ON RECURSIVE ESTIMATION FOR TIME VARYING
AUTOREGRESSIVE PROCESSES

ERIC MOULINES*, PIERRE PRIOURET', AND FRANCOIS ROUEFF*

moulines@tsi.enst.fr, priouret@ccr.jussieu.fr,

roueff@tsi.enst.fr

*GET /Télécom Paris, CNRS LTCI
46 rue Barrault, 75634 Paris Cedex 13, France

fLaboratoire de Probabilités Université Paris VI
4, Place Jussieu, 75252 Paris cedex 05, France

ABSTRACT. This paper focuses on recursive estimation of time vary-
ing autoregressive processes in a non-parametric setting. The stability
of the model is revisited and uniform results are provided when the
time-varying autoregression parameters belong to appropriate smooth-
ness classes. An adequate normalization for the correction term used in
the recursive estimation procedure allows for very mild assumptions on
the innovations distributions. The rate of convergence of the pointwise
estimates are shown to be minimax in 8-Lipschitz classes for 0 < g < 1.
For 1 < 8 < 2, this property no longer holds. This can be seen by
using an asymptotic expansion of the estimation error. A bias reduction

method is then proposed for recovering the minimax rate.

1. INTRODUCTION

Suppose that we have real-valued observations (X1, X2, ..., Xpn) from

a time-varying autoregressive model (TVAR)
d
(1) Xk,n = Zel((k_ 1)/n)Xk—i,n+o-(k/n)€k,nv k=1,...,n,
i=1
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where

- {€kn}ti<k<n is a triangular array of real valued random variables
referred to as the (normalized) innovations,

- 0(t) == [01(t) ... 04(t)]T, ¢ €0, 1], is a d-dimensional vector referred
to as the local autoregression vector,

- o(t), t € [0,1] is a non-negative number referred to as the local

imnovation standard deviation.

This recurrence equation may be more compactly written as

(2) Xk,n = 9]1;—1777,Xk—1,n + Ok n€kn, k=1,...,n,
where
Xin = [Xen Xi—1m - Xk—diin)®

O :=0(k/n) = [01(k/n) Oa(k/n) ... Oa(k/n)" and op, = o(k/n).

TVAR models have been used for modeling data whose spectral content
varies along time (see for instance Subba Rao (1970), Hallin (1978) and
Grenier (1983) for early references). TVAR models are also closely related
to the general class of locally stationary processes (see Dahlhaus (1996a),
Dahlhaus (1996b) and Dahlhaus (1997) and Remark 3 below for definitions
and properties).

In this paper, we focus on the estimation of the functions ¢ — 0(t) (we
leave aside o(t) for brevity) from the observations {X¢ , X n, k > 1} (here
we add the initial conditions X, in the observations set for convenience).
This problem is reminiscent of non-parametric curve estimation on a fixed
design, a problem which has received a considerable attention in the liter-
ature. A natural approach consists in using a stationary method on short
overlapping segments of the time series (see for instance Dahlhaus and Gi-
raitis (1998)). An alternative approach, first investigated by Belitser (2000)
for first order TVAR models consists in estimating the regression function
recursively in time. More precisely, at a given time ¢ € (0,1), only obser-
vations that have been observed before time ¢ are used in the definition of
the estimator : 0,(t) = Oy(t, X0,y X1,n5 - -+ » X[nt],n)> Where [x] denotes the
integer part of x. This approach is useful when the observations must be

processed on line (see e.g. Ljung and Soderstrém (1983), Solo and Kong
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(1995), Kushner and Yin (1997)). We focus in this contribution on the Nor-
malized Least Square algorithm (NLMS) which is a specific example of a

recursive identification algorithm, defined as follows.

o~

007”(”) = Oa
Xk,n

~ ~T
3) Orernl) = Bin) 4 Kirn = Onn10) Xin) 75—

where k goes from zero to n — 1, p is referred to as the step-size and | - |
denotes the Euclidean norm. At each iteration of the algorithm, the pa-
rameter estimates is updated by moving in the direction of the gradient of
the instantaneous estimate (Xpy1, — BTX/IM)2 of the local mean square
error E[(Xp41., — 07 Xgn)?]. The normalization (1 + p|Xy,|?) 7! is a safe-
guard again large values of the norm of the regression vector and allows for
very mild assumptions on the innovations (see (A1) below) compared with
the LMS, which typically requires much stronger assumptions (see Priouret
and Veretennikov (1995)). Extensions to more sophisticated iterative rule,
e.g. the so called recursive least-square (RLS) algorithm, are currently un-
der investigation. We define a pointwise estimate of ¢t — 6(t) as a simple

interpolation of /H\km(u), k=1,...,n, ie.

(4) On(t; 1) = O (i), t€[0,1],n>1.
Observe that, for all ¢ € [0, 1], 5n(t;u) is a function of Xgp, {Xjn, [ =
1,...,[tn]} and p.

The paper is organized as follows. In section 2, we introduce the assump-
tions and state the main results of this paper, namely, uniform risk bounds
for §n, a lower bound of the minimax L?-risk and precise approximations of
the risk for ﬁn We also discuss a technique to correct the bias of the esti-
mator. In Section 3 the basic results used along the paper for dealing with
the weak dependence are presented. In Section 4, a four steps proof of the
uniform upper bound for the L? risk of 0, is given. Section 5 then provides
the proof of the minimax lower bound. In Section 6, further approximation
results are given from which we obtain the proofs of the risk approximations

for En stated in Section 2.
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2. MAIN RESULTS

The space of m x n matrices is embedded with the operator norm associ-
ated to the Euclidean norm, which we denote by
(5) |Al .= sup |Az|.

2€R™ [z|=1

Observe that for a row or column vector, its Euclidean norm coincides with

its operator norm. For any random variable Z in a normed space (Z,| - |),

we denote by ||Z]|, := (E[Z\p)% its LP-norm. Throughout the paper, it is

assumed that,
(A1) for all n > 1, the random variables {ey,}1<r<, are independent,
have zero mean and unit variance and are independent of the ini-

tial conditions Xg,. In addition, sup [[Xonll; < oo and € =
n>1

sup |[€x,nllq < oo,
1<k<n

where the moment order ¢ > 2 will be set depending on the context. The
triangular array of random variables {Xj ,, 1 < k < n} defined by (1) is
parameterized by (6,0). To keep track of the dependence in (8, 0), for all
random variable Z defined as a function of these variables, we shall adopt
the notation convention Eg ,[Z] for the expectation of Z. In the case of a
random element Z taking its values in the normed space (Z, |-|), its LP-norm
will be denoted by
1Z]p.60.0 == (o0 |ZP)"/".

