
1

Dynamic guest memory resizing — paravirtualized
approach

Maciej Bielski, Alvise Rigo Renaud Pacalet

Virtual Open System
{m.bielski, a.rigo}@virtualopensystems.com

Télécom ParisTech, Université Paris-Saclay, LTCI
renaud.pacalet@telecom-paristech.fr

Abstract—Nowadays cloud-computing systems take a great
advantage of virtualization for the benefits of workload iso-
lation and flexible resources partitioning. It is expected that
the same functionalities will be available also on disaggregated
architectures, proposed recently as next generation approach
for building data-centers. In this publication, we are presenting
the design and prototype of an enhanced virtualization layer,
enabling runtime memory balancing between virtual machines on
a section granularity. Guests’ RAM is backed by isolated chunks
of host memory, coming from independent physical banks, not
necessarily a local one. It can be dynamically resized without
requiring any support for ACPI emulation in the virtualization
framework, as we exemplified by implementing the prototype on
ARMv8 platform.

Keywords-memory balancing, virtualization, cloud computing,
memory disaggregation

I. INTRODUCTION

In today’s cloud computing systems virtualization layer
unquestionably plays an essential role. It comprises func-
tionalities provided by the host OS (optionally supported by
user-space tools), necessary to run virtual machines (VM)
executing guest operating systems. Virtualization abstracts and
partitions underlying resources making them accessible to
the user conveniently, without the need of knowing neither
the physical system architecture nor the components’ actual
location. Multiple VMs can coexist together on the same
host and isolate different workloads, increasing overall system
security and resources utilization efficiency.

In this work we present a design and prototype implemen-
tation of an enhanced virtualization layer enabling runtime
adjustment of the guest memory without relying on the ACPI
standard [4] support. The support may either not be present at
all [2] or it may rely on a closed proprietary firmware, which
we preferred to avoid for potential security concerns. Thanks
to runtime VM memory resize there is no service downtime,
which could likely happen if a workload was migrated to
other VM, equipped with more RAM. It also allows to keep
all memory resources maximally used all the time by easier
balancing them between different VMs.

Our prototype is based on open-source software, both
host and guest are running Linux kernel and virtualization
capabilities are provided by the QEMU-KVM [6], [8] frame-
work. Passing information between host and guest is being
performed in a paravirtualized manner. KVM is the Linux
kernel module that enables virtualization features by reusing
the infrastructure already present inside the kernel and turning
it into a hypervisor. QEMU is a complementary host user-
space software, capable of taking advantage of KVM, handling
a VM emulation and executing a guest OS.

Paravirtualization, in general, is a technique especially pop-
ular for guest device drivers when the driver is split into two
parts; front-end installed in the guest and back-end installed
in the host. The former exposes a standard interface expected
by guest user-space and communicates with the latter, part of
the hypervisor, that eventually performs an intended task, for
example operates underlying hardware.

What is a crucial trait of the presented approach, the guest
memory buffers are not obtained from the standard host
memory allocator (e.g. through malloc() function) but instead
from a custom driver managing isolated ranges of host physical
address space (HPA). The driver abstracts the actual memory
location, it can come from locally available resources or from a
disaggregated memory pool. Disaggregation is an architectural
approach that, in the memory context, means that only a
limited amount of RAM may be locally available while most of
it is physically decoupled from the host CPU cores and come
from a remote system node [1], [15], [16], [19]. Assuming that
partitions of remote memory could be dynamically attached
and detached, we propose a method of exposing them to virtual
machines from the host level as isolated contiguous ranges of
HPA. However, for the lack of a real disaggregated hardware
at the time of writing, our solution is prototyped on a system
with all memory resources available locally.

The rest of the paper is structured as follows. Section II
presents several related works, Section III details the software
architecture we propose, Section IV presents the testbed we
implemented for evaluation and obtained results, Section V
concludes the paper.

II. RELATED WORK

Most prior works related to guest memory balancing im-
plemented different flavors of page-based techniques, based
on the overcommitment approach. They are based on juggling
physical memory pages between the larger set of virtual pages
to back-up the overcommitted ones.

The most straight-forward approach is the uncooperative
swapping. Since performed by hypervisor, it suffers from a so
called semantic gap, meaning the hypervisor cannot optimally
select guest pages to be evicted for the lack of guest memory
usage [9], [10].

