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Abstract—This work addresses the problem of encoding the
video generated by the screen of an airplane cockpit. As
other computer screens, cockpit screens consists in computer-
generated graphics often atop natural background. Existing
screen content coding schemes fail notably in preserving the5

readability of textual information at the low bitrates required in
avionic applications. We propose a screen coding scheme where
textual information is encoded according to the relative semantics
rather than in the pixel domain. The encoder localizes textual
information, the semantics of each character are extracted with a10

convolutional neural network and are predictively encoded. Text
is then removed via inpainting, the residual background video is
compressed with a standard codec and transmitted to the receiver
together with the text semantics. At the decoder side, text is
synthesized from the encoded semantics and superimposed over15

the residual video recovering the original frame. Our proposed
scheme offers two key advantages over a semantics-unaware
scheme that encodes text in the pixel domain. First, the text
readability at the decoder is not compromised by compression
artifacts, whereas the relative bitrate is negligible. Second,20

removal of high-frequency transform coefficients associated to
the inpainted text drastically reduces the bitrate of the residual
video. Experiments with real cockpit video sequences show BD-
rate gains up to 82% and 69 % over a reference H.265/HEVC
encoder and its SCC extension. Moreover, our scheme achieves25

quasi-errorless character recognition already at very low bitrates,
whereas even HEVC-SCC need at least 3 or 4 times more bit-rate
to achieve a comparable error rate.

Index Terms—HEVC, screen content coding, cockpit content
coding, low bitrate, character recognition, semantic video cod-30

ing, convolutional neural networks, compound video, compound
images

1 INTRODUCTION

The cockpit of modern airplanes consists in one or more

screens displaying information reported by the plane instru-35

ments (e.g., the plane location as reported by the GPS, the

fuel level as read by the sensors in the tanks, etc). The

typical content of such screens consists in computer-generated

graphics (e.g., text, lines, etc.) often superimposed over natural

images (e.g., maps, outdoor pointing cameras, etc.). Such40

examples can be seen in Fig. 1 and will described in details

in Section 3.

As the status of the plane instruments is rarely directly

accessible due to security or legacy reasons, the cockpit screen

is often the only way to access key plane information. For this45
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reason, a video of each cockpit screen is often recorded on-

board to be fetched either on a periodic basis or in the event

of an accident. Constrains on the long-term recoding storage

available on-board require the cockpit video be coded at low

bitrates, whereas safety reasons require the textual information 50

to remain intelligible after decoding.

Airplane cockpit video coding can be seen as particularly

challenging application of screen content coding. Text and

other computer generated graphics found in computer screens

yield high-frequency components in the transformed domain 55

usually not found in natural images. Over the past years, a

number of schemes for screen coding and in general for coding

images with mixed computer-generated and natural contents

has been proposed [?], [?], [?], [?], [?], [?], [?], [?], [?]. Most

of such approaches subdivide the image in computer-generated 60

and natural blocks and encode each block with specific tools

(e.g., the former are encoded with lossless schemes). However,

the rate-distortion performance of such approaches depends on

the block size, on the quality of the block classification scheme

and the methods used for coding the objects with different 65

geometry. The recently standardized Screen Content Coding

(SCC) extension [?] of the H.265/HEVC [?] standard includes

tools for screen compression. One common point that is shared

by all these methods is that the computer-generated areas

are encoded as blocks of luminance values. Nevertheless, our 70

experiments show that reconstruction artifacts are unavoidable

at the very low bitrates entailed by our application, prompting

the research for schemes where text is not encoded in the pixel

domain. In the proposed method, the text and the graphical

primitives are encoded as such rather than as blocks of pixels. 75

In this sense, we refer to our approach as “semantic”. Finally,

the complexity constraints of avionic applications make the

design of any scheme for airplane cockpit video scheme

particularly challenging.

In this work, we propose to encode the computer-generated 80

elements of a cockpit screen according to their semantics and

the residual background of the video in the pixel domain. First,

candidate characters in the screen are localized via a low-

complexity yet effective scheme leveraging position-invariant

features typical of cockpit screens. Then, each character is 85

recognized via a Convolutional Neural Network (CNN) [?]

and its semantics are encoded with a predictive scheme.

While the complexity of a convolutional character search may

hinder the practical deployability of a CNN in our complexity

constrained environment, our low complexity text localization 90

scheme workarounds such complexity. We also explore differ-

ent fully connected and convolutional network architectures
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to account for different tradeoffs between performance and

memory and computational complexity. Second, lines are

detected via Hough transform and the starting and ending

points coordinates are predictively encoded. Characters and

lines are then removed from the screen via pixel inpainting [?]5

and the residual video is compressed with H.265/HEVC-SCC.

The semantics of characters and lines are made available to the

decoder as side information to the compressed residual video.

At the decoder side, the residual video is decompressed and

text and lines are synthesized decoding the side information10

and superimposed, recovering the original frame. We evaluate

our scheme on real cockpit screen video sequences measuring

its performance under two aspects: compression efficiency and

character readability. Concerning the video coding efficiency,

in our test set, the proposed scheme achieves 69% BD-rate15

savings with respect to H.265/SCC and around 82% savings

with respect to H.265/HEVC. That is, our scheme based on

coding the semantics of text (and lines) enables 4 to 6 times

lower bandwidth than a reference scheme where the such

information is encoded in the pixel domain. A similar ratio20

is found when we compare the minimum rates demanded by

the proposed and the reference schemes to assure character

readability. Finally, while in this work we focus on intra-coded

frames since intra-coded frames affect the most the overall

R-D performance of a codec, however in principle nothing25

prevents extending our proposed scheme to inter-coded frames

as well.

The rest of this article is organized as follows. The relevant

literature is discussed in Sec. 2 and the necessary background

is presented in Section 3. In Section 4 we describe our30

proposed system for low-bitrate airplane cockpit video coding.

Then, in Section 5 we experiment with our proposed system

over real cockpit video sequences assessing both the quality

of the decoded video and the readability of the reconstructed

text. Finally, Section 6 draws the conclusions of this work and35

outlines future research directions.

2 RELATED WORKS

A number of solutions for encoding mixed content images

and video (sometimes also referred to as compound images

and compound video) such as computer screens have been40

proposed over time [?]. In the following, we review the

relevant literature highlighting the relative limitations that

prompted the development of this work.