A classical problem in non-parametric estimation is to derive uniform bounds
for the pointwise L risk ||6, (t; p) — 0(t)|/p,0,0 for (6,0) in some appropriate

classes of functions. In the sequel we denote by
d .
(6) O(zit):=1-> 0;(t)z), z€C,
=1

the local time-varying autoregressive polynomial associated to @ at point t.
The function classes that will be considered rely on two kinds of properties.
First, the roots of the time-varying autoregressive polynomial associated
to @ are required to stay away from the unit disk. Second, as in function
estimation from noisy data, @ and o are supposed to be smooth in some
appropriate sense. The first condition is unusual in the non-parametric

function estimation setting and deserves some elaboration. Let us recall
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some elementary facts from the theory of autoregressive processes. The
process {Z} is an AR(d) process with parameters ¥ € R? and ¢? > 0 if

{Z}} is second order stationary and satisfies the following difference equation

d
(7) Zy =Y 0;Zk_j+er, keL,
j=1

where {ej}rez is a centered white noise with variance ¢2. A sufficient and
necessary condition for the existence of {Z;} is that the autoregressive poly-
nomial z — 9(z) := 1 — Z?Zl ¥; 27 does not vanish on the unit circle
(see Brockwell and Davis (1991)). In this case, the stationary solution {Z}
to (7) is unique and there exists a sequence {4}, such that ), [1/;| < co and
Zi, =Y Y€eg—; for all k € Z. Furthermore the sequence {1} is causal, i.e.
Y =0 for all [ < 0, if and only if the function z — 9¥(z) does not vanish on
the disk |z| < p~1, for some p < 1. This motivates the following definitions

in the time varying setting. For p > 0, we denote
(8) S(p):= {0 :[0,1] = R%, O(2;t) # 0 for all |2| < p~'and t € [0, 1]}

Concerning the smoothness condition, different classes of functions can
be considered. In the original paper by (Dahlhaus, 1996b), it is assumed
that the functions t — 6(t) and ¢ — o(t) are Lipschitzian. In this paper, we
consider a wider range of smoothness classes which are now introduced. For
any 3 € (0,1], denote the 3-Lipschitz semi-norm of a mapping f : [0,1] — R!
by

(1) — £(s)]

If|a,3 = sup
g t#£s |t - S|ﬁ

and define for 0 < L < oo, the -Lipschitz ball

(9) AN(B,L) = {f :[0,1] — ]Rl, Iflag < L, sup |f(t)] < L} .
t€[0,1]

For all 3 > 1 the (-Lipschitz balls are classically generalized as follows. Let
k € N and a € (0, 1] be uniquely defined by # = k + . Then we define

(10) A(B,L) = {f: 0,1] = RL Ry o < L, sup |£(t)] < L}.
t€(0,1]

where f(*) is the derivative of order k.
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Forall 3>0,L>0,0<p<1,and 0 < o_ < o4 < 00, we define

C(B,L,p,o_,04):={(0,0) : 8 € A\g(B,L)NS(p), 0:[0,1] = [0_,04]}.

We will simply write C whenever no confusion is possible. It is interesting
to observe that, for particular choices of L and p, C reduces to the more
conventional smoothness class {(8,0) : @ € Ay(5,L), 0 :[0,1] — [o_,04]}.

This follows from the following lemma.

Lemma 1. For all positive p, we have

(11) B(1/V/p=2+---+p~21) € S(p) € B((1+p)* — 1),
where B(a) is the sup-norm ball {9 :10,1] — RY, Supyepoq [0(t)] < a}.

Proof. Note that 0(¢;0) = 1 for all ¢t € [0,1]. Let Ai(¢),...,Aq(t) be the
reciprocals of the roots of the polynomial z +— 6(z;t). Hence 8 € S(p)
iff, for all ¢t € [0,1] and k = 1,...,d, |[\e(t)] < p. For all t € [0,1] and
k=1,...,d, using the Cauchy-Schwarz inequality, we have

1/2
<|6(1) (ZW M) .

Hence the first inclusion in (11). We further have

d
— I - M) 2)
k=1

The coefficients of 8 are then given by

d

D 0t (1)

i=1

1=

(12) Oc(t) = (—1F Y A1) A (1), k=1,....d

1<y << <d

A simple computation then gives the second inclusion in (11). O
Remark 1. In the case d = 1 considered in Belitser (2000), S(p) = B(p).

We are now in a position where we can state the main results of this
paper. We first provide a uniform upper bound of the pointwise LP risk of
the NLMS estimator.
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Theorem 2. Assume (A1) with ¢ > 4 and let p € [1,q/3). Let 3 € (0,1],
L>0,0<p<1,and0<o_ <o,. Then, there exists M,d > 0 and pg > 0
such that, for all u € (0, uol, n >1,t € (0,1] and (8,0) € C(B, L, p,0—,04+),

(13)  18a(t: 1) = 0100 < M (16(0)] (1 =8 0)™ + Vi + (npr) 7).

Corollary 3. For alln € (0,1) and o > 0, there exists M > 0 such that,
for all (8,0) € C(B,L,p,0_,04),
sup Hb\n [t; an—2ﬂ/(1+26)} - H(t)H < Mn %,
t€n,1] 6o
The upper bound in (13) has three terms. Anticipating on what will be
said in the proof section (Section 4), the first term |0(0)] (1 — & u)" reflects
the forgetting of the initial error of the NLMS estimator. The second term
is the so-called lag-noise term, which accounts for the fluctuation of the
recursive estimator which would occur even if ¢ — 6(t) is constant. The third
term controls the error involved by time evolution of 8(t) and mainly relies
on the smoothness exponent 3. Corollary 3 is then obtained by choosing the
step-size in order to minimize this upper bound. Observing that the first
term is negligible for ¢ > n > 0 and balancing the two remaining ones yields
[Tes n%. This corollary says that, for all g € (0, 1], under (-Lipschitz
assumption, for ¢ € (0, 1], the LP risk of the NLMS estimator at point ¢ has
rate n_ﬁ.
We now provide a lower bound of the L2-risk for any estimator 6, of o(t)
computed from observations X, X15,..., X, . Let us stress that this
lower bound is not restricted to recursive estimators, i.e. we do not require

gn to depend only on X5, X1, - ., X[ny,n- Denote by
MSEMa,5 (3, ) i= Eo,p [(3, — 0(1)) (3, — ()" -

the Mean Square Error Matrix (MSEM) at ¢ € [0,1]. Consider the following

assumption.

(A2) For alln € Nand 1 < k < n, €, has an absolutely continuous den-

sity pg,, w.r.t. the Lebesgue measure whose derivative py ,, satisfies

: . 2
E [pk’n (%,n)} =0 and Z.:= sup E [(pkn (ekn)) ] < 0.
DPkn 1<k<n Pin

We have the following result, whose proof is postponed to Section 5.
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Theorem 4. Assume (A1) with ¢ = 2 and (A2). Let 3 > 0, L > 0,
p€(0,1),0< o0_ <o4. Then there exists a > 0 such that, for alln > 1,
t € [0,1], and for all estimator gn = gn(Xo,le,n, o Xnn) € R?,

=26

(14) inf sup uTMSEngg(Sn,t)u > ani+2s,
[ul=1(g,0)eC

where C :=C(B,L,p,0_,04).