Ballooning has been proposed to address this problem by
delegating the page selection process to the guest [17]. Nev-
ertheless, a VM that needs more pages relies on cooperation
with other VMs while they can limit or disable ballooning.
Moreover, it is slower than uncooperative swapping due to
possible page evictions in other guests [11]. Combinations of



2

both mechanisms have been proposed to select best candi-
dates and improve balancing responsiveness [11], [12]. Even
so, page-base techniques operate within the memory amount
defined at boot time and cannot expand it. Moreover, they
fragment guest memory for the lack of control over physical
addresses of pages (decided by the memory allocator) [13],
[14].

Instead of swapping, we employed mapping-based method.
It allows to extend guest’s memory (by performing the hot-
plug operation) over an initially declared value by attaching
a section of RAM provided by a custom host driver. In case
a section needs to be detached, there is always only one VM
responsible of releasing it. Such approach simplifies sections
management between multiple guests and does not compound
host’s memory fragmentation.

Up to authors’ best knowledge, only one paper by Liu et
al. presents a hybrid system combining ballooning together
with memory hot-plug mechanism to overcome the limitation
of guest memory upper-bound [13]. The crucial difference is
that, this work uses the default host memory allocator, while
in our system the VM memory buffers are obtained from
isolated chunks and are physically contiguous. We consider
this design to be easily adaptable with disaggregated systems,
where memory resources come from different remote system
nodes. Moreover, we don’t integrate ballooning, in its classic
flavor, for the reason that it may render a memory section
impossible to unplug and the necessary migration would
impose additional performance overhead. Our approach is not
a magic bullet, it is not supposed to handle instant bursts in
memory demand but ballooning also does not do it, while
bringing other difficulties mentioned above.

With regards to physical memory detection, in our prototype
the guest OS relies on information from provided device-tree
structure at boot time and respective runtime communication
held in a paravirtualized manner. Alternatively, in both cases
it could be based on the ACPI standard [4] but this requires
respective firmware emulation to be provided by virtualization
framework and corresponding support in the operating system.

III. PROPOSED SYSTEM ARCHITECTURE

The virtualization layer enhancements span three levels.
The first one is a custom host OS (hypervisor) driver that

initializes data structures related to isolated memory. The
isolated memory is indicated at boot time by the device-tree,
that is a description of a hardware configuration, typically
used to inform Linux kernel of available resources and their
parameters in order to initialize underlying hardware properly.
For isolated RAM the initialization process is very similar
to regular one but corresponding ranges of HPA are not
eventually passed to be managed by the system allocator.
Instead, this memory will be available for the VMs only
through the driver.

The second level is a VM itself. Similarly to regular
processes, each VM instance resides in the host local RAM but
all memory buffers obtained to constitute guest memory are
allocated from the isolated memory pool. Also, while a guest
is running, a VM is capable of expanding and shrinking its
memory, which operation is called the guest-physical memory
resize. On top of that, a VM interacts with the guest OS for

receiving resize requests as well as to coordinate respective
logical memory resize at guest side.

The guest OS is a third level of modifications. It exchanges
messages with the VM and adapts the guest’s logical memory
by performing hot-add/-remove operations.

Figure 1: Guest memory provisioning from isolated pool

Figure 1 presents a more detailed system view. The core
components and their roles are described further in this sec-
tion. Others are mentioned in the following part and may or
may not be needed, depending on a particular communication
path between a workload and the host.

• GMk: Guest memory backends — chunks of physically
contiguous memory isolated from the host allocator and
used exclusively to build guest RAM, k ∈ [1, 2, . . . , n].

• RAMlink_k: VM-internal data structures abstracting
guest RAM resources, during initialization mapped 1-to-1
to GMk by the host driver GM_mgr, k ∈ [1, 2, . . . , n].

• GM_mgr: Guest memory manager implemented as a host
driver. Upon request from a VM, it selects a GMk region
and maps it to VM process address space, specifically to
RAMlink_k range.

• VM_state: A set of data structures and operations
typically performed by a VM, including a guest system
execution management.

