IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 1, JANUARY®4 1

Sliding Window Adaptive SVD Algorithms

Roland Badeau, Gaél Richard, Bertrand David

operator restriction analysis [24], or the perturbatioaotty
[25]. A review of former literature can be found in [1].

Abstract— The singular value decomposition (SVD) is an im-
portant tool for subspace estimation. In adaptive signal procss-

ing, we are especially interested in tracking the SVD of a
recursively updated data matrix. This paper introduces a new
tracking technique, designed for rectangular sliding window data
matrices. This approach, derived from the classical bi-orthogoal

iteration SVD algorithm, shows excellent performance in the

Most of these adaptive techniques are designed for exponen-
tial forgetting windows. Indeed, this choice tends to srhdbe
signal variations and thus allows a low-complexity upddte a
each time step. However, it is only suitable for slowly vagyi

context of frequency estimation. It proves to be very robust to
abrupt signal changes, due to the use of a sliding window. Finally,
an ultra-fast tracking algorithm with comparable performance
is proposed.

signals. Conversely, a few subspace trackers are based on
sliding windows, which generally require more computasion
but offer a faster tracking response to sudden signal clkange
[18], [26]. The tracking of the full SVD in the sliding window
case was investigated in [27] and [28].

In this paper, we will focus on the bi-orthogonal iteration
. INTRODUCTION SVD method [29], [30]. This technique has been widely

UBSPACE-based signal analysis consists in splitting th@vestigated by P. Strobach, who proposed various subspace
Sobservations into a set of desired and a set of disturbiff§cking algorithms designed for exponential forgetting-w
components, which can be viewed in terms of signal aftPws [6], [7]. In [27], the sliding window case was addressed
noise subspaces. This approach has been widely studied inHt the approach was limited to real square Hankel data
fields of adaptive filtering, source localization, or paréene matrices. The adaptive SVD technique presented in thisrpape
estimation [1]. The eigenvalue decomposition (EVD) and tHivercomes this limitation. Our work mainly differs from tha
singular value decomposition (SVD) are commonly used Riesented in [7] by the way the basic sequential bi-iteratio
subspace estimation. However, they usually lead to compelD algorithm is simplified. _
tationally demanding algorithms. Therefore, in an adaptiv Compared to the above mentioned subspace tracking meth-
signal processing context, there is a real need for faskitrgc ©0ds. our fastest algorithm has the advantage of
techniques. o computing an orthonormal subspace basisach time

A reference method in subspace tracking is |. Karasalo’s step which is required for some subspace-based estima-
algorithm [2], which involves the full SVD of a small matrix. ~ tion methods, such as MUSIC [31],
More recently, the FST algorithm presented in [3] replabés t  « relying on a sliding window, which offers a faster tracking
SVD by Givens rotations, resulting in a faster tracking. An-  response to abrupt signal variations,
other approach consists in interlacing a recursive updateeo  « tracking the full SVD, which may be useful for rank
estimated covariance matrix or the data matrix with one or a estimation and tracking, as in [7] and [28],
few steps of a standard SVD or power iteration algorithmsThi « relying on an approximation of the data matrix which is
is the case of the Jacobi SVD method [4], the transposed QR- less restrictive than the classigabjection approximation
iteration [5], the orthogonal / bi-orthogonal iteratior,[§7], [18], leading to better tracking results.
and the power method [8]. Some tracking techniques are basedhe paper is organized as follows. In section II, we recall
on other matrix decompositions, such as the rank-reveg@g the principles of the bi-orthogonal iteration approachnir
factorization [9], the rank-revealing URV decompositidi®], which our new Sliding Window Adaptive SVD (SWASVD)
and the Lankzos (bi)-diagonalization [11]. A conceptuallplgorithm is derived. A fast implementation of SWASVD
different approach considers the principal subspace agtim is then presented in section Ill. In section IV, the capacity
as a constrained or unconstrained optimization probleri-[120f these new tracking algorithms to cope with transients
[17]. In particular, it is established in [13], [18] that theis illustrated in the context of frequency estimation. Thei
classical Oja method [12] can be viewed as an approximateérformance is compared to that of some of the most robust
gradient descent of a mean square error function. A numigd efficient methods found in the literature. Finally, thaim
of faster subspace tracking methods have been develogedclusions of this paper are summarized in section V.
based on the combination of the gradient descent approach
with a projection approximation hypothesis [18]-[21]. &th Il SLIDING WINDOW ADAPTIVE SVD
techniques rely on the noise and signal subspace averaginghe bi-orthogonal iteration SVD algorithm is a straightfor
method [22], the maximum likelihood principle [23], theward extension of the classical orthogonal iteration, Wwhic

computes the EVD of a square matrix [32, section 8.2.4].
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TABLE |