Remark 2. Note that uTMSEMgﬂ(Sn, t)u is the mean square error of uTgn

for estimating u?'@(t).

Corollary 3 and Theorem 4 show that, under (A1) with ¢ > 6 and (A2),
the LP error rate is minimax for p > 2 within the class C(3, L, p,0_,04) if
B € (0,1]. The question arises whether the upper bound derived in Theo-
rem 2 generalizes for § > 1 in such a way that, as in Corollary 3, for an
appropriate step-size u(n), /én(t; w(n)) achieves the rate of the lower bound
derived in Theorem 4. It turns out that this is not the case, except in a very
particular situation, namely when 6 is the constant function. This may be
shown by using precise approximations of the risk, completing the upper
bound given in Theorem 2. Such approximations primarily rely on the fact
that, as n tend to infinity, the local sample Xj,,, of the TVAR process ap-
proximately has the same second-order statistics as the stationary AR(d)
process with parameter (6(k/n),o(k/n)). In the following we provide a pre-
cise statement of this fact and then state the approximations of the risk.
For this purpose, we need to introduce further notations. For 8 > 0, L > 0,
p€(0,1)and 0 < o_ < o4 we let

(15) C*(ﬂ,L,p,O',,O'Jr) = {(070) € C(ﬁaLap)Ufao-Jr) Lo € Al(ﬁa 0+)}‘

We use the shorthand notation C* when no confusion is possible. The obvi-

ous relation

C(ﬁ7L7P7U—=0'+) 2 C*(/Ba L7 2 U—7U+) 2 C(ﬁvLapv U+70+)

implies that Theorem 2 and Theorem 4 are still valid when replacing C

by C*. Following the formula of the spectral densities of stationary AR(d)
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processes, we respectively denote

2 ) -2
16 sovno.o) = Soeo| T meas<n,
™
(A7) (S0, 0)k = / GMED F(0 10, 0)dN, 1< ki<d,

the local spectral density function and the local d-dimensional covariance
matriz associated to (6, 0) at point t. The covariance matrix Eg,c,[xk,nxf )

can be approximated by the local covariance matrix at point k/n as follows.

Proposition 5. Assume (A1) with ¢ > 2. Let 3 € (0,1], L > 0, 0 <
p<1<1 and 0 < o_ <op. Then there exists M > 0 such that, for all
1<k<nand (0,0)€C*(B,L,p,o_,04),

\Egﬂ[xk,nxin] — S(k/n,8,0)| < M (7" [E[X0,X{,] — 2(0,0,0)] + n~ 7).

Remark 3. This approximation result can serve as an illustration of how
the TVAR process fits in the locally stationary setting introduced Dahlhaus
(1996a). Observe that if § = 1 and E[XO,nX%jn] = ¥(0,0,0), the rate
for the approximation error between the local sample covariance matrix
Egp[Xk,nX{n] and its local stationary approximation X (k/n,0,0) is n=!
which coincides with the approximation rate required in the locally station-
ary setting introduced in Dahlhaus (1996a). Precise conditions upon which

a TVAR process is locally stationary are given in Dahlhaus (1996b).

We obtain the following computational approximation of the pointwise
MSEM for 8.

Theorem 6. Assume (A1) with ¢ > 11. Let f € (0,1], L >0, p < 1, and
0<o_<o4 andlet (0,0) € C*(B,L,p,0_,04). Let t € (0,1] and assume
that there exists 0,3 € RY, L' > 0 and ' > 8 such that, for all u € [0,1],

(18) 18(u) — 0(t) — .5 (t — )| < L' (¢ —u)”
Then there exists M > 0 and po > 0 such that for all p € (0, po] and n > 1,

1/2

rB+1) <

(k)P
M (VE B+ () 2) + (un) ™ (o) 7+ () + Vi)

o*(t)
2

(19) ‘MSEMQJ <§n(t; ) — DR (t,O,o)Ot,zf) K I
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where I' is the usual Gamma function and I is the identity matriz with size
dxd.

Remark 4. Let o € R. The a-fractional power of a diagonal matrix D with
positive diagonal entries is the diagonal matrix D% obtained by raising the
diagonal entries to the power a. The a-fractional power of a symmetric
positive-definite matrix A = UDU7, where U is unitary and D is diagonal,
is then defined by A* = UD*UT.

Using (19), as (1 + (un)~1) — 0, we have the following asymptotic ap-
proximation of the MSEM.
o*(t)
2

If B < 1, this gives the leading term of an asymptotic expansion of the

MSEMg,, (8u(t: ) = T(8+ 1) (1n) *S7(1,6,0)8,,5) = i T 1 (1+0(1)).

MSEM, which allows to compare the performance of En with other esti-

mators achieving the minimax rate. The deterministic correction I'(3 +

1) (un)=PE7P(t,0,0)0, 5 can be interpreted as the main term of the bias
a?(t)

and the term p =~ I as the main term of the covariance matrix.

Remark 5. An essential ingredient for proving Theorem 6 is to approxi-
mate the expectation of the term inan/(l + w|Xg.n|?) appearing in (3).
Roughly speaking, for small enough p, a good approximation is Eg [X;}ankn]
which itself is well approximated by (k/n, 0, 0) by using Proposition 5. If
one replaces the normalization factor 1 + u|Xy.,|? by the more classical (in
the stochastic tracking literature) 1+ |Xj |2, the computation of the deter-
ministic approximation would be much more involved as the normalization

does not reduce to one as i tend to zero.

Remark 6. Equation (18) is for instance valid if @ behaves as a sum of non-
entire power laws at the left of point ¢, say 6(u) = 6, 1/9v/t — u + O(t — u).
Another simple case consists in assuming that (6,0) € C*(5',L,p,0-,04)
for # > 1. Then (18) is obtained with 3 = 1 and 8, 3 = —6(t) by using a first
order Taylor expansion. Hence, in this case, the main terms of the MSEM
are of order y + (un)~2 unless (t) = 0 in which case the deterministic
correction in the MSEM vanishes. This implies that the estimator an(t; )
cannot achieve the minimax rate obtained in Theorem 4 in the class (0, 0) €

C*(B',L,p,0_,04) for f’ > 1 unless 0 is a constant function.



RECURSIVE ESTIMATION 11

If the smoothness exponent belongs to (1, 2], the following result applies.