A first class of schemes focusing on still images compres-

sion revolves around the idea of subdividing the image in45

blocks or layers separating natural contents (e.g., images) from

other contents (e.g., text) and encoding each type of content

with ad-hoc techniques. Transmission of printed content via

facsimile devices is among the earliest applications of com-

pound still image compression. In [?], [?] the authors present50

a solution for multi-layer coding of compound raster content

using a scheme based on block thresholding within a rate-

distortion framework. In [?], the authors propose a solution

for encoding the content using a block-based segmentation

method for differentiate between the objects of a compound55

image. In [?], the authors investigate the tradeoffs of some

practical methods to implement the above ideas. The ITU-

T even proposed a standard for printed content compression

based multiple-layers image segmentation [?] [?]. For all of the

above methods, the rate-distortion gains depend on the coding 60

scheme, on the quality of the image segmentation maps or on

the methods used for coding objects with different geometry.

More recently, the problem of compressing moving pictures

has emerged due to the rise of videoconferencing and screen

sharing applications. In [?], [?], each intra coded block is 65

classified either as pictorial or textual. Then, textual blocks

are coded in the pixel domain so to preserve their quality

while enhancing the coding efficiency. In [?], the authors

leverage temporal masking to remove high frequency com-

ponents from perceptually less meaningful regions of the 70

video and allocating more bitrate to perceptually meaningful

regions. In [?] the authors propose a lossless compression

solution for screen sharing for mobile devices on wirelesses

networks. The input image is split into blocks and depending

on the characteristics of each block, the compression method 75

utilizes predictive coding, edge coding and run coding. In [?]

a compression solution is proposed, based on a fast block-

based classification algorithm. In the same spirit, the images

are divided into blocks, further classified into smooth blocks,

text blocks, hybrid blocks and picture blocks. Based on the 80

statistical properties of each, four different coding algorithms

are employed to obtain compression gains.

The recently standardized Screen Content Coding (SCC)

extension of the H.265/HEVC (High Efficiency Video Coding)

standard [?] from the JVT of the ISO/ITU introduced coding 85

tools designed to deal with computer screen characteristics

such as limited palette, recurring patterns and sharp edges.

Namely, Intra Block Copy (IBC) [?] is an intra-prediction

tool leveraging recurrent patterns. It creates a prediction of

current prediction unit by finding similar reconstructed block 90

within the causal area of the same picture. Similar in spirit

to inter picture prediction, it can be considered as motion

compensation within the same frame. Palette mode (PLT) [?]

is useful to represent blocks containing a small number of

distinct color values. Namely, it explores the discrete tone 95

characteristic of the screen content by signalizing the pixel

values directly rather than using prediction or transform-based

methods. A number of improvements to the SCC extension

has even been proposed. For example, in [?] an improved

String Matching (SM) scheme going beyond IBC and PLT 100

block matching able to encode a wider range of patterns

with different sizes and shapes is proposed. In [?], a residual

differential pulse code modulation (RDPCM) coding technique

using a weighted linear combination of neighboring residual

samples is proposed. In [?], intra and inter coding transform 105

skipping for improving compression efficiency are proposed;

while effective for pure screen content, such approach is less

effective for compound images case which is our main case

of interest. Despite the success of the SCC HEVC extension

and its derivatives, our experiments revealed that at very low 110

bitrates imposed by our application artifacts around text are

unavoidable, motivating the semantic coding scheme proposed

in the present work.

For the sake of completeness, we briefly discuss also frame
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buffer compression schemes. Such schemes, unlike traditional

hybrid codecs such as H.265/HEVC, are designed to reduce

the bandwidth of raw video between hardware devices (e.g.,

video decoder and framebuffer or framebuffer and display)

while keeping the encoding-decoding complexity bounded [?]5

[?]. In particular, the Video Electronics Standards Association

(VESA) has recently standardized a protocol for quasi-lossless

framebuffer [?]. Such schemes are appealing for cockpit video

compression systems, but target a different part of the video

system (i.e. the link between the decoder and the screen) than10

ours (link between encoder and decoder). By the way, any

framebuffer compression scheme could be plug in after our

codec, but dealing with this topic is out of the scope of this

paper

With respect to the above literature, our proposed scheme15

aims at improving both over earlier compound methods and

more recent standard technologies. While we share with

compound methods the idea of separately encoding computer

graphics, we encode the computer graphics in their semantic

domain rather in the pixel domain to avoid reconstruction20

artifacts irrespectively of the residual video coding rate. Con-

cerning the residual video, our proposed scheme fully enjoys

the benefits of standardized coding technologies while removal

of graphical elements from the residual video significantly

improves the relative efficiency.25

3 BACKGROUND

This section provides the background on airplane cockpit

video and overviews (convolutional) artificial neural networks

for text detection and reading.

3.1 Airplane Cockpit Video30

The cockpit of a modern airliner is composed of one or

more computer screen providing specific information to each

of the pilots in the cockpit. Towards the efficient compression

of cockpit video contents, which is the goal of the present

work, we categorize cockpit screens into two main classes.35

The first class is shown in Fig. 1(a), 1(b), 1(c) or 1(f) (class A

sequences in the rest of this work): they are characterized by

computer-generated graphics (text, lines, etc.) superimposed

over a natural background image (typically, a video captured

by an exterior-mounted camera). For example, the background40

of Fig. 1(a) is a color image captured in the visible light spec-

trum, whereas Fig. 1(b) has grayscale background captured in

the infrared band or in low-light conditions (Fig. 1(c)).

Such screens typically assist the pilot in some specific tasks

(e.g., let the second pilot inspecting the ground for obstacles45

on the take off/landing stripe). Due to the unpredictable

background appearance, overlaid text usually has contour to

improve its readability (e.g., black text with white contour).

The second class of cockpit screens we consider is shown

in Fig. 1(d) and Fig. 1(e) (class B sequences). Such class50

of screens is characterized by complex computer generated

graphics over a monochrome background. Sometimes referred

to as glass cockpits, they replace a number of discrete board

instruments such as compass, active and passive radars, fuel

gauges, etc. Key plane and flight information being involved,55

complex time-variant color codes are used to focus the pilots’

attention over the relevant data, whereas a black background

is typically used to facilitate visual focus.

Extracting and separately coding the semantics of on-screen

computer generated graphics, which is the pivotal idea of 60

our proposed video compression method, is complicated by

a number of factors.