B1-ORTHOGONAL | TERATION SVD ALGORITHM FLoating point OPeration) count, as obtained with the Matla

flopscommand [32, section 1.2.4]. For example, a dot product
of N dimensional complex vectors involv&sv flops.

nitialize s @ 1(0) — |:IT:| In spite of its robustness, the main drawback of this SVD
. 0 tracking algorithm is its high computational complexityn(e
FORn=1,2... UNTIL CONVERGENCE DO : in practicer << max(N, L), its dominant cost iS6N Lr).
( First Tteration : However, some simplifications will be brought below, thall wi
B(n) = XQ,(n—1) matrix product result in lower-complexity algorithms.
B(n) = Qg(n) Re(n) skinny QR factorization TABLE Il
Second Iteration : SEQUENTIAL BI-ITERATION SVD ALGORITHM
A(n) = XH Qg(n) matrix product

L A(n) =Q 4 (n)Ra(n) skinny QR factorization

1.
Initialize : Q4 (0) = { ,,,,,, ]

0
FOR EACH TIME STEP DO :

A. The bi-orthogonal iteration SVD algorithm [ First Tteration : Complexity :

The bi-orthogonal iteration algorithm computes thdom- B(t)=X(t)Qa(t—1) 8NLr
inant singular values and vectors of a data makix: CX* N B(t) = Qp(t) Ra(t) 19Lr?
(with r < 7pax £ min(L, N)). The SVD of X is the Second Iteration :
factorizationX = U X V¥, whereU € CL*™max andV e At) = X7 Qp (1) SNLr
CN*mmax gre orthonormal matrices aml € R’ mexXTmax jg L A(t) = Q4 (t) Ra(t) 19N72
a non negative diagonal matri = diag(o1,02,...,0.,..)
whereo; > 09 > ... > o, > 0. Thus ther dominant
singular values are{oy,0s,...,0.}, the » dominant left

singular vectors are the first columns of the matrixU, and C- Low-rank approximation of the updated data matrix

the » dominant right singular vectors are thefirst columns I this section, a low-rank approximation of the data matrix

of the matrixV'. In many signal processing applicationsis X (¢) will be introduced. In array processing, it is well known

much lower than,,. that rank reductions have a noise-cleaning effect. Heiis, th
The quasi-code of the bi-orthogonal iteration SVD alga@pproximation will result in a faster tracking algorithm.

rithm is given in Table I. This algorithm generates two First, the time-updating structure of the data matrix can

auxiliary matricesB(n) € CX*" and A(n) € CN*". It can advantageously be taken into account. Indeed, it can beeubti

be shown [29], [30] that the columns 6 z(n) converge to that

the » dominant left singular vectors, the columns @f, (n) X(t) (1)

converge to the dominant right singular vectors, afdz (n) {az(t—L)H] Qalt—1) = {X(t—l)] Qalt—1). ()

and R, (n) both converge td. Now consider the compressed data vedidt) = Q 4(t —
1)# z(t). According to the definition oB(t) (see Table II),

B. The sequential bi-iteration SVD algorithm equation (1) becomes
The bi-orthogonal iteration algorithm can simply be adepte B(t) _ h(t)H @
in a tracking context. Suppose the data matrix is updated XX || XE-1)Qu(t—-1)
according to the following scheme: where the symbok denotes uninteresting quantities.
z(t)H To go further, P. Strobach [7] introduces the low-rank
z(t— 1)H approximation X (t) = X(t) (Q(t—1)Q4(t— 1)) =
X(t) = ) Q) Rp(t) Q ,(t— 1) of X(t), which corresponds to the
: . projection of the rows ofX (¢) onto the subspace spanned by
x(t—L+1) Q ,(t — 1). Consequently,