Theorem 7. Assume (A1) with ¢ >4 and let p € [1,q/4). Let 8 € (1,2],
L>0,pe(0,1), and 0 < 0_ < o4. Then, for alln € (0,1), there exists
M > 0 and pp > 0 such that, for all (8,0) € C*(B,L,p,0—,04), t € [n,1],
n>1 and p € (0, pol,

|

merical analysis (see e.g. Baranger (1991)), we are now able to propose a

~

Ou(t:10) = O(1) + (um) '8 (1.0,0) 0()|| < M (Virt(um) P+ (un) ).

Applying a technique inspired by the so-called Romberg method in nu-

recursive estimator which achieves the minimax rates for 5 € (1,2]. This es-
timator is obtained by combining the recursive estimators a(t; -) associated
to two different step-sizes. More precisely, let

- 1 /- ~

On(t;p1,7) := T <0n(t;u) - 70n(t;7/~t)) :
where v € (0,1). We obtain the following result.

Theorem 8. Assume (A1) with ¢ > 4 and let p € [1,q/4). Let B € (1,2],
L>0,p<1,and0<o_ <oy. Foralln € (0,1), there exists M > 0 and
o > 0 such that, for all v € (0,1), (8,0) € C*(B,L,p,0-,04) , n>1 and
1€ (0, o],

1+~

) (Vi+(pn) 4 (un)~?).

(20) sup He (t51.7) — 6(0)
te(n,1]

Proof. Let n € (0,1), v € (0,1) and ¢ € [n,1]. One easily checks that

Bt 17) — 0(1) = (1)~ (Bu(t:) = 01 + (un) ' 5(1,0,)6(0)—
7 (Bntt:9m) — 00) + (ypm) 1571 (1,6,0)8(1)) ).

The Minkowski Inequality, Theorem 7 and the bounds /v < «y B < 42
yield (20). O

Corollary 9. For all y,n € (0,1), 8 € (0,2] and a > 0, there exists M > 0
such that, for all (8,0) € C*(8,L,p,0_,04),

sup
te(n,1]

- 1 __B
n(t; o n*Qﬂ/(1+25)7 v) — 6(t H <M % n_ 1+28
P60 (1 —7)



12 ERIC MOULINES*, PIERRE PRIOURET', AND FRANCOIS ROUEFF*

3. EXPONENTIAL STABILITY OF INHOMOGENEOUS DIFFERENCE
EQUATIONS

Let us consider a sequence {Zg, k > 0} of random vectors satisfying the

following inhomogeneous difference equation
(21) Zy = ArZy 1+ ByUy, k>1,

where {Uy, k > 1} is a sequence of independent random vectors and A =
{A, k> 1}, B = {By, k > 1} are two sequences of deterministic matrices
with appropriate dimensions. The pair (A, B) is said to be ezponentially

stable if there exist constants C' > 0 and p € (0,1) such that

k+m
(22) sup H Al <Cp™ forallm>0 and B*:=sup|By| < oo,
k2011211 k=1

k+
with the convention that Hz::Al = Agsm Akrm—1 ... Ap. We clearly

have

Proposition 10. Let p € [1,00]. Suppose that (A, B) is exponentially stable.
Then there exists a positive constant M only depending on C, p and B* such
that

1Zkllp < M (U5 + 1 Zollp) . k€N,

where Uy := supy>q [|[Ukllp-

Exponential stability implies exponential forgetting of the initial condition
in the following setting. Let (E,|- |g) and (F,| - |r) be two normed spaces,
let m be a positive integer and p a non-negative real number. We denote
by Li(E,m,F;p) the linear space of mappings ¢ : E™ — F for which there
exists A; > 0 such that, for all (x1,...,2zy) and (y1,...,ym) € E™,

(23) |o(x1,. - 2m) — dWY1, - ym)|F <
Mz —mle+ - 4 2m — Ymle) A+ 21 [E + 18+ + 2R + [ymlR)-

This implies that there exists Ao > 0 such that, for all (z4,...,2,,) € E™,
(24) [B(ar, s wm)le < Ao (L g+ [z,

Denote by [¢|r(,) the smallest A satisfying (23) and (24). Li(E,m,F;p) is
called the linear space of p-weighted Lipschitz mappings and [¢|r;(,) the
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p-weighted Lipschitz norm of ¢. We now state the exponential forgetting
property. In the sequel, for any integrable r.v. Z, E” [Z] denotes the condi-
tional expectation of Z given the o-field F and inequalities involving random

variables will be meant in the almost sure sense.

Proposition 11. Let p > 0. Assume that Uy, is finite and that (22) is
satisfied for some C > 0 and p < 1. Let ¢ € Li(R?, m,R;p), where m is a
positive integer. For all k > 0 let us denote Fy, := o(Zg, U;, 1 <1 < k).
Then, there exist constants C1 and Cy (depending only on C,p, Uz, B~
and p) such that, for all0 <1<k and 0 =7 <- - < jm,

(25) |E7* [®4,]| < C1m |PlLigp) (1 + pr P | Zg [P,
IBF (@] — B7 (@] | < Comp” |0l (14 |ZalPH + B7 [|Z4PH])
[E7% [@rsr] = El@ery]| < Comp” [0l (14 |2 + EI|Z" 1)

where ®; = ¢(Zj1j,, ..., ZLj1j,) for all j > 0.
Proof. Define Hy,, as the R? — R function mapping = € R? to

E [¢(hk,r+j1 (X’ Uk+17 ) Uk+7"+j1)v SRR hk‘,T-l—jm (X’ Uk-l—la ) Uk+T+jm))] )

where, for all 4,5 € N and (x,uy,...,u;) € R? x R%,

hi,j(xv ug, .. '7uj) = Ck(i —i—j,i)X—i— O‘(i +7J,i+ k) Bz’+k Ug,

o
—_

l+m
with «(l,l) =1 and a(l+m,l):= H A, 1>0,m>1.
k=141
We thus have, for all k,r > 0,
(26) E7* [(I)kJrr] - Hk,r(zk)'

Using (22), observe that, for all i,j € N and (x,y,ui,...,u;) € R x R¥
|hij(,un, . wg) = Ry, an, . wg)| < Cpf [x =yl

J
|hij(x,u1,...,u;)] <C <p7|x\ + Zpﬁk B* |uk|> .
k=1
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Using these bounds among with the Minkowski inequality, the definition of

Hj, , above and the assumptions on ¢, we easily obtain, for all (x,y) € R24,

|Hyer (%) — Hi o (¥)] < €1 |9[Licp) (Z prﬂ’) x —yl
=1

r m A m s A p
1+ Zp(rﬂi)p (Ix” + |y|?) + 22 (Z prii—k px U;) ] ’
L =1

=1 k=1
|Hy.r (x)| < 1 [BlLip)

| m m  /r+7; p+1
1+ Z p(7'+j¢)(p+1) [P + Z (Z prHii—k px ;+1> 7
i=1

i=1 \k=1

where ¢; is a constant only depending on C, p and p. Observing that
izlpj_k <1/(1—p)and 31, pfi® < 1/(1—p®) foral j >1,0=j; <

