not satisfied for a given attacker model, then differ-
ent measures can be taken. First, other security mechanisms
can be selected (e.g., other security protocols). Second, the
HW architecture can be reconsidered e.g. if we assume that an
attacker can only probe buses external to chips, then we could



Fig. 2. Proving security properties with TTool. The results of security proof is backtraced to SysML diagrams

decide to put on the same chip different parts of the system
(i.e. in a System-on-Chip). Firewalls can also be an option to
check for access control policies. Intrusion detection systems
or security managers can also be added to the architecture
to switch to a safe mode whenever an attack is detected.
Last but not least, the mapping itself has a strong impact
on security aspects. For instance, the non-confidentiality of
data communications between two functions mapped on two
different SoC while an attacker can listen to the bus/network
between the two SoC can be easily solved by mapping the
two functions in the same SoC.

2) Satisfied security requirements: If security requirements
are satisfied, then the impact of the security mechanisms can
be studied. As previously mentioned, adding security mecha-
nisms such as data encryption or authentication improves the
security of a system. On one hand, the safety is improved
because by preventing attacker-induced unsafe behavior. On
the other hand, adding more algorithms may introduce extra
bugs that may degrade the safety, and the use of crypto-
accelerators impacts the reliability of the whole platform and
so the overall safety.

Moreover, the added time to secure data degrades perfor-
mance, and may delay safety-critical events.

A coherence check on either received messages or sensor
data should detect faults, and may also prevent the attacker
from injecting messages if it detects an incoherence between
the injected and correct data, but only if the attacker does not

have control of all input sources. It may be therefore helpful to
secure the data with different encryption algorithms and keys
to prevent an attacker from easily accessing both sets of data.

B. Safety aspects

1) Non-satisfied safety requirements : If safety require-
ments are not satisfied, then different measures must be taken.
These measures rely either in the search for a mapping that
better ensures e.g. deadlock avoidance, or an architecture that
is more reliable e.g. by using redundant hardware components.
At the application level, typical safety mechanisms that can be
added are plausibility check, watchdogs, and safe modes.

2) Satisfied safety requirements: Plausibility checks have
been suggested for use in cyber-physical and industrial systems
to help detect failing components or attacks [29], [30]. Various
detection schemes, such as monitoring the entropy between
related clusters of sensors, help detect when abnormal data
is being sent into the system. Like coherence checks, they
should improve the safety and security of the system, unless
the injected or erroneous data is still within the plausible
range. Similarly, anomaly detection has been suggested for
the communication buses, which may help detect attacks using
various machine learning techniques [31], [32]. Unfortunately,
the computation time due to these checks may negatively affect
performance.

Failsafe modes can engage when the system detects a safety
problem, such as hardware failure, or a security issue, such as



an attack, and warn the users and safely stop a vehicle on
the side of the road, or return a drone to a base station. The
failsafe mode may be necessary to keep the system operational
until it can reach a safe location. For example, upon the
detection of a major error or hacking attempt, an autonomous
vehicle could not simply stop on the freeway, and a drone
which lands immediately could be stolen. While failsafe modes
are intended to improve the safety of the system, their effect
also depends on their implementation, as the degraded mode
might involve removal of certain security protocols, making
the system ultimately less secure.

Other safety checks such as monitoring or watchdog timers,
also require additional hardware or software, and while they
should detect errors and faults, they may impact performance
[33].

Furthermore, any additional hardware and software could
actually introduce more bugs or faults into the system, and if
implemented poorly, will only be a source of delay with no
positive effect on the system.

C. Performance aspects

1) Non-satisfied performance requirements : There are
different options to handle non-satisfied performance require-
ments. At application levels, algorithms can be reconsidered
in order to select less computation intensive algorithms. At
the architecture level, more powerful components can be
selected. From a computation points of view, higher frequency,
parallelism, pipelining techniques are common solutions. From
a communication point of view, multiples DMA channels,
larger buses, faster memories can be used (but are more
costly). The mapping of functions can also be reconsidered e.g.
mapping functions with important memory exchanges or with
low latency constraints on ”closer” processors, or mapping
their exchanges on more efficient communication paths.

Safety and security protocols can also be reconsidered
in order to obtain better performance, e.g. using a crypto
accelerator instead of a general-purpose processor, or reducing
the plausibility checks performed by safety engines.

2) Satisfied performance requirements: If a system satisfy-
ing performance requirements has been obtained at the cost
of decreased safety or security, then the safety and security
mechanisms can be progressively improved until the point at
which performance would not be satisfied anymore.

A summary of the impacts of some of the measures taken
for each of the different domains is summarized in Table I.

TABLE I
IMPACTS OF DESIGN DECISIONS ON SAFETY, SECURITY, AND

PERFORMANCE

Mechanism Safety Security Performance
Redundancy + ? -

Plausability/Coherence Check + +/? -
Anomaly Detection + + -

Data Security +/-/? + -
Decreased bus/processor usage +/-/? + -

Failsafe Mode + -/? ?
System Monitoring/Watchdog + ? -/?

V. CONCLUSIONS

Concurrently considering potentially opposed requirements
of different domains (safety, security, performance) is a chal-
lenge that is now addressed by the SysML-Sec approach.
Besides the modeling and verification aspects, SysML-Sec
makes it possible to easily iterate over different safety /
security mechanisms, and to evaluate performance aspects in
different HW and SW architectures.

Of course, SysML-Sec does not totally cover all aspects of
safety and security. For instance, component reliability is (not
yet) taken into account nor access control policies. Finding the
ultimate modeling environment for covering all possible safety
/ security / performance aspects of HW /SW partitioning is
probably not reachable, yet TTool & SysML-Sec now offer a
very good integration of these diverse aspects, while remaining
quite simple to use.

Meta-model linking in order to easily take in account
models and verification capabilities of other design approaches
is part of our future work. We are also currently integrating
analog components in our architecture diagrams in order to
better capture the physical aspects of CPS. Last but not least,
SysML-Sec is an iterative process between different aspects
(security / safety / performance): handling all constraints at
the same time is an issue we intend to tackle with a automated
process.
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