\_/rvrr]]erg\:;c[()t) fi}éh)e N dbimensionz?ll datg vedctordat t(ijmé. A X(t—1)Qst—1)=Qp(t—1)Rp(t—1)O@4(t—1)
e of X (¢t) can be approximated and updated just by B I
replacing the iteration index in Table | by the discrete time whereQA(t N 1). N QA(t._ 2) QA(t._.l)' It can be seen
index . tha'.[ th!s approxmatlgn is Iess. regtrlct!vg than the cladsi

The sequential bi-iteration algorithm is summarized in T rojection approximation18], which implicitely assumes that

ble 1. In the right column, the computational complexite® ﬁ(év;e\llgar:v{é .prefer use the low-rank approximatﬁmt) B
quantified with a multiplicative factor related to tfiep (real ’ R
(@51 Qu()") X (1) = Qu(t) Ra(h) Q1) 1t corre-
1in the context of frequency estimation, the coefficientsagt) are the SPONds to the projection of the columns &f(¢) onto the
successive samples of the signalz) = [z(¢), z(t—1),...,z(t—N+1)]7. subspace spanned 6y (¢ — 1). Consequently,
In the context of Direction Of Arrival (DOA) estimatiom;(t) is the snapshot .
vector received from theV captors. Xt-1)Qut—1)=Qp(t—1)Ra(t — 1)
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TABLE Il

This choice has the advantage of involving more up to date SLIDING WINDOW ADAPTIVE SVD ALGORITHM (SWASVD)

matrix factors thanX (¢). Moreover, the explicit computation
of the matrix® 4 (¢ — 1) is avoided.
The substitution ofX (¢ — 1) to X (¢ — 1) in equation (2)

yields Initialize : Q 4, (0) = |:IT:| ; Qp(0) = |:IT:| ; Ra(0) =1,
0 0
_B(t) | h(t)H 3) FOR EACH TIME STEP DO :
X ... X o QB(t—l)RA(t—l)H ’ [ Input : x(t)
In the same way, it can be noticed that First Iteration : Complexity :
H
; Q (t) h(t) =Q,(t—1)" =(t) 8Nr
) Shoa o AN % SN, R
_ ; 0] Qs o]l @Rt
= [ | X" ] |52 B0 = @0 st
According to the definition ofA(¢) (see Table Il), equation Second Iteration :
(4) becomes z) (t) ==(t) — Qa(t — 1) h(t) 8NT
AW =Qa(t—1)RpM)" + 2. (1) gp, (O 4NT?
; ¢ | A(t) = Q.4(t) Ra(t) 19N7T?
At)y=[ =) | X(t—1)" ] [OQ.B.QO] . (5)
Taking into account that the sequential bi-iteration SVD
algorithm satisfies the equatio@Q,(t — 1)7A(t) = I1l. FAST IMPLEMENTATION OF THE SLIDING WINDOW
B(t)Qz(t) = Rp(t)", a pre-multiplication of both sides ADAPTIVE SVD ALGORITHM
R
of (5) by Q4(t —1)7 yields A major drawback in the SWASVD algorithm is the explicit
. ‘ - . computation and QR factorization of the approximated matri
Rpt)" = [ h(t) | Qat-D"X(t -1 | cesB(t) and A(t). However, these operations can be avoided
,,,,,, Q B(t)} ) (6) by directly updating the QR factorizations.
0 ... 0 Since this update is simpler in the case 4f(t), the

Then letx, (t) = x(t) — Q4(t — 1) h(t). This vector is optimization of the second iteration will be presented first
orthogonal tospan(Q 4(t — 1)), so thatx(t) can be written

as a sum of two orthogonal vectors A. Fast implementation of the second iteration
x(t) = Q4(t — 1) h(t) +x L (t). 7) In the second member of equation (10), the veatort) is
The substitution ofX (¢ — 1) to X (¢ — 1) in equations (5) orthogonal taspan(Q 4(t — 1)). It can be normalized as
and (6) respectively yields
(6) resp yy 2.() = x| (t) 1)
Al  Die [z (@)l
(h)(t_ [RQA(E _71))(23 a(:tl_ )1)};, Qut) ®) (in the special case, (t) = 0, Z_ (t) is forced to beD). Then
[ T A 0 B 0 } { 0 B g } A(t) can be written as the product
and At)=[ Qa(t—1) . (t) | Ta(t) (12)
Rpt)" ~ [ h(t) | Ra(t—1)Qp(t—1" | of a N x (r+ 1) orthonormal matrix by thér + 1) x r matrix
I: ,,,,,, Q ,B,(?) ,,,,,, :| . (9) R (t)H
0 ... 0 Ta(t) = [ ”M(tﬁ' FRNOL } (13)
Let g, (t) be the column vector obtained by transposing !
the first row of Q (t). Equations (8) and (9) finally yield Now consider the QR factorization @ 4(¢):
Ru(t) }
TA(t) = Gal(t) |24 14
A)~Qa(t— D Rp®) + . (1) s, (). (10) alt) = Galt) { 0...0 (14)