<o < jm and a > 0, we obtain
(27) | Hyp ()] < Culluigym (14" @D [xp+)
(28)  |Hiyw(x) — Hier ()| < Crmp” [9lLigp) |2 — y[ (L + 0™ (%7 + [y[")),

where C is a constant only depending on B*, Uy, C, p and p. Eq. (25)
follows from (26) and (27). Observe now that, for any probability measure
¢ of RY,

'Hk,Ax) - [ <<dy>' < [ Ve ) = s )] <lay)

< Com ol [ Ix— 31 (14 P+ Iy1?) (),

where we used (28). The two last bounds of the proposition follow by us-
ing (26), |x —y| < |x| + |y| and by choosing ( respectively equal to the
conditional distribution of Zj, given (Zg, Uy, ..., U;) and to the distribution
of Zy,. O

4. PROOF OF THEOREM 2

We denote by My and Mjl' the space of d x d real matrices and the
subspace of positive semi-definite symmetric matrices, respectively. For all
A € My, we let Amin(A), Amax(A) and |A|max(A) denote the minimum eigen-
value, the maximum eigenvalue and the spectral radius of the matrix A,
respectively, that is, Amin(A) := min (sp(A)), Amax(A) := max (sp(A)) and
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|A|max(A4) := max |sp(A)|, where sp(A) denotes the set of eigenvalues of A.
The proof is derived in five steps and relies on intermediary results which

will be repeatedly used throughout the paper.

Step 1 : exponential Stability of the TVAR model. We have

Lemma 12. Let 0 < pg < p and L a positive constant. Then there exists
C > 0 such that, for all A € My with |A| < L and |A|max(4) < po, and for
all k € N, |A¥F| < CpF.

Proof. We apply Theorem VII.1.10 of Dunford and Schwartz (1958). Let
v ={z€ C:|z| = p}. Then, for any A such that |A|max(A) < pp and for all

keN,

Ak = y/zk(zI—A)_l dz.
21 ),

Hence, putting z = pe¥, y € (—m, ), we have
k proT j 1
A< 8 [ 1= A/ e

Let G:={A € My : |A] < L, [Amax(A) < po}. G is a compact set and
(2,A) — |(I — A/2)7!] is continuous over v x G so that it is uniformly
bounded. The proof follows. O

For all t € [0,1] and for all @ = (0y,...,604) : [0,1] — R% let O(t,0)

denote the companion matrix defined by

[0,(t) 02(t) ... ... 04(t)]

0
(29) ot0)=| 0 1 0 ... 0|,
0 ... 0 1 0 |

whose eigenvalues are the reciprocals of the roots of the autoregressive poly-

nomial. Using this notation (2) can be rewritten as
(30) Xk+1,n = @(k/n, 0>Xk,n + O k+1,n€k+1,n, 0< k <n-— 17

where o, = [o(k/n) 0 ... 0]T.
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Proposition 13. Let § € (0,1], L > 0 and 0 < p < 7 < 1. Then, there
exists a constant M > 0 such that, for all @ € Ag(B,L)NS(p) and 0 < k <
k+m < n,

k+m

IT et/n.0)

I=k+1

(31) < Mt™.

Proof. For notational convenience we use A and S as shorthand notations
for Ay(B,L) and S(p). First note that ©F = sup sup |O(¢,0)] is finite.

0cANS tel0,1]
For any square matrices Ay, ..., A, we have
(32)
I Ar=AT+(A—A) AT + A (Ar o — A AT 2+ 4+ [ [ Ar(A2— A1) Ay
k=1 k=3

By applying this decomposition to
(33)
k
Bulk,i:0) := [ ©(i/n.0), 0<i<k<n, Bn(i,i;0)=1I, 0<i<n,
j=i+1

we have, for all 0 < k <k +q <n,
|Ba(k+q, k3 0)| < |O((k+1)/n,0)7|+q 0" ax [0((k-+7)/n)=0((k+1)/n)].

Let us set p € (p,7). Hence, for all 8 € S(p) and ¢t € [0,1] we have
A |max(©(t,0)) < p. Since O* < 0o, by Lemma 12, we obtain

sup sup |0%(t,0)| < Cp?, qeN.
0cANS tel0,1]

Observe that, for all n > 1,

sup e  max [0((k -+ j)/n) — 6((k +1)/n)] < Lia/n)’.
0cA 15759 0<k<n—q

Pick ¢ and then N large enough so that Cp¢ < 79/2 and ¢ ©*7~ 1 L(q/N)? <
79/2. The three last displays then give, for all n > N,
sup max |Gn(k+q, k;0)|] < 719
0cANS 0<k<(n—q)
Write m = sq+1¢,0<t<gq. Foralln> N,l€{1,...,n—m}, and for all
0 ANS,
s—1

[Bn(l+m. 1= 1:0)| < O [T 18a( + (i + Vg, +ig;0)] < (14 O%/7)7 7™,
1=0
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The proof follows. 0
From Proposition 13 and Proposition 10, we get that, under (A1),
(34) sup  sup || Xgnllge.0 < 0.
(8,0)eC 0<k<n
Eq. (31) and (34) are referred to as uniform exponential stability and uni-

form L7 boundedness respectively. The bound (34) may be extended to

conditional moments as follows.

Proposition 14. Assume (A1) with q > 1 and letp € [1,q|. Let g € (0,1],
L>0,0<p<7<land0<o_ <oy. Then, there exists a constant M
such that, for all (8,0) € C(B,L,p,0—,04+) and 1 <k <[ <mn,

(35) EpEn [|Xpnl?])| < M (147075 X5, P),
where Fip =0 (XO,ru Xjn, 1 <5< k).

Proof. Eq. (31) is satisfied by Proposition 10. Then under (A1), we apply
Proposition 11 with ¢(x) = |x|?, since ¢ € Li(R% 1,R;p — 1). Eq. (35)
follows from (25). O

Step 2 : error decomposition. When studying recursive algorithms of
the form (3) it is convenient to rewrite the original recursion in terms of the
error defined by 0y, = ak,n(,u) — 01, 0 < k < n. Let us denote, for all
v>0and x € Rd,

X

(36) L,(x) := 5o

and F,(x):=L,(x)x’.