First, contents difference across screens (e.g., screens with

natural or monochrome background) require deploying the

coding tools tailored to the specific screen content. However, 65

in modern airliners the screen content may change when pilots

swap roles (e.g., the second pilot takes the plane control from

his seat), thus the requirement to handle content whose aspect

may vary on a frame-by-frame basis complicates the system

design. 70

Second, the lack of a standard for information reporting im-

plies that the screen appearance may vary a lot within the same

airliner. While character detection is somewhat simplified by

key information having fixed on-screen position and relying on

fixed-pitch fonts to facilitate data spotting, font typeface, color 75

and size vary a lot between screens, demanding a character

reading technology robust to such variations.

Finally, avionic operations impose constraints on power con-

sumption and heat dissipation that result in a cap to system

complexity that further complicate the task. 80

3.2 Character Recognition via CNNs

Convolutional Neural Networks (CNNs) have emerged as

the cornerstone to solve a number of computer vision problems

such as character recognition [?]. CNNs are feed-forward,

multiple-layer, artificial neural networks that may be described 85

as a feature extractor stage followed by an inference stage

[?]. The feature extraction stage includes a number of con-

volutional layers, each layer encompassing multiple learnable

filters. Each filter is convolved with the layer input(s) with

a sliding window scheme and activates upon detection of 90

one specific feature. The output of each filter is processed

by some non-linear activation functions such as ReLUs [?].

Robustness to changes in object position is achieved discarding

absolute spatial information via subsampling (pooling layers).

Each convolutional layer learns to detect features of decreasing 95

resolution yet increasing semantics. The output of the feature

extraction stage is processed by one or more fully connected

layers performing, for example, image classification. Finally,

the last layer of the network provides the desired network

output such as the image class probability distribution. CNNs 100

are typically trained end-to-end via error gradient backpropa-

gation with a fully supervised approach, relieving the system

designer from the burden of designing ad-hoc feature extrac-

tion algorithms.

Concerning our problem of extracting the semantics of the 105

text from an airplane cockpit screen, CNNs are particularly

appealing due to their performance in character reading [?].

CNNs can be used to localize single characters in an image

with a sliding window scheme that makes efficient reuse of

convolutions (convolutional character search). More recently, 110

CNNs have been shown suitable to spot text at the level
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of different types of airplane cockpit screens. First row - Left (Fig. 1(a)): class A - natural light with color background; Center (Fig. 1(b)):
class A - infrared vision with grayscale background; Right (Fig. 1(c)): class A - low-light vision with grayscale background. Second row - Left and Center(Fig.
1(d) and Fig. 1(e)): class B - computer-generated background; Right (Fig. 1(f)): class A - synthetic content.

of entire words [?] and to read text at arbitrary positions

in still images [?]. Concerning moving pictures, in [?] the

authors survey several methods suitable for text detection,

tracking and recognition in video. The complexity of such

text localization approaches increases however with the im-5

age resolution, which may be prohibitive in our complexity-

constrained avionic application. To this end, while we rely on

a neural network for character recognition, we devise a simple

scheme for text localization that leverages position invariant

features in cockpit screens and keeps the overall complexity10

of extracting the text semantics bounded, as described in the

next section.

4 PROPOSED METHOD

This section describes our scheme for airplane cockpit

screen semantic coding, as illustrated in Figure 2. Text is first15

localized exploiting some position-invariant screen features

(Sec. 4.1), then characters are recognized using a CNN (Sec.

4.2) and predictively encoded (Sec. 4.3). Lines are similarly

detected and encoded (Sec. 4.4). Finally, text and lines are

removed from the frame and the residual video is encoded20

via H.264/HEVC-SCC (Sec. 4.5). At the decoder, the residual

video is decoded and text and lines are synthesized avoiding

reconstruction artifacts.

4.1 Character Localization

Characters are detected and localized in the screen with a25

low-complexity yet effective approach as follows. The block

diagram of the procedure is illustrated in Fig. 3.

Identifying character pixels is complicated by the fact that

their aspect depends on the background complexity (e.g.,

natural-background class A screens in Fig. 1(a) show text30

with contour, whereas text in monochrome-background class

B screens in Fig. 1(d) has no contour).

As a first preliminarily step, we perform a coarse classification

of the image (Fig. 3) using color histograms to find if the

input image is synthetic (only computer graphics) or natural 35

(i.e, a compound of computer generated graphics overlaid on

a natural image). To start with, we draw some tiles from the

input frame and compute the corresponding histogram. Then,

each tile is either labeled as synthetic (usually because of

monochrome background) or natural (corresponding to natural 40

background) as follows. In order to decide the label for each

tile, a condition is imposed. The histograms are sorted in a

decreasing order of frequency. Further, starting with the most

frequent bin we count the number of bins that correspond to,

at least 90% of the total number of pixels. If the number of 45

bins is bigger than 20% of total number of bins, then the tile

is labeled as natural. Otherwise, if the histogram is spiky, the

tile is labeled as synthetic. Fig. 4(a) shows two examples of

histograms corresponding to these typical cases of the content.

Finally, if at least one of these histograms is flat enough, the 50

input image is classified as natural, otherwise it is classified

as synthetic.

As a second step, the coarse classification output is used

to decide which thresholding algorithm shall be used. The

threshold block (Fig. 3) takes as input the image and produces 55

as output a threshold map TM exemplified in Fig. 4(b), which

is a binary map indicating the possible positions of characters.

If the coarse classifier decides that the input image is synthetic,

like the one in Fig. 1(d), the Otsu [?] thresholding scheme is

used. If the image is natural (like Fig. 1(b)), we exploit the 60

fact that characters have an outline to ease the reading by the

pilot, e.g. the characters are light-gray with a black outline.

Then, our thresholding algorithm works as follows: first, we

find all the pixels whose color is close to the character’s

color, i.e. whose hue, saturation, and value differ from the 65

character’s ones less than some suitable deviations (whose

values are set empirically). The result is a bitmap M1. Its

value in a given position is high if and only if the image
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Fig. 2. Architecture of the proposed scheme for encoding airplane cockpit video at low bitrates: the semantics of computer generated graphics (text, lines)
are relayed to the decoder separately from the compressed residual video.

color in that position is close to the character’s color (light

gray). Likewise we produce a second bitmap M2 that is high

in all and only positions where the input image’s color is close

to the outline color (black). These maps have usually many

false positives, but most of them can be eliminated knowing5

that characters are localized in areas where both maps have

high bits. Therefore, we first apply a morphological dilate

operator with a suitable structuring element (circle of radius 4),

obtaining respectively M1 and M2. Finally, the threshold map

TM for the natural image is the bit-wise AND of these two10

bitmaps. This corresponds to pixels in whose neighborhood

(defined by the structuring element) there are both character

and outline colors.