Note that the exact computation &f(¢) and A(t) requires whereG (t) is a squargr +1) x (r + 1) orthonormal matrix
16N Lr operations whereas the approximated matrices (@d R4 (t) is a squarer x r upper-triangular matrix (it will
and (10) can be computed Lr? and 4Nr? operations. be shown below thaR 4 (t) is also the triangular factor in the
Therefore, introducing these approximations in the setigien QR factorization ofA(t), as defined in section Il). Equations
bi-iteration SVD algorithm leads to the lower complexity12) and (14) yield
algorithm herein called SWASVD, summarized in Table li$. It
dominant cost is onl23(L + N)r>. Moreover, it can be seen A(t) = ([ Q(t—1) | Z.(t) | Ga(1)) [ 777777777777 ] . (15)
that for all r < rya.x, SWASVD requires less computations T
than the sequential bi-iteration algorithm. From now &) This last equation shows an explicit QR factorization of
and A(t) will denote the approximated auxiliary matrices. A(t). From (15),Q 4(¢) can be directly extracted:



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 52, NO. 1, JANUARY®4

QR factorization ofB(t), as defined in section Il). Equations

% (18) and (20) yield
Q) | =[Qat—1) i zL(t) |Ga(t). (16) i Ry ()
x B0 = ([ Qe -1 1 2.0 | G50) |25 0
Therefore, the QR factorization oA(t) can be updated with

o This last equation shows an explicit QR factorization of the

the smaller factorization (14) and the product (16). matrix B(t). As for Q 4(1), Qp(#) can be directly extracted
from this factorization:

B. Fast implementation of the first iteration

The QR factorization ofB(t) is more difficult to update X
because of the row-shifting in the updating scheme of the dat . A 1N is
matrix. An elegant but complex way of achieving this update ORI =1 Qe -1 i2.() ]Gr0). (22)
can be found in [27]. A simpler solution, inspired from the
considerations of section IlI-A, is proposed below. Therefore, the time-consuming direct QR factorization of
Letgy, (t—1) be the column vector obtained by transposing(¢) can be split into the smaller QR factorization (20) and
the last row ofQz(¢ — 1). Consider the orthonormal matrixthe product (22). Finally, equations (14), (16), (20) and)(2
Qg (t — 1) obtained by a circular permutation of the rows ofead to the fast implementation of the SWASVD algorithm
Qp(t—1): given in Table V2, herein called SWASVD?2. Its dominant
cost is only8(N + L)r?. Therefore, SWASVD?2 is approxi-
mately three times faster than SWASVD. As a comparison,
the dominant cost of the exponential forgetting window Bi-
SVD1 algorithm presented in [7] &N 72 at each time step. It
can be seen that SWASVD?2 requires a number of additional
operations proportional to the sliding window length. Hoer
Finally, consider thel dimensional vectog = [1,0‘..O]T. this increased computational cost is compensated by better
Equation (3) yields performance, as shown in the next section.

X

e H 7 H
B(t) = Qp(t —1) Ra(t = 1) + zh(t) C. A step towards linear complexity

whereh(t) = h(t) — Ra(t — 1) gp, (t — 1). In spite of the various optimizations that were introduced
Now, the orthogonal decomposition efz) given in equa- above, the SWASVD2 algorithm is not the fastest subspace
tion (7) will be transposed tc. Thus, letz, () = z — tracker which can be found in the literature (for instance,