• VM_payload: An actual memory range where the guest
OS code has been loaded and is executed by a VM.
Its size can vary over time but is upper bounded to the
amount of memory provided by all backends attached to
this VM at a given moment.

• MON_if: VM component exposing an interface for ex-
ternal processes that could perform various management
operations, for example stop a VM, resume it, query
its parameters or trigger reconfiguration (e.g. memory
resize).

• GM_drv: Guest-side driver, responsible for communi-
cation with the VM and triggering the logical memory
resize.

• GM_if: A VM communication interface, interacts with
several other components during the memory resize:

– Host driver (GM_mgr), to requests for binding a
RAMlink_k instance with an actual host memory
chunk GMk.

– Guest driver GM_drv to receive memory resize
requests directly from guest OS or interact with
the VM to ask for physical RAM attachment or
detachment.



3

– VM monitor interface (MON_if) to receive memory
resize request (alternative way) signaled by external
processes.

The manager module (GM_mgr) is responsible for selecting
a range of isolated memory (GMk) that will be linked to a given
VM by a RAMlink_l. This linkage happens either when a
new VM is launched or at runtime, when its RAM volume is
resized.

The first case is more straightforward as resources are prop-
erly initialized at host side and from the guest’s perspective
they are statically predefined in the provided device-tree.

The guest memory initialization takes place when a VM
process builds a machine abstraction and allocates buffers
that will constitute its RAM. Instead of using standard means
(for example the malloc() call) of obtaining resources from
host memory allocator, a VM (GM_if) uses a specific driver
(GM_mgr) to reserve one or multiple backends (GMk). There-
fore, guest RAM is compounded by one or multiple chunks
of isolated RAM.

In case of dynamic memory resize there are additional steps
required. A VM has to receive a reconfiguration request in
order to modify its current setup, so messages exchange is
necessary between a VM communication interface (GM_if)
and either a VM monitor interface (MON_if) or a proper guest
driver (GM_drv). These are two different usage variants and
both are discussed in sections III-B and III-C, respectively.
Additionally, respective runtime modifications are needed at
guest side in order to make new memory resources available
for guest processes, or oppositely to properly stop using
these, which are about to be detached. In Linux parlance, the
former and latter are called memory hot-add and hot-remove,
respectively. They modify the amount of guest memory at
memory section granularity, that is a physically contiguous
range of memory of a platform-specific size (for example 1
GB).

Whether it is a guest or a VM, that performs the recon-
figuration first, depends on an operation type. In the event
of guest RAM expansion, firstly new guest physical memory
resources have to become available before guest can start using
them. Symmetrically, in case of RAM shrinking, the guest has
to stop using involved sections first, before a VM can safely
release corresponding memory backends. Figure 2 presents a
flow diagram of this operation in both cases, triggered by an
external process through the monitor interface MON_if.

A. Resize volume
The incoming resize request specifies a desired amount

of VM memory, which, after comparing it against currently
available amount, allows to determine whether a VM RAM
should be extended (positive difference) or shrunk (negative
difference) and an absolute value of the computed difference
needs to be expressed as a multiple of size of one backend.
In case of expansion, the safe assumption (from the guest
workload perspective) is that at least the requested amount
of RAM should be provided, therefore the absolute value of
the difference is rounded up. To the contrary, when shrinking
the memory, one can assume that the workload is ready to
execute with no less than indicated amount of RAM, thus the
absolute value of a difference is rounded down.

Figure 2: Dynamic memory resize

As already mentioned, the guest memory section size is a
platform-specific parameter of the Linux kernel. Since each
initialized section has to be associated to a VM backend, the
size of a backend should equal to one or multiple of a section
size, while the lower the VM backend size, the better RAM
resizing granularity. Therefore, the case of a VM backend size
equal to guest memory section size seems to be optimal.

B. Live VM balancing: guest parameters visibility
The diagram on figure 2 presents a situation in which a

resize request is emitted through the MON_if component.
Referring to figure 1, it exposes an external interface, for
example used by a monitoring software (MON) responsible for
managing all hosted VMs and balancing available resources
between them. Such a software could make an arbitrary
decision about changing the amount of VM’s RAM based on
internal logic and usage data. It could be periodically collected
either from each VM process (through the same MON_if
interface) or directly from running guests, for example through
an independent path like a socket.