As a third step, objects within the threshold map are

identified via Connected Components Analysis (CCA). CCA15

(Fig. 3) clusters the white pixels in the binary map assigning

the same label to pixels in the same neighborhood. Namely, we

consider an 8-pixel neighborhood, to gather the pixels along

any face and corner. Each maximal labeled region defines

a connected component. The output of such process is the20

segment map SM exemplified in Fig. 4(c), where each cluster

of computer graphics pixels is represented with its bounding

box. Typically, the SM shows several false positive. In order to

reduce them, we use screen classification and reference maps.

As a fourth step, the cockpit screen is classified among a25

set of possible screens options as follows. Let each possible

class of cockpit screen have associated one reference map

RM as in Fig. 4(d). The reference maps are bitmaps that are

computed off-line. In a given position a RM is high if and

only if a character may appear there in that screen type. This30

Coarse
Classification

Threshold CCA
Screen

Classification

Refinement

S/NInput

Image

TM

SM

Reference maps

RM*

CM

Fig. 3. Character localization procedure.

is shown in Fig. 1(a) via the relative bounding box. Since for a

given cockpit type characters have time-invariant positions to

facilitate the pilot in localizing key information, such features

are highly distinctive of each screen type. However, we note

explicitly that first, we do not know in advance which the 35

screen type is, and second that the RM cannot directly be used

for character localization since typically on a single image we

will not find characters in all the positions where the RM is

high. So first we have to perform screen classification: for

each reference map representing a screen class, we perform 40

a bit-wise AND operation between the segment map and the

reference map and we count the number of high pixels in the

resulting bitmap. The screen type whose reference map has

the highest pixel score RM∗ is selected as the one of the

current image. In other words, we identify the screen type 45

among a set of options simply by counting the high bits. Our

experiments showed that, when the number of possible screen

classes is up to 12, the screen classification is always correct.

Finally, we perform a box-wise AND operation between the

highest-scoring reference map (referred to as RM∗) selected 50

by the screen classifier and the segment map, in order to get

a noiseless characters map CM. For example, the output of

the box-wise AND between the segment map in Fig. 4(c)

and the reference map in Fig. 4(d) is the characters map in

Fig. 4(e). Notice how the characters map includes a bounding 55

box of the actual character size for each character actually

present in Fig. 1(a). The characters map is then given as

input to the character recognition block. In this manner we

define a character localizer, that fulfills the low-complexity

constraints of our target application. It is able to generate 60

the coordinates of the position of each bounding box, which

is further classified as detailed in Sec. 4.2. In the end, the

associated table of characters, suitable for coding, is obtained

as it is elaborated in Sec. 4.3.

4.2 Character Recognition 65

This section discusses the three neural network architec-

tures for on-screen character recognition in Figure 5. Each

architecture offers a different trade off between performance

and complexity, allowing to address the different types of

constraints that avionic applications must undergo. 70

The first architecture is LeNet300 [?], a simple fully connected

network composed by two hidden layers with 300 and 100

units (neurons) respectively with sigmoid activation functions
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Intermediate processing steps for the class A image in Fig. 1(a). First row - Left (Fig. 4(a)): Histograms examples; Center (Fig. 4(b)): Threshold map;
Right (Fig. 4(c)): Segment map. Second row - Left (Fig. 4(d)): Reference map; Center (Fig. 4(e)): Predicted Characters map; Right (Fig. 4(f)): Residual after
character inpainting.
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Fig. 5. The three neural networks architectures considered for on screen character recognition. Left: LeNet300; Center: LeNet5; Right: LeNet5+.

and one output layer.

The second architecture is the well-known LeNet5 [?], a

convolutional architecture with two convolutional layers and

three fully connected layers. The two convolutional layers

include 6 and 16 5 × 5 filters each with sigmoid activations5

and followed by max-pooling feature map subsampling. The

first two fully connected layers include 120 and 84 units

respectively with sigmoid activations.

The third architecture is an improved LeNet5 (LeNet5+, in

the following) that leverages recent advances in deep neural10

architectures [?] such as ReLU activations [?] and an increased

number of convolutional filters.

All three architectures include C=41 units in the output layer

(i.e., they classify the character in an input image according to

C=41 labels). A multinomial logistic regression (i.e., SoftMax)15

layer finally yields a one-hot output representing the character

class probability distribution.

The networks are trained over character samples extracted

from the annotated video sequences. With reference to the

sequences in Fig. 1(a) and 1(b), we extract 22 × 28 character20

crops, matching the size of the on-screen characters. The char-

acters we extract account for 10 digits, 31 letters, punctuation

marks and symbols for a total of 41 character classes plus

one background class. Characters class samples are extracted

with the aid of the reference masks annotated with character25

labels. Such set of samples is the augmented by randomly

shifting each character by either zero, one or two pixels in

each directions, so that the network learns to be robust to

small errors in character localization. In total, we generate

about 8000 samples for each character class. The background30

class samples are cropped at random positions from the video

sequences so that they do not overlap with the reference mask,

i.e. they represent the background video. Showing the network

a large number of background class samples is in fact key to

train it to reject false positives, i.e. background elements in the 35

thresholding mask that may had been mistaken for text. The

extracted samples are divided into 80 % as training samples

and 20 % as test samples for the purposes of our tests.

The networks are trained with a fully supervised approach

as follows. Let x indicate a training sample, let yi indicate 40

the i-th network output (i.e., the predicted probability that x
belongs to the i-th class) and ti the corresponding target class

score. The network is trained minimizing the cost function

J(w, y, t) = −
∑C

i=1
ti log(yi)+λR(w), where w represents

the network parameters (weights and biases). Finally, R(w) 45

represents a regularization term that prevents the network

from overfitting to the training images and is defined as the

squared l2 norm of the network weights, whereas λ is the

relative regularization factor. Such cost function is minimized

via Stochastic gradient descent (SGD) and the gradients of 50

the error function with respect to the network parameters are

computed via gradient backpropagation [?]. Practically, we up-

date the network parameters with batches of 128 samples, i.e.

we update the weights according to error gradients averaged

over 128 training samples. Concerning the training procedure, 55

the initial learning rate is set to 10−2 the training terminates

when the error on the validation set stops decreasing for three

consecutive epochs.