Qp(t—1)qp, (t—1). It can be noticed thay, (t — 1) = the algorithms presented in [18]-[21] require ordy(Nr)
Qp(t — 1)7 z, so that the vectorz, () is orthogonal to operations).
span(Qgz(t — 1)). Then z can be written as a sum of two To reach this minimal complexity, P. Strobach [7] assumes

orthogonal vectors: that the matrix® 4 (t) = Q ,(t—1)7Q 4(t) is close to the xr
_~ identity matrix (which is the same as the classical profecti
2=Qp(t-1gp,(t-1)+2.(t) ) approximation [18], as mentioned in section II-C). Such an
As for x(t), let approximation is not required here, since the us&at — 1)
21 (1) instead ofX (¢t — 1) avoids the explicit computation @ 4(t)
z.(t)= 2L in SWASVD2.
Iz @)l Table IV shows that thes(N + L)r? dominant cost of
(in the special case | (t) = 0, z, (¢) is forced to be0). SWASVD2 is due to the use of the full rotation matrices
Finally, B(t) can be written as the product Gp(t) andG 4(t). These matrices are computed so as to make
~ . Rp(t) and R4 (t) upper triangular.
B(t)=[ Qp(t—1) | z.(t) | Ts(?) (18) I fact, it can be shown that this triangular constraint does

of a L x (r+ 1) orthonormal matrix by thér + 1) x » matrix not affect the signal subspace estimationRlf () and R 4(t)
were not triangular, the algorithm would also converge to

H
Tp(t) = { RAO(t *01) } + { qBL(t; 1) }fl(t)H, (19) an orthonormal matrix spanning the signal subspace (this
Iz @) approach is known as the power method [8]). The triangular
Now consider the QR factorization @ 5 (t):

2The computation ofe | (t) is subject to rounding errors that might affect
the algorithm stability, due to a loss of orthogonality amdhg columns of

Tg (f) =Gpg (f) ,,,,,,,,,,,, (20) Q 4. Note that the orthogonality can be maintained by repeatirgar a few
times the following operations:

. . . _ 1.
whereG (1) is a squardr +1) x (r+ 1) orthonormal matrix ¢+ Prolection ofa. gﬁ)iirzg_smn@f‘) ’

and Ry (t) is a squarer x r upper-trian_gular matrix (it_ Will The same method can be applied %o, (¢), in order to maintain the
be shown below thaR s (t) is also the triangular factor in the orthogonality among the columns @ .
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TABLE IV
FAST IMPLEMENTATION OF THE SLIDING WINDOW ADAPTIVE SVD
ALGORITHM (SWASVD2)

instants, between which they remain constant. Their vanat
are represented on Figure 1-b.

The SWASVD?2 algorithm was applied to this signal with
matrix dimensionsN = 80 and L = 120. As in [35], the
signal-to-noise (SNR) ratio was fixed to 5.7dB.

Figure 2-a shows the frequency tracking result. The dotted

FOR EACH TIME STEP DO :

[ First lteration : Complexity : - Jine indicates the true frequency parameters, while the sol
h(t) = Qalt = D) =() 8N line indicates the estimated frequencies. It can be noticat
zL(H) =11,0...00" —Qp(t-Dap, (t-1) 8Lr SWASVD?2 robustly tracks abrupt frequency variations.
z20(0) = 2y 10L The performance of the subspace estimation is also analyzed
h(t) = h(t) - Ra(t —1)qp, (t — 1) 4r? in terms of the maximum principal angle between the true
[ Ra(t—1)H ] N { ap, (t—1) } R dominant subspace of the data matrix (obtained via an exact

0...0 llzL (®)]] singular value decomposition), and the estimated dominant
—es) _Rp(t) 1on? subspace of the same data matrix (obtained with the tracker)

0...0 This error criterion was originally proposed by P. Comon and
G.H. Golub as a measure of the distance between equidi-
mensional subspaces [1]. Figure 2-b shows that the subspace
estimation fails on transient regions, but gives excelteatilts

[ Qp(t) ‘ X ]:[ Qpt—1) ‘ Z,(t) }GB(t) 8Lr?

Second Iteration :

z (1) =2(t) - Q4(t — 1) h(t) 8N L o .
_ e everywhere else. This is not surprising since the subspace
2L(t) = T @ o modeling does not make sense in transient regions.

[ 7777777 Re®)” } =Gal(t) [R“(t) 1293 Figure 3 shows the result obtained with the ultra-fast
les®llas, ©F L 0.0 SWASVD3 algorithm on the same test signal. It can be
[0 ix [=[Qit-1 e ]G0 8N noticed that this algorithm reaches the same performance as

SWASVD2.

These results have been compared to those obtained with
some of the most robust subspace trackers found in the
literature [2], [5]-[8], [18]-[20], [27], [28]. Three of #m are
p")I}ustrated in figures 4, 5 and 6:

« the exponential forgetting window Bi-SVD1 algorithm by

constraint is only required to guarantee the convergenteeto
r dominant singular vectors.