Observing only a VM state (as oppose to considering also
guest-internal parameters) has the advantage of no require-
ments towards software installed on the guest but can only
provide memory consumption data of limited accuracy.

More precise data can be collected directly from a running
guest, however this requires a dedicated service (depicted as
MON_agent on figure 1) to maintain the communication and
query proper parameters. Such service could be running as
an independent daemon process, alternatively accompanied
by a supplementary guest kernel module if some required
information could not be obtained with standard user-space
tools. In this scenario, the host VM manager (MON) could
collect more precise data (e.g. regular memory vs. page cache
consumption or amount swapped memory) and resize guest
RAM when needed.



4

C. Explicit resize requests
Orthogonally to live VMs balancing, a RAM resize request

could be also emitted by the guest itself and there are two
possible categories: pro-active and reactive, with respect to
the moment when the guest runs out of memory.

The first one assumes that this situation could be avoided
since the need for additional RAM can be anticipated. In
one scenario, a guest component (MON_agent) performs
continuous monitoring of relevant parameters and emits a
resize request when needed. Again, this method does not sig-
nificantly involve a workload owner, which is good, especially
for legacy applications that cannot be adapted to the system.
The drawback of this approach is that a continuous monitoring
could imply a significant performance overhead [9], [18]. In
other scenario, instead of being a standalone guest component,
the MON_agent would be integrated with a user workload
(APP on the figure 1). This requires that an application can
notify the environment in advance about a need for more
memory or when some of attached sections can be detached.
This approach is much more precise and lightweight as the
application knows exactly when and how much more resources
will be needed.

The second category is conceptually the most straightfor-
ward, as no guest monitoring or application integration is
performed. Instead, the guest is allowed to run out-of-memory,
and ask for more resources before handling the situation
by taking standard steps like page swapping or kiling other
processes. One problem is that the process of RAM expanding
needs a certain amount of memory itself, whereas the system
just exceeded all its resources. Therefore, there needs to be
a buffer reserved a priori for each potential section to serve
such situation. Another drawback is that this method can only
attach more resources. Therefore, the reactive approach seems
more like a last resort solution in case pro-active techniques
would not be sufficient.

D. Request path
The last element of the figure 1, shortly mentioned before, is

the GM_lib, exemplifying an alternative communication path
between a workload and the host environment. Instead of using
independent channel to trigger memory resize, this component
interacts directly with the GM_drv guest driver, the same that
is responsible for passing the parameters between guest and
VM during the operation. Regarding the figure 2, the execution
flow is almost the same, with the only difference that MON_if
is replaced by GM_drv.

Considering the presented framework as a paravirtualized
guest memory manager, GM_if can be considered a back-end
while the GM_drv plays a front-end role.

E. Resize granularity
The presented system provides a section-based technique

for dynamic memory balancing between VMs running on the
same host. This is different than traditional page-based mech-
anisms like memory ballooning [17], which operates within
the scope of VM memory defined at boot time. Our approach
aims to keep the runtime flexibility but avoid drawbacks of
the page-based methods. The resize is based on memory

section granularity in order not to introduce additional host’s
memory fragmentation and not be constrained by a launch-
time declared maximum value. The price of such approach
may be a lower consolidation level since fractions of sections
from several VMs cannot be efficiently reused. However, page-
based approaches are known to increase system fragmentation,
which can effectively cause similar effects when the system
having multiple tiny pieces of free memory will not be able
to use them to allocate a larger object. Moreover, since
requirements of applications are typically changing over time,
operating at the coarser granularity limits the control signals
traffic intensity between host and VMs required otherwise to
pass page ownership to other guest.