The tracking error process {65, 0 < k < n} obeys the following sequence

of linear stochastic difference equations. For all 0 < k < n,
(37) 5k E 5,8}” o0 + o),
I = pF,(Xen)) 8 S = —00.

k+1 n ° k,n’

= (
001 = (I = pFu(Xien))00 + 1Ly (Xkn) ks tn€hs 1ns Oy = 0,
(

k+1n' I —pF, (an))5() + (Orn — Ort1n), (58‘2:0

{5 } takes into account the way the successive estimates of the regression
coefﬁments forget the initial error. Making a parallel with classical non-

parametric function estimation, (5( w) ., Plays the role of a bias term (this term
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cancels when the function ¢t — 6(t) is constant), whereas (5,(;’7)1 is a stochastic

disturbance. It should be stressed that the ”bias term” is non-deterministic
as soon as t — 6(t) is not constant. The transient term simply writes, for
all0 < k <mn,

where, for all p >0 and -1 <j <k <mn,

k

(39)  Wa(gsw) =1 and Wu(k,jsp) = [[ (I - nFuXin).
I=j+1

Let us finally define the following increment processes, for all 0 < k < n,

IE:‘:ZL) = 0kn — Okt1,n and 51(9?1 = MLu(Xk,n) Ok+1,n €k+1,n-

According to these definitions, {6,(;’71}193” and {5,&"2}&%” obey a generic

sequence of inhomogeneous stochastic recurrence equations of the form

k
(40) 671, = (T=pFu(Xin)) S0 +€000 = D Talkiis ) €3, 0<k<n.
=0

In view of (38) and (40), it is clear that the stability of the product of random
matrices Uy, (k,7; 1) plays an important role in the limiting behavior of the

estimation error.

Step 3 : stability of the recursive algorithm. The following stability
result for the product W, (k,j;u) defined in (39) is an essential step for

deriving risk bounds for the estimator 571

Theorem 15. Assume (A1) with ¢ > 4. Let 3 € (0,1], L >0,0<p <1,
and 0 < o— < o4. Then for all p > 1, there exist constants M,§ > 0
and py > 0, such that, for all 0 < 57 < k < n, p € [0,uo] and (0,0) €
C(B,Lpo—r0y),

(41) 1Wr (k, 3 10)lpo.e < M(L—0p)F.

Similar stability results have been obtained in the framework of classical
recursive estimation algorithms (see for instance Guo (1994) and Priouret
and Veretennikov (1995)) but cannot be applied directly to our non-stationary

and non-parametric context. Let us sketch the main arguments of the proof
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in a more general context. Let {Ay(v),k > 0, v > 0} be a M}-valued

process such that
(C-1) for all k € Nand v € [0,v1], |v Ar(v)] < 1.

Here Ag(v), A1(v),... corresponds to the matrices F\,(Xj11.1), Fu(Xjt20),- .-
which appear in the product ¥, (k,j;v) for some fixed j, k and n. Taking
= 1in (41) (this can be done without loss of generality under (C-1)), we
want to prove that E )HLZI(I - VAk(V))‘ < C(1—6v)! for some positive
constants C' and §.
First observe that it is sufficient to have E7* [|I — vA, 1 (v)]] < 1 —6v

or, more generally, for some fixed integer r and « > 0,

II ¢ -vaw)

I=k+1

(42) Eﬂ[ <1-aw

k+r ‘

To obtain this inequality, we expand the product and then use Lemma 31
so that

k+r k+r
H (I —vA(v))| <1—vAnin ( Z Al(u)> +R,
I=k+1 I=k+1

where R is some remainder term which will be controlled by using Zfi,: @)
for some s > 1. It turns out that, in the previous display, the conditional
expectation of the RHS given Fj may only be controlled on a set {¢p < R;}
where Ry > 0 and {¢y} is a positive adapted sequence (in the TVAR context,

¢y, corresponds to |Xy, ,,|). This yields the two following conditions

(C-2) there exists oy > 0 such that, for all £k € N and v € [0, 1],

k+r
EF* [Amin < Z A;(V))] > a1 I(gr < Ry),

I=k+1
(C-3) there exists s > 1 and C; > 0 such that, for all k € N and v €
[07 Vl]a

k+r
Lop < Ri) Y EP*[A(v)]] < Ch.
l=k+1
In turn the inequality (42) may only be shown on the set {¢y < R} and
it remains to check that this happens for sufficiently many k’s. For this we

use a classical Lyapounov condition, namely
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(C-4) there exist A < 1, B > 1 and an adapted process {Vi,k > 0} on
[1,00) such that, for all k € N,

E7* Vitr] S AVi (g > R1) + BVi I(¢p < Ry).

The previous arguments yield the following general result, whose precise

technical proof is postponed to Appendix A for convenience.

Theorem 16. Let (0, F,P,{Fy : k € N}) be a filtered space. Let {¢p, k >
0} be a non-negative adapted process and, for any v > 0, let A(v) :=
{Ak(v),k > 0} be an adapted M -valued process. Let r > 1, Ry > 0 and
v1 > 0 such that (C-1)—-(C-4) hold. Then, for any p > 1, there ezist Cy > 0,
09 > 0 and vg > 0 only depending on p, v1, ay, Ry, C1, s, B and A such
that, for all v € [0,10] and n > 1,

p
< O e—doljn V.

Having this general result in hand, we now prove Theorem 15.

Proof of Theorem 15. To verify (C-2), which is referred to as the persistence
of excitation property in control theory literature, we need some intermedi-

ary results which hold under the assumptions of Theorem 15.

Lemma 17. There exists C > 0 such that, for alld < j < n and (0,0) €
C(/Ba vav U—7U+);

(43) Amin (Eg o [Fu(X;0)]) > C, vel0,1],

and, for all0 < k < j—d,

Freyn
(44) Mo (Eg5” [Fo(X)]) = C.
]_—k n C
- , ) - .
(45) N (B'y" [Fy(Xia)l) 2 s vE 0,1

Proof. Let x e R%, |x| =1,d < j<nand (8,0) €C:=C(3,L,p,o_,0.).
Write

d
Xjn = BulGrd = d;0)Xj an+ Y Bul,j — d+;0) 0 arin€jdtim,
=1
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where 3, is defined by (33). We have IEg];d’" [(xTX;n)?] = 0% xTHjp q(0) x
where Hj, 4(0) = Cj,q(0)Ct

n.a(0) is the controllability Gramian (see
Kailath (1980))

Cina(8) = [Bu(jsj — A+ 1;0)G ... 5u(j,j;0)G], where G:=[10 ... 0T,

One easily shows that, fori = 1,...,d, 5,(j, j+1—1; )G has a unit i-th coor-
dinate and zero coordinates below. Hence det(H;, q4(6)) = det(Cj..4(0)) =
1. In addition, from exponential stability, we have, for all (68,0) € C,
|Cjm,a(@)] < M for some positive M not depending on (j,n). Hence, for all
d<j<mnand (0,0) €C,

det(Hj,.q(0

Amin(Hj,n,d(a)) > de_l( Js ,d( )) > M—(d—l)_
max(Hj,n,d(9)>

It follows that, for all 0 < k < j —d, x € R? such that |x| = 1 and (8,0) € C

(46)  xTEgh" [Fo(X;0)] x = Ept" [Ez;];d’" [(xTXj,n)Q]} > g2 Md-1),

showing (44) for any C' > ¢2 M~(@=1), Eq.(43) also follows for v = 0. For

all 0 < k <j—d and for all v € [0, 1] write

T
Fren [( T 2 Frn %" Xjin|
Ey™" |(x' X =E,”

0,0 [( J,n) ] 0,0 [(1+V‘Xj,n|2)

1/2 {’XTXj,n! (I+v !Xj,n\g)l/z}] '
The Cauchy—Schwarz inequality shows that

Frm 2
(<72 (0%,
KB [Fu(Xjn) X 2 o~

Eo o (" Xjn)? (14 v |X;nl?)]