Therefore, linear complexity can be reached by sim
relaxing this constraint. The exact QR factorization candze
placed by an "approximated QR factorization", which ineslv Strobach [7], o
a "nearly triangular" right factor. This method, hereinledl  * the FAST algorithm by Readt al. [28], which is a recent
SWASVD3, is presented in the appendix and requibés/r) contrlpu_tlon tp sliding W_|ndow SVD subspace tracking,
operations. Its subspace tracking performance is exaotly t * our s_Ildlng window version of the NIC subspace tracker
same as that of SWASVD2. Although the convergence to the PY Miao and Hua [19].
singular vectors and values is no longer theoretically guwar  Despite the good performance of the Bi-SVD1 algorithm,

teed, the algorithm proves to robustly track their variagio its convergence is slower than that of SWASVD3 after abrupt
signal variationd This may be explained by the use of

an exponential forgetting window. Note that the Bi-SVD3
IV. SIMULATION RESULTS subspace tracker, also presented in [7], has a lower coityplex

In this section, the performance of the new tracking algditS dominant cost iSON), but it proved to be unstable on

rithms is illustrated in the context of frequency estimatio thiS test signal. . _
A discrete signalz(t) can be described using a Hankel Concurrently, the FAST subspace tracker is better than Bi-

data matrix X (¢). In the Exponentially Damped SinusoidaSVDP1 in terms of the maximum principal angle error (figure
(EDS) model case, it can be shown thgan(X (t)) is a 5-b). However, its dominant cost &V Lr, and the frequency

r dimensional subspace, whereis the number of complex tracking response (figure 5-a) remains slower than that of

sinusoids. The ESPRIT high resolution method can be usedX$/ASVD3 . Note that the dominant cost of the approximated

estimate the model parameters, among which the frequendiés 12 algorithm [28] is als@N Lr.
of the sinusoids [33], [34]. The Novel Information Criterion (NIC) subspace tracker
Here, this high resolution method has been tested in cff@S _introduced in [19] as a robust generalization of the

junction with several subspace trackers on a syntheticasigiTAST @lgorithm [18]. Figure 6-a shows the frequency tragkin

(an application to real audio signals was proposed in [3&Ptained with our sliding window version of NfCwhose
involving the sequential iteration SVD algorithm). ominant cost iISONr. It can be noticed that this fast subspace

The test signal of Figure 1-a is a sum of— 4 com- tracker is very stable and converges much faster than Bi-

plex sinusoidal sources plus a complex white gaussian noi§é/Dl and FAST. However, this algorithm only converges to

The frequen0|es of the sinusoids vary accordlng o a Jump3The forgetting factora ~ 0.99 was chosen to get an effective window

scenario” (proposed by P. Strobach in the context of DOgngth equal tar.
estimation [35]): their values abruptly change at différéme 4The learning step sizg was equal td).5.
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Fig. 1. (a): Test signal; (b): Normalized frequencies of thmisoids. Fig. 3. O((N + L)r) SWASVD3 algorithm: (a): Frequency tracking; (b):

Maximum principal angle trajectory.
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Fig. 2. O((N + L)r?) SWASVD2 algorithm: (a): Frequency tracking; (b):
Maximum principal angle trajectory. Fig. 4. O(Nr2) Bi-SVD1 algorithm: (a): Frequency tracking; (b): Maximum
principal angle trajectory.

an orthonormal matrix spanning the principal subspacendsd

not compute the singular vectors and values of the dataxmatigorithms have been designed for a sliding window data
(which might be important for rank estimation and tracking)matrix, a characteristic that distinguishes them from nudst
and does not guarantee the orthonormality of the subspa&oésting subspace tracking techniques. The results aitain
basisat each time stefwhich is required for some subspacesynthetic signals in the frequency estimation context sitbw
based estimation methods, such as MUSIC [31]). their robustness to abrupt signal variations.