F. Disaggregation context
A resizeable memory virtualization layer based on isolated

backends, as above, is ready to be adapted for disaggregated
architectures. The GMk backends need to be associated with
actual memory resources by the GM_mgr module at the host
level but for a VM it is completely transparent whether they
are backed up by local or remote RAM. Considering the fact
that the amount of locally available RAM would no longer
be a limit and the memory-to-CPU ratio per VM would be
flexible, the section granularity assumed for this work seems
to be even more reasonable as the amount of globally available
memory may be in the range of terabytes.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation details

Figure 3: System prototype components

This section briefly describes the system prototype with
components illustrated on the figure 3. The work was con-
ducted within the dReDBox project, which defined the target
platform to be ARMv8. Nevertheless, except for parts of mem-
ory hot-plug functionality, the implementation is platform-
agnostic. The system is based on open-source software, Linux
running both as host and guest OS and QEMU being the
host user-space process that communicates with KVM driver
in the host and handles VM emulation. The QEMU process
(VM_state) runs in the host local memory and only the
resources allocated for a VM_payload are mapped to isolated
memory chunks. This mapping is performed by the GM_mgr
host driver, that based on information from the device-tree,
initializes subsequent GMk (k ∈ [1, 2, . . . n]) HPA ranges
as a custom flavor of reserved memory (in Linux kernel
parlance), which are not passed to the memory allocator. This
effectively provides memory isolation, since the access can
be granted only by the GM_mgr driver. On QEMU side, the



5

crucial modifications developed for the system prototype are
the following:

1) A custom backend created for non-uniform memory
access (NUMA) abstraction that we reused. This allows
to construct resizeable guest memory out of preallocated
buffers.Instances of the backend (RAMlink_k) acquire
resources from GM_mgr, which maps GM_k ranges to
virtual address space of a given VM process.

2) A new command in the QEMU monitor that allows to
ask for guest memory resize. The monitor is a VM
service exposing telnet interface (MON_if) and often
used by external tools (MON, for example libvirt [3]).

3) A modification of the control register of a
virtio-balloon emulated device, necessary
for communication with respective driver at guest side.
The memory ballooning mechanism is not used but it
was just convenient to reuse existing virtual device and
driver for the paravirtualized communication.

4) A custom state-machine that takes care of guest-to-
host (GM_if to GM_drv) event signaling and correct
data transfer, also placed within virtio-balloon
implementation.

Additionally, on the guest kernel side, we properly modified
the virtio-balloon driver (GM_drv), correspondingly
to the device part described above. Moreover, as a crucial
component of the system, we developed the ARMv8 platform-
specific part of memory hot-plug functionality in the Linux
kernel, which had not been supported before. This part of the
work has been published to respective community in the form
of code patches [7].

B. Testbed configuration
The prototype implementation of presented architecture has

been tested on the Xilinx Ultrascale+ MPSoC ZCU 102 (rev.
1.0) board, equipped with 4 Cortex-A53 cores and hosting
4 GB of external memory [5]. The host OS is based on
manufacturer’s fork of Linux kernel, version xilinx-v2016.4,
QEMU on upstream version stable-2.5 and guest Linux kernel
on upstream version v4.14-rc8.

By modifying the device-tree used by the host OS, we split
the available RAM in two parts: 2 GB backing up the local
memory and other 2 GB serving as an isolated backends. We
configured the system so that guest memory section size is
512 MB.

C. Memory resize latency
Initially launched with 512 MB of RAM, a VM was scaled

up to 2 GB in 3 steps (512 MB each), then scaled down in
another 3 steps to return to the initial configuration. There were
conducted 40 such rounds. Multiple samples from both QEMU
and guest kernel side were collected and processed to obtain
statistics presented in the table I. It characterizes delays of
each resize stage, divided in two, referring to scale-up (upper
half) and scale-down (lower half).

The resize request is always received first by QEMU, which
triggers further steps and receives an acknowledgment at the
end (as depicted on figure 2). This way the total latency is
derived, that consists of backend reservation or release at host

Stage Min [us] Max [us] Median [us]

Add

backend reservation 140690 147315 145794
page table build 89 62664 30254

section init 32349 38923 32472
pages onlining 64802 87691 80878
guest subtotal 97331 182258 142914

request-reply 113411 206678 167870
total 254541 353043 313403

Remove

pages offlining 57173 720117 127242
section clean-up 1868 10462 2489

page table destroy 30049 33135 30206
guest subtotal 89551 756366 160055

request-reply 101252 806490 197394
backend release 122196 127283 126329

total 224368 933459 323071

Table I: Latencies of memory resize steps

side plus the request-reply latency perceived by QEMU, that
is the communication delay and respective reconfiguration at
guest OS side (guest subtotal). The communication is based
on accessing a device registers together with handling related
interrupt and can be simply computed as:

communication delay = request reply − guest subtotal

An order of the execution is reflected within both Add and
Remove sections of table I. For the scale-up, memory backends
are reserved before the guest can use it, and symmetrically for
scale-down, the QEMU has to request the guest OS to relin-
quish memory sections first, before corresponding backends
can be safely released. The signaling overhead is larger in the
scale-down case because of additional interaction necessary at
the beginning to trigger guest action first.