Table I reports some preliminary experiments on the

performance-complexity trade offs of the three architectures. 60
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Performance is reported in terms of character recognition

accuracy, i.e. ratio of correctly classified characters. Memory

complexity is reported as number of learnable parameters and

computational complexity as number of Multiply-Accumulate

(MAC) operations [?]. The three architectures show all ac-5

curacy in excess of 99.7%, i.e. they enable quasi-flawless

recognition of computer-generated characters. LeNet5+ shows

best performance, LeNet300 shows the lowest computational

complexity, whereas LeNet5 shows the lowest memory foot-

print.10

TABLE I
ACCURACY-COMPLEXITY TRADEOFF OF THE THREE ARCHITECTURES

CONSIDERED FOR ON SCREEN CHARACTER RECOGNITION.

LeNet300 LeNet5 LeNet5+

# Params 215.8k 60k 30M

MACs 219k 679k 32.7M

Accuracy [%] 99.73 99.84 99.99

4.3 Character Coding

For each frame, we need to encode the characters recognized

by the neural network. More precisely, the character recogni-

tion outputs a list of NC recognized characters; each of the

NC entries in the list is a tuple, composed by the bounding15

box position (horizontal and vertical coordinate of the top-

left pixel), the recognized character (letters, digits and a few

typographical signs such as dot, comma etc.) and possibly

other characteristics as font and color. In the current version

of our scheme, only one font and two colors are possible.20

If we encode the character list using a

simple constant-length code, it would require

NC (⌈log
2
W ⌉+ ⌈log

2
H⌉+ ⌈log

2
S⌉+ ⌈log

2
F ⌉) bits

per frame, where W and H are the frame’s width and the

height (in number of pixels), S is the number of possible25

symbols and F is the number of font’s colors and shapes.

For example, in class A sequences, we have W = 1920,

H = 1080, S = 41 (26 uppercase letters, 10 digits and a

5 punctuation marks) and F = 2 (one font shape in two

possible colors), which makes 29 bits per character. Typical30

values of NC are around 170 for Class-A and 70 for class-B

sequences: this would result in about respectively 5 kbits

and 2 kbits per frame, which is non-negligible for very low

bitrate use-cases. Therefore we need to resort to some lossless

coding tools.35

A first simple solution is to use some universal, dictionary-

based lossless coding algorithm, such as LZW [?] and its

variation. However these algorithms are typically not efficient

when the number of symbols to be encoded is as small as in

our case for a single image. Therefore, if we want to provide40

an effective coding of the text in “Intra” fashion (i.e. without

exploiting temporal redundancy and thus allowing independent

decoding of images), we must resort to some ad-hoc encoding

scheme which exploits the regularity of the character list.

First, in cockpit video sequences, characters are typically45

aligned in rows and are equally spaced. Therefore, it could

be convenient to differentially encode their horizontal and

vertical coordinates, since the probability distributions of the

TABLE II
CODING OF THE CHARACTERS VERTICAL AND HORIZONTAL

COORDINATES FOR n > 1. THE FIRST BIT INDICATES WHETHER THE

COORDINATE DIFFERENCE OR THE COORDINATE VALUE IS ENCODED. IN

THE FIRST CASE, THE COORDINATE DIFFERENCE IS ENCODED USING A

VLC, WHILE IN THE SECOND THE COORDINATE VALUE IS ENCODED

USING A FIXED LENGTH CODE.

dvn bitstream dhn bitstream

0 0 cw 0

+1 100 cw+1 100

−1 101 cw−1 101

other 11, vn on ⌈log
2
H⌉ bits other 11, hn on ⌈log

2
W ⌉ bits

coordinate differences are very spiky. For example, we have

observed that vertical coordinates of successive characters are 50

often identical or they differ by ± one pixel (accounting for

some possible noise in the character localization). Therefore

we encode the vertical coordinate vn of the n-th character

as follows. If n=1 (the first character of the image), vn is

encoded using ⌈log
2
H⌉ bits (since v1 ≤ H). For n > 1, we 55

first compute dvn = vn − vn−1. If dvn ∈ {−1, 0, 1}, we first

signal that vn is encoded differentially, using a flag “0”; then

the value of dvn is encoded using a simple variable-length code

(VLC), see Tab. II. Otherwise we encode the flag “1” (which

means that vn is encoded, rather than dvn), followed by the 60

binary representation of vn on ⌈log
2
H⌉ bits.

Similarly, the horizontal coordinate of consecutive charac-

ters often differ by constant number of pixels corresponding

to the character width, let it be cw. Therefore, the horizontal

coordinate hn of the n-th character is encoded as follows. If 65

n=1, we encode the binary representation of hn on ⌈log
2
W ⌉

bits. If n > 1 we compute dhn = hn − hn−1. If dhn =∈
{cw − 1, cw, cw + 1} (which happens most of the times), we

encode a flag “0” to signal the differential encoding, followed

by dhn encoded with VLC; if dhn =/∈ {cw − 1, cw, cw + 1} we 70

encode a flag “1” to signal the encoding of hn, followed by

the ⌈log
2
W ⌉ bits of the binary representation of hn.

The encoding strategy of the character coordinates is re-

sumed in Tab. II.

This simple strategy allows to reduce the coding cost for 75

class-A sequences to less than 10 bits per character in average,

i.e. a rate reduction of about 66%. This can be achieved since,

for most of the characters, we will only use 2 bits for the

coordinates, 6 for the symbol and 1 for the font.

We explicitly observe that in the proposed method, the 80

characters are encoded in an “INTRA” fashion, that is, without

considering temporal redundancy. Taking into account text

from previous images could certainly provide further com-

pression; however this issue is left for future works.

4.4 Graphical primitives recognition and coding 85

As was mention before, cockpit screens can contain graph-

ical elements such as lines, circles etc. Even though the

proposed method could be extended to general graphical

primitives, in this work, we only consider sequences con-

taining horizontal and vertical lines, in particular what we 90

called Class B frames (see Fig. 1(d)). In such a context of

computer generated images, horizontal and vertical lines can
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be recognized quite easily and effectively, using for example

such algorithms as the Hough transform [?]. In particular we

use the line detector described by Matas et al. [?], which also

provides the starting and ending point of each detected line.