Finally, SWASVD outperformed all the other subspace We successfully obtained an ultra-fast tracking algorithm
trackers that we have tested on the same test signal (Kakasabith linear complexity, without degrading the excellentfpe
algorithm [2], TQR-SVD [5], Loraf [6], Bi-SVD3 [7], NP3 mance of ourO((N + L)r?) subspace tracker. This could be
[8], PAST [18], OPAST [20], SHSVD [27] and FAST2 [28]). achieved by means of an approximated fast QR factorization.
These results were not presented here to keep the preeantati Finally, these subspace tracking algorithms may be consid-

as concise as possible. ered as the starting point of a real-time frequency tracker,
whose full implementation would additionally require arapé
V. CONCLUSIONS tive version of the ESPRIT algorithm.

This paper introduced new SVD tracking algorithms, de-
rived from the classical bi-orthogonal iteration methote3e APPENDIX
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ULTRA-FAST SWASVD3ALGORITHM

This appendix introduces the ultra-fast SWASVD3 tracking
algorithm. Since there is no room here for a complete descrip|

tion, only the main steps will be highlighted, and some dietai
required for a full implementation will be skipped.

A. Fast approximated QR factorization

Remember that the first iteration in SWASVD2 relies on the

low-dimensional QR factorization (20). Generally, thistfa-
ization requires 2r3 operations. Now suppose thBt, (t — 1)

is not only upper triangular, but also diagonal (in practice

this is nearly the case, sind® 4 converges to the diagonal
matrix X in the original bi-orthogonal iteration SVD algorithm
of Table I). In this caseR(t — 1)¥ is also diagonal, and

O(NLr) FAST subspace tracker: (a): Frequency tracking; (b):

(19) is an upper triangular plus rank one matrix. In paracul
it is well known that the QR factorization of such a matrix
can be achieved i®(r?) computations, using onlgr Givens
rotations [32, section 12.5]. Therefore, equation (20) ban
written

Tx(t) =Gp(t)Rp(t) (23)

whereG5(t) is a product of2r Givens rotations and?(t)
is a (r + 1) x r upper-triangular matrix (whose last row is
equal to0 in this particular case).

In practice,R4(t — 1) is not diagonal, and this fast QR-
factorization can not be achieved. However, sifitg(t—1) is
nearly diagonal, applying the fast QR-factorization tégbe
as it is with this non diagonal matrix gives reearly upper
triangular matrixR s (t).

This fast approximated QR-factorization is the key step of
our ultra-fast tracking algorithm. Note that equation (23)
not an approximation but a strict equality.

B. Modification of the first iteration

TABLE V
ULTRA-FAST SLIDING WINDOW ADAPTIVE SVD ALGORITHM
(SWASVD3)

O(Nr) sliding window NIC subspace tracker: (a): Frequency

FOR EACH TIME STEP DO :

’— First Iteration : Complexity :
h(t) = Q4 (t — 1) =(t) 8N
zi(t) =[1,0...00" = Qp(t—1)gp, (t—1) 8Lr
2Lt = 2y 10L
h(t) = h(t) — Ra(t — 1)gp, (t — 1) 4r?
Tp(t) = Gp(t) Rp(t) 64r2
v(t):RA(tfl)_lh(t)quL(tfl) ar?

-1 Ho)
u(t) = 1+QB||in<t1)H : 8r
w(t) = Gpy? | 2Y G4r
w(t)
w(t) = 1o oxp (i p}llase(lur+1(t))) w(t) 10r
'Yr'(t) =1
for n = r downto 1 8r
sn(t) = ij;;((tf?)*
ent) = VI= (O
Yn—1(t) = Yn(t) cn(t)
end
[ Qs i x |=] @ue-1) 2.0 |Gs®) 96 L1
Second Iteration : Complexity :
z (t) = ®(t) — Q4 (t — 1) h(t) 8Nr
z) (1) = 7“&8” 10N
Ta(t)=Ga(t)Ra(t) 32r2
RA(t)Gp(t) = Gry, (t) 6412
L [ Qat) | x ]:[ Qu(t—1) 192Nr

therefore upper triangular, so th@ts(¢) defined in equation
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Equation (21) now becomes: Then, it can be easily shown that the last row®f , (t)7
. ‘ ~ ~ is equal to
B(t)= ([ Qu(t—1) 1 2.() | Gs() Rp(t).  (29)

[y1(t) s1(8),72(t) 52(t), - - ., v (£) 50 () | 70(2)]

A new difficulty arises:Qz(¢) can no longer be directly -
extracted from this factorization (as in equation (22)hcsi wherev, (t) = [[ ¢(t) forn e {1,...,r—1} andy,(t) =
the last row of the nearly upper triangular matd¥g (¢) is f=ntl _ .
generally not equal t@. CZnszzuently, tghe dimensiorgs) of the 10 make this row equal tw(.t)H, the coefficients:,(¢) et
second member matrices in equation (24) can not be reduc%o(.t) can be computed recursively:

Therefore, it will be necessary to explicitly force thistlas r(t) =1
row to be zero. Suppose that there exists a rotation matrix” "' " dgvrgt*o 1
Gr,(t)¥ such that the last row offz, (t)7 R(t) is equal sn(t) = S5

to 0. Then let cn(t) = /1 —[sn(t)[?