Since [xTX; | < |X;n| for |x| = 1, by applying (46), we get, for all v € [0, 1],
(0.2 M—(d—l))z
.7: n :
(Xl + Eg g™ [1Xjml"]

Fren
Amin (B [ (X)) > o

The proof of (45) then follows from (35). The proof of (43) is along the

same lines. 0

Lemma 18. Let ¢ € Li(R? 1,R;1). There exists M > 0 such that for all
1<i<k<n,v>0and (0,0) €C(B,L,p,0_,04),

2
k

Epim || (6(Xjm) — Egi [0(X;))| | < M (k=) 16120y (1+ [Xinl?).
j=it+1
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Proof. For j € {i+1,...,k}, denote A; = ¢(X;.,) — Ep" [¢(X;)]. For all
i <J <1< Egyt [A] = Bgl [6(Xia)] — Egy' [9(X1,))- The model is
uniformly exponentially and L9 stable (see Proposition 13 and (34)). From
Proposition 11, there exists 7 € (p,1) and C;,Cy > 0 such that for all

OSZSJ Slgnv (050) ec(ﬁ)va)O-—aU-‘r)’

].'.n .
E5 1] < O iy (1+ Xyl + [Xial),

B [87]] < Caloli) (1 + XKl

From Proposition 14, we get that there exists C'5 > 0 such that for all
0<i<j<l<n, (08,0)€C(B,L,po_ o)

[Ep 1 A = B3 [a,ED 1A)]| <
Fin A2\ /2 (Fi 7 2]\ '/ »
(52 (a2)" (22 | (B5 180)°] ) < Caloifiy ™7 (1%t

and the result follows. O

Lemma 19. For all Ri,a7 > 0, there exists rq > 1 such that, for all
(0,0)€C(B,L,pyo_,04), r>19,n>r,k=0,...,n—r and v € (0,1],

From
(47) Ego

k+r
>\min ( Z FV(Xl,n)>] > o I(|Xk,n| < R1)7

I=k+1

where F,, is defined in (36). In addition, there exist constants 6 > 0 and
o > 0, such that, for all (0,0) € C(B,L,p,0_,01), d <k <n andv €
[0, o],

(48) I —vEgq[Fu(Xgn)]| <1—ov.

Proof. For any symmetric matrix A, we have |Apin(4)] < [Amax(4) = |4]
(recall that |-| denotes the operator norm) and Amin(A) = inf_; 27 Az.
From the last assertion, it follows that for any symmetric matrix B having
same size as A, Amin (A + B) > Amin(A) + Amin(B). Therefore,

)\min(A) 2 )\min(B) + )\min(A - B) Z Amin(B) - ’A - B’ .
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Applying these elementary facts, we get, for all 0 < k < k47 <n,

k+r
)\min Z FV(Xj,n) >
j=k+1
k+r - k+r -
> i (Bgy Fu(X5)l) = | D (FulXsn) = Egly” [Fu(Xn)])|
j=k+1 j=k+1

From its definition in (36), F,(x) € M} for all x € R? and v > 0, and
(49) sup |Fy[ri1) < o0
v>0
Applying Lemma 17 and Lemma 18, we obtain that there exist C, M > 0
such that, for all (,0) € Cand0 <k <k+7r <n,
k+r
C(r—d
ES | Amin > FXin) || = (7)4 — M (14 XY
’ i—k ]' + |Xk,n|
j=k+1
Now pick two positive numbers Ry and oq. If |Xj,| > Ry, Eq. (47) is
clearly satisfied. If |Xj,| < Ri, the last equation implies that, for all
0<k<k+r<n,

k+r c (r _ d)
B |dmin | Y FuXjm) || = s = MV (1+ RV
7 j=k+1 L+ Ry

We may thus find rg such that the RHS of this inequality is larger than or
equal to aq for all » > ro. This concludes the proof of (47).

From the uniform L2-boundedness and (49) we get that there exists M
such that, for all (8,0) € C, v € [0,1], d < k < n, |Eg,[Fu(Xin)]| < M.
Thus, using Lemma 31, for all v € [0,1/M], d < k <n, and (0,0) € C,

|I - VEG,U[FV(Xk,n)” =1- V)\min(EO,U[FV(Xk,n)])-
and the proof of (48) follows from Lemma 17. O

We now turn back to the proof of Theorem 15 by applying Theorem 16

to the sequence

{(A=F,(Xjt141n), Fii41n), L =0,...,k —j — 1}

It thus remains to show that conditions (C-1)—(C-4) of Theorem 16 hold with

constants r, Ry, v1, a1, C1, A, B and s which neither depend on (0, 0) € C nor
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on j,k,n. Set ¢y =1 and, for I =0,....,k—j—1,V,:=1+|X,y,| and
G = | Xjtinl-

Condition (C-1). For all v > 0 and x € R, v|F,(x)| = v[x|/(1+v|x|) < 1,
which yields (C-1).

Condition (C-2). From Lemma 19, we may choose ry only depending on
R; and «; such that (C-2) holds for all r > rg.

Condition (C-3). From Lemma 32, sup,,20||Fl,|q/2|Li(q_1) < oo. From
Proposition 14 there exists M > 0 such that, forallv > 0,0<i<i+[l<n
and (0,0) € C,

]:in
Eg' |IFy(Xitun)|??] < M (1477 X0l

Hence (C-3) is obtained with s = ¢/2 and C; = Mr(1 + R}).

Condition (C-4). Let 7 € (p,1). From Proposition 14, there exists M
such that, for all 0 < i < i+ r < n and (60,0) € C, E;’;’Tn [ Xitrn]] <
M(1+ 7"|X; ,|); thus, for any Ry > 0,

fin
By [1+ [Xigrnl] < M7"[Xip| + M +1 <
M+1

(MT" + I(1Xsn| > R1))(1+ | Xin|) + (M + 1I(|X; 0] < Ry).
Choose r > 9 and Ry > 0 so that M7"+ (M +1)/R; < 1. Condition (C-4))
is then satisfied with A := M7" + (M +1)/R; <1 and B=1+ M.