The line detection algorithm outputs a list of four coordi-5

nates, representing the starting and ending points (the extreme

points) of each of the NL detected lines. Similarly to character

encoding case, a plain, fixed-length coding of the lines would

require 2NL (⌈log
2
W ⌉+ ⌈log

2
H⌉), which for a typical class

B sequence amount to 1000 bits, i.e. roughly 40 bits per line.10

Additionally, other bits could be required to encode the line

color and thickness. In the current version of our scheme, we

allow only for two colors and one default thickness value,

amounting for one additional bit per line.

As in the previous case, we could resort to existing or ad-hoc15

lossless coding algorithms to reduce this cost. We developed

a prediction based coding algorithms which exploits the fact

that, in our sequences, many lines share the same horizontal

(or vertical) starting and ending point. First, the list of lines

extreme points is lexicographically sorted. The first line (i.e.20

the first set of four coordinates) is encoded in fixed-length

fashion. For each of the following lines, each coordinate is

compared to the correspondent coordinate of the previous line.

If they are equal, only a one-bit flag is written in the encoded

stream; otherwise, a one-bit flag followed by ⌈log
2
H⌉ or25

⌈log
2
W ⌉ bits are written. A variant of this algorithm allow

for a ±one-pixel tolerance on points coordinates, meaning that

two-bits flags are needed but more points can be encoded in

differential mode. This variant allows for a 14% rate reduction

with respect to the fixed lenght coding, and is retained for our30

codec.

We observe that for more complex sequences than class-

B ones, we would need more sophisticated algorithms for

graphical primitives recognition and encoding. They could

be based on classical computer vision techniques (e.g. the35

Hough transform for circles) or on DL classifiers. However,

these issues, as well as the problem of exploiting the temporal

redundancy for graphical primitives, will be explored in future

works.

4.5 Residual Coding40

Eventually, computer-generated graphics and text are re-

moved from the video, filling the resulting gaps via inpainting

[?] and encoding the residual video. The visual quality of

the inpainted areas bears little importance, since such areas

are small and, at the decoder side, they will be overlaid by45

the synthesized characters. Conversely, it is important that

ringing artifacts are avoided because they can jeopardize the

compression efficiency of the residual video. On the other

hand, the computational complexity of the inpainting method

process should meet the requirements of a real time video en-50

coding. Thus, we resort to the Navier-Stockes [?] method The

residual frame is characterized by smooth color distribution

in the inpainted areas as shown in Fig. 4(f), which is more

suitable for compression lacking the high frequencies in the

original frame. Finally, the residual video is coded using the55

SCC extension of the HEVC/265 codec. We chose to use the

extension to code the residual because, in this version, we have

graphical elements that are not identified, like arcs of circle

(i.e. in figure 1(d)), and those must be found in the residual

frame, at a given quality, at the decoder side. 60

5 EXPERIMENTAL RESULTS

We validated the proposed compression scheme by compar-

ing it with three references: the H.265/HEVC codec (HEVC

for short), its SCC extension (SCC) and the screen content

coding technology DjVu [?] (DjVu). As HEVC codec, we used 65

the version HM-16.14 of the standard reference software; for

SCC we used the extension SCM-8.3; for DjVu we used DjVu

Solo 3.1 (compiled for Windows).

Six airplane cockpit video sequences were used in our

experiments, i.e. those shown in Fig. 1. We recall that the 70

first three sequences (class-A) are characterized by text and

symbols superimposed on natural background (video acquired

with a camera installed outside of the airplane, either in

the visible light spectrum as in Fig. 1(a) or in the infrared

spectrum as in Fig. 1(b), or in low-light conditions as in Fig. 75

1(c)) at full HD resolution (1920 × 1080), 24 fps. Another

novel synthetic sequence was generated by superimposing

computer-generated text over a different background video, as

in Fig.1(f). The background video is part of the H.265/HEVC

test sequence and is known as ”Cactus” and has both a very 80

complex level of detail that stresses the video encoder and

a lot of background clutter in the form of text that stresses

the character detector. Thus, we obtained a synthetic sequence

at full HD resolution at 24 fps. Conversely, another type

of sequences (class-B, Fig. 1(d) and 1(e)) contains complex 85

computer-generated patterns at 720 × 576 resolution, 24 fps.

For each of the three considered schemes, we explore a wide

range of video qualities, even though most focus is given to the

low-bitrate part of it. We consider QP from 20 to 45 with steps

of 5 and from 45 to 51 with steps of 1. The proposed and the 90

reference codecs all work in an intra-only configuration; we

leave for our future research evaluating the impact of temporal

prediction.

After encoding and decoding the six test sequences, 1

we evaluate the coding rate, the objective video quality (or 95

distortion) and the impact of compression on the character

readability. As for the rate-distortion performance, the results

are easily obtained in terms of rate-PSNR curves and of

Bjontegaard’s metric: this is discussed in Section 5.1. As for

the character readability, things are more delicate. For the 100

proposed scheme, since the text is encoded as such (and not

as blocks of pixels), we can assume that this information is

available to the decoder at any rate beyond a given minimum.

On the contrary, in the case of the HEVC and SCC reference

schemes, characters are encoded with the rest of the video, thus 105

reconstruction artifacts at the decoder are to be expected and

will affect readability. This issue is discussed in Section 5.2.

5.1 Rate-distortion performance

1A part of the decoded video sequences are made available to the reviewers
of this manuscript as supplementary material.
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Fig. 6. PSNR vs. video bitrate. First row - Left: class-A color (Fig. 1(a)); Center: class-A gray-0 (Fig. 1(b)); Right: class-A gray-1 (Fig. 1(c)). Second row
- Left: class-B 0 (Fig. 1(d)); Center: class-B 1 (Fig. 1(e)); Right: class-A synthetic (Fig. 1(f)).

The rate-distortion curves of the four methods (the proposed

one and the three references) are shown in Fig. 6 for the six

video sequences. From these figures, a few interesting facts

emerge.

First, the proposed scheme is able to attain a minimum rate5

much smaller than HEVC and SCC. Class-A sequences can

be encoded with as few as 0.005 bpp at QP 51, while SCC

and HEVC cannot go below 0.011 and 0.013 bpp respectively.