~ Yn—1(t) = T (t) cn(t)
[?B(t” 2 Gr, (DT Ry(L). end
Note that all thec,, (t) are non negative numbers, so that
Now equation (22) stands with v(t) > 0. Therefore, it can be noticed that. ., (t) > 0 was a
~ necessary condition to guarantee the equality betwegn”
Gp(t) £ Gp(t)Gry(t). (25)

and the last row oiGr,(t)? (this condition was sufficient
Such a matrixGz,, (1)¥ will be given in the next section. becguse of the orthgnormality of. both row vectprs). -
Finally, the matrix Gg(t) defined in equation (25) is
expressed as a product of onBr + r Givens rotations.
N Therefore,Q;(t) can be computed using equation (22) in
First, note that ifz, (t) = 0, the last row ofRg(¢) is 0. only 96Lr operations (by recursively applying the Givens
From now on, suppose that, (t) # 0. A first step towards rotations). Consequently, the whole first iteration is el
the obtention of the rotation matr&r,, (t)7 will be the com- to linear complexity (see Table 5.
putation of a unitary vectof(t) such thatw(t)? Rz(t) =
[0...0]. Consider ther dimensional vector

C. Choice of an appropriate rotation matrix

D. Modification of the second iteration

v(t) =Ra(t—1)""h(t) —qp, (t — 1) Contrary to Rz (t), it will now be shown thatR.(¢) can
be made exactly upper triangular@(r?) operations. Indeed,

and the scalar substituting equations (19),(20) into equations (13),Ehbws

(t) = 1+qp, (t—1)"o(t) that R (t) satisfies the recurrence
[z (@)
Then a direct calculation shows that the vector
~ _ t) (27)
t) = Gp(t)? ”(]
w(t) = Ga(” |52
satisfies the homogenous equatiarft) Rp(t) = [0...0], where
and so does the normalized veétor 0
~ 1 ~ Ry(t—1)
w(t) & - w(t = A .
© = e Texp i pbaseta, @) Tat 0
The phase shift is chosen so that,;(t) > 0 (this choice 0 ... 0 \ 0
will be explained below). h(t) ap, (t—1) H
Now, we are looking for a rotation matri&' , (t) whose L (1)]] IERQGII :

last row is@(t)? (so that the last row oG g, (t)7 Rz(t) _ _ , ,
is 0). An appropriate choice foGr, (1)¥ is a product of It can be noticed that the first member of equation (27) is an

r Givens rotation as defined in equation (26) on page gxact QR factorizatior] of the seconql one. Therefm_(t) .
(because it would be the classical way of zeroing the 1a&pd 24(t) can be obtained by computing this QR factorization

row of RB(t) if its r first rows had an exact upper-triangulainStead of using equanon (14). i
structure) Moreover, T 4(t) is an upper triangular plus rank-one ma-
trix. It is well-known that the QR factorization of such a miat
5Note thatw(t) can not be equal t0, since eithen(¢) # 0, orv(t) =0, Can be achieved using onyy Givens rotations.
which yields u(t) # 0.
SNote that these Givens rotations are not real but complesfisamations. "Note that the vectoR 4 (t—1) " h(t) can be computed i#r? operations

Their orthonormality is guaranteed if using simple back substitution, sind@4 (¢ — 1) is triangular.
e cp(t) >0, 8The pseudo-code for SWASVD3 in Table V should not be implentnte
o en(B)2 +sn(®)? = 1. as it is. An efficient implementation should recursively apalythe Givens

rotations without storing them in memory.
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1 .
! 0 —sa | [0 )
1
26
Gry ()" = 1 (26)
cr(t)  —sp(t)” 1 1
sr(t) cr(t) s2(t) ca(t) s1(t) ci(t)
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