The guest subtotal values can be decomposed into three
main steps, done symmetrically for Add and Remove part:

• Building or thrashing page tables used by the MMU
(memory management unit),

• Initialization and cleaning of virtual memory map data
structures,

• Pages onlining or offlining, that stands for passing or
withdrawing pages to/from the memory allocator and
flushing the TLB (Translation Lookaside Buffer) entries
in the second case,

There are stages of a particularly high latency variance,
deserving better comment.

First, regarding the page table building, it requires filling
entries of 4-fold-nested address translation tables (default
configuration in Linux kernel for ARMv8), which tree-like
structure is determined by the MMU. Each entry of level-
N table (that is one memory page) corresponds to one table
of level-(N+1). The level-1 table and some lower level ones
are allocated at boot time, but in order to increase the
amount of addressable memory, further pages may need to be
allocated for lower levels. The deeper the level is, the faster
corresponding table is populated and additional allocations are
more frequent. Therefore, three subsequent allocations for one
mapping may account for the worst case latency and none of
them for the best case.

Another large variance is observed in case of pages offlining
stage, when pages of a given section are reclaimed. They may



6

be owned by guest the memory allocator or entailed on per-
CPU lists of each CPU core (in Linux a core is considered
a separate CPU). Especially in the second case the operation
may not be successful at the first attempt and is being repeated
on each core until accomplished, otherwise the process cannot
advance. As there can be multiple or none pages (of a given
section) owned by per-CPU lists, the introduced delay may
vary, depending on how long the system was running and what
allocations and deallocations were performed by a given core.

The section init and clean-up stages embody the virtual
memory map (so called vmemmap) management, that is
struct page objects instantiation and clean-up, respec-
tively. Although a delay of the clean-up step is also variable
in the removal case, it does not contribute significantly to the
overall latency.

In general, the execution time of adding the memory section
is typically above 300ms, up to above 350ms in the worst case.
Out of this, around 45–50% is spent in the guest, 40–45%
in the QEMU and about 8% is consumed by communication
between them. The biggest variability is contributed by the
page table building stage. The median execution time of
section removal equals to 320ms, with QEMU accounting for
about 40% of it, guest for 50% and more than 11% devoted
for communication. But the dispersion of this operation is
much larger at the guest side as in the worst case it can
take almost 5 times longer than the median value, mainly due
to page offlining latency. Numbers in the table I are derived
statistically from the set of samples for each stage so the above
percentage values do not add up exactly to 100%.

Eventually, a crucial aspect is how much a guest workload
would be affected by scale-up and scale-down operations.
At guest side one CPU core is occupied for the whole
reconfiguration process and other cores could still execute the
workload in parallel. The only difference is the offlining step,
at which all cores have to release respective pages from their
per-CPU lists.

V. CONCLUSIONS

Presented virtualization layer design enables memory bal-
ancing of memory section granularity and leverages on par-
avirtualized approach. The possibility of runtime memory
adjustment depletes the need of restarting or migrating the
workload to VMs of more RAM. Thus, such backup VMs, that
would otherwise have to be kept ready for a quick workload
handover, are no longer needed.

Thanks to isolation at the host level, the guest memory sec-
tions are physically contiguous, which makes the should ease
deployment on disaggregated architectures. Together fixed size
and predefined offsets of the sections, the logic of a dedicated
host-level allocator may be simplified.

For an accurate RAM resize latency evaluation the most
problematic step is page offlining. It can be affected by
memory fragmentation level as well as the per-CPU lists
gathering some pages. The former should be possibly limited,
especially with regards to memory sections that would be
first candidates to be hot-removed. The latter, instead, can be
perhaps statistically upper-bounded for a given system config-
uration (per-CPU lists size) and a given workload (memory

allocation patterns). Although the delay cannot be avoided, it
would be at least predictable.