For the given resolution and frame rate, they correspond to

258 kbps (proposed), 547 kbps (SCC) and 649 kbps (HEVC).10

Moreover, for the proposed method only 41 kbps (i.e., roughly

1700 bits per frame, 1/6 of the total rate) are used for encoding

the text and the graphical primitives, while the rest of the rate

is dedicated to the residual video. For smaller QPs, only the

residual rate increases, meaning that, already at 600kbps it15

takes more than 93 % of the total rate. At higher rates, the

coding cost of the text becomes nearly negligible. For the

class-B sequences similar considerations hold.

Second, as was expected, DjVu performs below HEVC

encoder for all test sequences. Thus, we do not consider further20

this scheme for characters readability evaluations.

Third, the proposed codec outperforms the references at all

rates, and above all at low and very low rates. This is already

visible in Fig. 6, but for a more precise comparison we also

compute the Bjontegaard metrics (BD-Rate and BR-PSNR) [?]25

for the two class-A sequences, see Tab. III. At low bitrate, we

gain no less than 50% with respect to SCC and up to more

than 60% with respect to HEVC. Bjontegaard metrics cannot

be computed for class-B sequences since the rate overlap is

too small. However, we can see from the RD curve in Fig.30

6(d), that in order to achieve a PSNR of about 40dB, SCC

needs three times as rate as the proposed method and HEVC

more than seven times. At higher PSNRs, gaps are somewhat

smaller but still very remarkable.

These large gains are not very surprising given that remov-35

ing the text and the graphical primitives from video leaves

a very smooth residual to encode, while the semantically

relevant information is encoded with the ad hoc algorithms

(a)

(b)

(c)

(d)

Fig. 7. PUs for the first frame of the class-A color sequence for QP 50. Top:
HEVC; Middle: SCC; Bottom: proposed scheme. The corresponding PUs size
distribution is reported in the last figure.

described in Sect. 4.3 and 4.4. To gain further insight about

the reason of our gains, we show in Fig. 7 the partitions of one 40

frame from a class-A sequence together with the histogram of
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TABLE III
BJONTEGAARD METRICS FOR CLASS-A SEQUENCE. THE BD-RATE IS THE

AVERAGE RATE CHANGE FOR THE SAME QUALITY. THE BD-PSNR IS THE

AVERAGE PSNR CHANGE FOR THE SAME CODING RATE.

High Quality Low Quality
QP = [40, 35, 30, 25] QP = [50, 45, 40, 35]

BD-PSNR BD-Rate BD-PSNR BD-Rate

Prop.-SCC, color 1.04 dB -37.66 % 4.59 dB -69.04 %

Prop.-HEVC, color 1.86 dB -53.25 % 7.12 dB -81.98 %

Prop.-SCC, gray-0 0.84 dB -20.43 % 2.18 dB -52.69 %

Prop.-HEVC, gray-0 2.06 dB -39.58 % 4.30 dB -72.36 %

Prop.-SCC, gray-1 0.32 dB -5.55 % 0.43 dB -39.98 %

Prop.-HEVC, gray-1 0.63 dB -10.2 % 0.75 dB -46.83 %

Prop.-SCC, synth. 0.74 dB -16.34 % 1.5 dB -30.46 %

Prop.-HEVC, synth. 1.3 dB -26.4 % 2.42 dB -42.96 %

the Intra PU block size. The frame is encoded at QP=50 and

the three partitions selected by the three codecs are shown.

Removing the text not only allows a better compaction of the

energy in the low-frequency transform coefficients, but also

allows to use more often the largest PU size, resulting into a5

further increase of compression efficiency.

We also report in Fig. 8 and 9 some details of two decoded

images from the class-A sequences, in order to visually ap-

preciate the gains provided by our method at very low bitrate.

The frames were encoded at QP 50 for the three schemes. For10

the image in Fig. 8, the resulting coding rates are 0.015 bpp

for HEVC (left), 0.012 bpp for SCC (center) and 0.005 bpp for

ours (right), and the associated PSNRs are respectively 27.4

dB, 28.7 dB and 31.1 dB. Similar values are obtained for the

image in Fig. 9. Besides the raw rate-PSNR values, the figures15

show clearly how the reference method may introduce some

severe compression artifacts on the text, in particular when

the background is non uniform. SCC mitigates somewhat the

artifacts, yet some characters are very difficult to read or, even

worse, simply disappear.20

As a further benefit from our scheme, the rate saved by

removing high frequency content is used to better represent

the background. Fig. 10 exemplifies decoded images for the

class-A color sequence. In this case, the three methods use

approximately the same rate, that is 0.018 bpp. With the HEVC25

and SCC schemes (top and center, respectively), sea texture

and important details in the background such as the islands at

the horizon line are either lost or hardly perceptible, whereas

our proposed scheme preserves such details despite the very

low coding rate.30

5.2 Character readability

As highlighted in the previous section, the reference

schemes suffer from coding artifact affecting the readability

of the text at low bitrate, while this problem is circumvented

by the propose scheme by the text recognition carried out35

at the encoder on the original video. Since the recognized

text is encoded as such (and not in blocks of pixels), we can

consider that it is always perfectly available at the decoder in

our scheme, provided that the available bitrate is at least equal

to that needed for text coding. However, this threshold is very40

low as highlighted in previous sections, being in the range of

5÷ 7 · 10−3 bpp. For the reference HEVC and SCC schemes,

the minimum rate for perfect character readability should be

quite higher, as one can deduce from Fig 8 and 9. However,

an accurate evaluation of this threshold would require an 45

extensive campaign of subjective tests, which would be out

of the scope of this work. However, an estimation of the

compression impact on character readability can be obtained

much more easily by partly exploiting the ideas of automatic

character recognition shown in Sect. 4.2. 50

More precisely, and uniquely in order to estimate the

compression degradation of the reference HEVC and SCC

schemes, we can evaluate the character readability at the

decoder side using any of the CNN architecture described in

Sec. 4.2. In other words, we rely on the character recognition 55

accuracy of our CNN as a proxy for otherwise resource-

consuming subjective text readability evaluations.

We highlight that in this experiment the CNN is not used

to evaluate the proposed method (which, as mentioned at the

beginning does not suffer from artifacts on text data) but only 60

the HEVC and SCC methods.