As a further work, ballooning could be adapted as a
complementary fine-grained memory balancing, provided that
it would be constrained to operate within one specific section
only, in order not to render other sections non-removable.
Such solution would be a trade-off between having limited
page-based balancing and avoiding extensive guest memory
fragmentation.

ACKNOWLEDGMENTS

This work was supported by the dReDBox project. This
project has received funding from the European Union’s
Horizon 2020 research and innovation program under grant
agreement No. 687632. This work reflects only authors’ view
and the EC is not responsible for any use that may be made
of the information it contains.

REFERENCES

[1] Htc dc 3 whitepaper - online version, 2014. https://goo.gl/6pks7z.
[2] Acpi on arm64: Challenges ahead, 2015. https://events.static.linuxfound.

org/sites/events/files/slides/acpi on arm64 0.pdf.
[3] Libvirt, the virtualization api library, 2017. https://libvirt.org.
[4] Advanced configuration and power interface - webpage, 2018. http:

//www.acpi.info/.
[5] Board data-sheet, 2018. https://www.xilinx.com/support/documentation/

data sheets/ds891-zynq-ultrascale-plus-overview.pdf.
[6] Kvm, linux kernel-based virtual machine, 2018. http://www.linux-kvm.

org/.
[7] Linux kernel patch, ”memory hotplug support for arm64 platform”,

2018. https://lkml.org/lkml/2017/11/23/182.
[8] Qemu, system emulator and virtualizer, 2018. http://wiki.qemu.org/

Main Page.
[9] L Adam. Manage resources on overcommitted kvm hosts, 2011.

[10] Nadav Amit, Dan Tsafrir, and Assaf Schuster. Vswapper: A mem-
ory swapper for virtualized environments. ACM SIGPLAN Notices,
49(4):349–366, 2014.

[11] Woomin Hwang, Ki-Woong Park, and Kyu Ho Park. Reference pattern-
aware instant memory balancing for consolidated virtual machineson
manycores. IEEE Transactions on Parallel and Distributed Systems,
26(7):2036–2050, 2015.

[12] Yaqiong Li and Yongbing Huang. Tmemcanal: A vm-oblivious dynamic
memory optimization scheme for virtual machines in cloud computing.
In Computer and Information Technology (CIT), 2010 IEEE 10th Inter-
national Conference on, pages 179–186. IEEE, 2010.

[13] Haikun Liu, Hai Jin, Xiaofei Liao, Wei Deng, Bingsheng He, and
Cheng-zhong Xu. Hotplug or ballooning: A comparative study on
dynamic memory management techniques for virtual machines. IEEE
Transactions on Parallel and Distributed Systems, 26(5):1350–1363,
2015.

[14] Joel H Schopp, Keir Fraser, and Martine J Silbermann. Resizing memory
with balloons and hotplug. In Proceedings of the Linux Symposium,
volume 2, pages 313–319, 2006.

[15] Dimitris Syrivelis, Andrea Reale, Kostas Katrinis, Ilias Syrigos, Ma-
ciej Bielski, Dimitris Theodoropoulos, Dionisios N Pnevmatikatos, and
Georgios Zervas. A software-defined architecture and prototype for
disaggregated memory rack scale systems.

[16] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. Marlin: A
memory-based rack area network. In Proceedings of the Tenth
ACM/IEEE Symposium on Architectures for Networking and Commu-
nications Systems, ANCS ’14, pages 125–136, New York, NY, USA,
2014. ACM.

[17] Carl A Waldspurger. Memory resource management in vmware esx
server. ACM SIGOPS Operating Systems Review, 36(SI):181–194, 2002.

[18] Saneyasu Yamaguchi and Eita Fujishima. Optimized vm memory
allocation based on monitored cache hit ratio. In Proceedings of the
4th Workshop on Distributed Cloud Computing, page 8. ACM, 2016.

[19] Ke Zhang, Yisong Chang, Lixin Zhang, Mingyu Chen, Lei Yu, and
Zhiwei Xu. saxi: A high-efficient hardware inter-node link in arm server
for remote memory access. In Cluster, Cloud and Grid Computing
(CCGrid), 2016 16th IEEE/ACM International Symposium on, pages
560–569. IEEE, 2016.