Of course, we need to retrain the CNN over character

samples that resemble the conditions at the receiver, that is,

samples obtained by compressed video sequences. While one

different training per QP could be considered, we found that 65

4 training sets (with uncompressed samples and with samples

compressed at QPs 25, 40 and 51) are sufficient to evaluate

the text degradation. For example, we observed no recognition

accuracy increment if the compressed frames with QP 30 are

analyzed with a network trained with QP 30 with respect to a 70

training with QP 25.

Once the four networks were trained as described, we used

them to evaluate the accuracy of character recognition on the

videos decoded with the HEVC and SCC reference schemes.

More precisely, for the videos encoded with QP< 25 we 75

use the CNN that learned from uncompressed samples; for

QP ∈ {25, 30, 35}, the one trained with samples compressed

at QP 25; for QP ∈ {40, 41, . . . , 46}, the one trained with

samples compressed at QP 40; and finally, for the largest

QP ∈ {47, 48, . . . , 51}, the network trained on the samples 80

compressed at QP 51.

In all the cases, we use the same training procedure de-

scribed in Sec. 4.2, whereas the training set increases to 10000

samples per character class.

The results of our experiments are reported in terms of 85

character recognition accuracy as a function of the bit-rate.

They are shown in Fig. 11(a), 11(b), 11(c), 11(f) for class-A

color, class-A gray-0, class-A gray-1 and Class-A synthetic;

and in Fig. 11(d) and 11(e) for class-B 0 and 1 sequences

respectively. Just for reference, we also report the accuracy of 90

our scheme, which does not depend on the coding rate once

a minimum rate constraint is satisfied.

Using the CNN accuracy rate as an estimator for the human

readability of compressed characters, we observe that the

minimum coding rate needed to achieve the same performance 95

of the proposed scheme is quite larger: for HEVC we need

10, 6, 15, 9 and 8 times as much rate respectively for class-A

color, class-A gray-0, class-A gray-1, class-A synthetic, and

class-B 0 and 1 sequences. SCC performs slightly better but
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Fig. 8. Reconstruction artifacts for the class-A color decoded video at QP=50. Left: HEVC; Center: SCC; Right: our proposed scheme.

Fig. 9. Reconstruction artifacts for the class-A grayscale-0 decoded video at QP=50. Left: HEVC; Center: SCC; Right: our proposed scheme.

still requires respectively 5, 4, 7, 8 and 4 times more rate than

the proposed scheme.

From a different perspective, the accuracy of the two

references drops at the low bitrates which are our applicative

scenario of interest. For example, at QP=50 the HEVC scheme5

accuracy is around 92.1% for the class-A color sequence,

around 97.1% for the class-A grayscale-0 sequence, around

97.6% for the class-A grayscale-1 sequence, around 83.6%

for the class-A synthetic sequence, and, respectively, around

91.3% for the class-B 0 sequence, around 6.3% for the10

class-B 1 sequence. The SCC scheme attains slightly better

results only: 96.5% for the class-A color sequence, 97.2%

for the class-A grayscale-0 sequence, 97.6% for the class-

A grayscale-1 sequence, 91.3% for the class-A synthetic

sequence, 93.5% for the class-B 0 sequence and 6% for the15

class-B 1 sequence. As shown in the left and central column

of Fig. 8 and 9, the decoded characters are affected by heavy

reconstruction artifacts that severely compromise the character

readability.

5.3 Power Consumption 20

Finally, we estimate the the power consumption of our

proposed video coding system. To allow for passive heating,

the power consumption of our complete system shall fall in the

20 to 35 W range. To meet such constraint, computationally

complex operations will be offloaded to a specialized hardware 25

such as FPGAs and ad-hoc ICs. Concerning character recog-

nition, in [?] an optimized LeNet5 implementation with a 3W

power consumption envelope is proposed, leveraging Xilinx

deep learning library [?]. Such implementation classifies a

single character in about 0.151 ms, i.e. requires around 30 30

ms to classify the 200 characters found in our test sequences.

Concerning residual video coding, the H.265/HEVC encoder

library in [?] enables 4K video encoding at 60 fps video

coding for a power consumption of 3W using an ad-hoc IC.

Concerning character and graphics localization and inpaint- 35
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(a)

(b)

(c)

Fig. 10. Reconstruction artifacts in background video, class-A color sequence
encoded at 0.0018 bpp. Top: HEVC; Middle: SCC; Bottom: our proposed
scheme.

ing, such operations could also be efficiently offloaded to

a FPGA relying on standard computer vision libraries for a

few additional Watts [?]. Concerning characters and graphical

primitives coding, the algorithm complexity is very moderate

and is better implemented on the system CPU. Concluding,5

offloading computationally intensive character recognition and

residual video coding to specialized hardware would account

for a fraction of the available power budget, leaving enough

margin for an ARM-based CPU, memory, storage and other

system components.10

6 CONCLUSIONS AND FURTHER WORK

In this work we proposed a scheme for compressing airplane

cockpit video at low bitrates without affecting the readability

of computer generated graphics (text, lines). At the encoder,

we first encode the graphics exploiting their semantics, then15

the residual video obtained by inpainting the graphics is

compressed with a standard codec. At the decoder, the graphics

are reconstructed and overlaid on the decompressed residual

video, recovering the original video. Our experiments with real

cockpit video sequences show two key advantages with respect 20

to other screen content coding techniques. First, removal of

high-frequency components due to the computer graphics

slashes the encoding bitrate by 10% to 80% with respect

to standard HEVC/H.265 and by 5% to 70% with respect

to its SCC extension. Second, characters remain perfectly 25

readable at the receiver even at very low bitrates, competing

schemes demanding far higher bitrates to achieve comparable

error rates. While in this work we leveraged intra-frame

redundancies to achieve efficient graphics compression, we

leave for our future work to exploiting temporal redundancies. 30

Moreover we only considered simple graphical primitives such

as horizontal and vertical lines. In future works we plan to

use CNN-based classifier to recognize more complex graphical

object that can appear in airplane cockpit screens, in order to

encode them losslessly with suitable methods. 35
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Fig. 11. Accuracy in character recognition as a function of video bitrate. First row - Left: class-A color (Fig. 1(a)); Center: class-A gray-0 (Fig. 1(b)); Right:
class-A gray-1 (Fig. 1(c)). Second row - Left: class-B 0 (Fig. 1(d)); Center: class-B 1 (Fig. 1(e)); Right: class-A synthetic (Fig. 1(f)).