Finally, we obtain, for some positive constants r, Cy, dg and pug, for all
v e (0,m0), (8,0) €Cand 0 < j <k <nsuch that n—j >r,

. Fitin . _
1V (K, 531 9.0 = E |Eg [‘I’n(ka]§’/)]] < Coe ™" (14 X1 1nllpo.0)-

The uniform boundedness (34) then yields (41) when n—j > r. The restric-
tion n—j > r above is needed because (C-4), (C-2) and (C-3) are well defined
only for n — j < r. Now recall that (C-1) implies |¥,(k,7;v)| < 1. The re-
sult for n — j < r (implying & — j < r) follows by taking M > (1 — dvq)~"
in (41). O

Step 4 : error bounds. Similarly to (49), one easily shows that

(50) sup |Ly [Li(0) < oo,
v>0
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where L is defined in (36). The L?-boundedness of {Xj ,, 1 < k < n} then
gives
(51) Fijp:= sup sup sup [[F,(Xpn)lq26,0 < oo

(0,0)eC v>0 0<k<n

(52) L; = sup sup sup ||L,(Xpn)lq0,0 < 0.
(6,0)eC v>0 0<k<n

From now on, for convenience, we let the same M, § and pg denote positive
constants depending neither on the time indices ¢, 7, k,n, ..., the step-size
w nor on the parameter (0, 0).

Applying (38) and (41), for all u > 1, there exists M > 0 and g > 0 such
that, for all u € (0, pol, (8,0) € C and 1 <k <mn,

(53) 168 0.0 < M (1 612)* [8(0)].
Define
k—1
=W (kk) =0 and EP(kj) =Y €0, 0<j<k<n
i=j

For all 1 < j <k <n, we have
Un(k —1,5;p1) = Up(k — 1,5 — Lip) = pUn(k — 1, ji ) Fu(Xj-1,0)-

By integration by parts, for all 1 <k < n and u € (0, uo|, (40) reads

(54) Opm) = Wk —1,0; 1) Z (k, 0)+

k—1
pY  Walk = 1,5; ) Fu(Xjo1,0) EF (K, ).
j=1

By applying the Holder inequality and using (41) and (51), we get that, for
any u € (1,q/2), there exists M > 0 such that, for all u € [0, uol, (8,0) € C
and 0 < j <k <n,

(55) H\Ijn(ka]a :u) F,u(Xjfl,n)Hu,e,g < M (1 — (S'u)k_j—H.

We consider now the two terms 6,?:3 and 6,(:7)1 separately. We have, for all
0<j<k<n,

k—1
(56)  [ES0k )] = [ e8| = 105 — Oxal < 6lasn (k)
=
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Inserting (56), (41) and (55) into (54), we thus get that there exist M > 0,
d > 0 and pp > 0 such that, for all (8,0) € C, 1 <k <mn and u € (0, uo],

k—1
165 g0 < M| (1= 8 p)* (k/m) + 1 S (1= 6 ) ((k — j)/n)”
j=1

By Lemma 33, picking u > p, we obtain, for all u € (0, uo] and (6,0) € C,

(57) 165" llp6.c < M [Bla5 (um)™®, 1<k <n.

We finally bound §("). Note that, for each n > 1, {0in Lu(Xin) €ixin, @ =
1,...,n — 1} is an Fjq1n-adapted martingale increment sequence. The
Burkholder inequality (see (Hall and Heyde, 1980, Theorem 2.12)) and (52)
give, for all (6,0) € C and u > 0,

k
(58) 1D 0in Lu(Xin) €ir1m <ME—-j+1D)2 1<j<k<n.
'=J q,0,0

By Lemma 33, using (54), (58), and (55) with w such that 1/p =1/u+1/q,
we get, for all u € (0, o] and (6,0) € C,

(59) 165 lpor < M/, 1<k<n.

Eq. (13) easily follows from (37), (53), (57) and (59) and Theorem 2 is

obtained.

5. PROOF OF THEOREM 4

By writing bn = uTgn, (14) simply means that, for all real-valued esti-
mator gn(XO,n7X1,na ooy Xpn)and u = (u1,...,uq) € R? such that |u| = 1,

~ T 2 =28
sup Eg, [6n—u O(t)‘ ] > ant+2s,

(6,0)eC

Denote by | 3] the largest integer strictly smaller than 3. Let ¢ : R — R be
a C'*° symmetric function decreasing on R such that ¢(0) = 1, ¢(u) = 0
for all |u| > 1 and

|p(L8D) (z) — p(LBD) (y)) -1

(60) Sup iz — y|P-18] =

z,yeR,z#y
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Let A : R — Ry be a C! p.d.f. with respect to the Lebesgue measure
vanishing outside the segment [—1,+1] and such that

1 . . 2
(61) /_1 (ig) M) da < oo,

where A is the derivative of the density A. Let (v,) and (w,) be two non-
decreasing sequence of positive numbers to be specified later such that
(62) lim (v,'+w,'+n 'w,) =0 and supv,’ wl < L.

n—oo n>0
Let t € [0,1] and u € R? such that [u| = 1. Define ¢, : [0,1] — R%,
s = dni(s) = ¢((s — t)wy)u and let o : [0,1] — RT, s — o(s) = 4. For
n > 1, define

(63)  Xpy1n =n0((k/n—tyw)u" Xpp + (04) €pg1n, 0<k<n—1.
From (A2), it follows that, for all 0 < k <n —1,

T = pryin((r — 77<75n,t(k/”)uTY)/U+)/U+

is the conditional density of Xj 1, given X , =y and parameter 1. Since
the distribution of Xy, does not depend on 1 and using the conditional
densities above to compute the joint density of {Xo., Xip,..., Xnn}, the
Fisher information associated to the one-dimensional parametric model de-
fined by (63) is

n . 2
— Pk,
Zn(n) = U+2 En¢>n,t,cr Z ¢n,t(k/n) uTkal,n - (Ek,n)
k=1 Pkn
Now, under (A2), the summand in this equation is a martingale increments
sequence whose variances are bounded by ¢%7t(k /1) Epg, o ol(u" Xp—10)?] Ze.
Since |u| = 1, (uTX)? < |X]?, and we finally obtain

(64) Zo(n) < 03* 1. Z¢ (/1) By (1 X1.0l)
From (60) and (62), for all n € [—v,; !, v, ],

1) (18D ((s" — — B ((s — 4
o < P 19U = D) = D s = ) il

Un 0<s<s/<1 |5/ - 5’ﬂ_|ﬁj ToUp
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and |n¢n+(0)] < v,!. Hence, for large enough n, nén: € Ag(3,L), for all

n € [~v,1,v;1]. By construction, for s € [0,1], the autoregressive poly-

nomial of n¢y,; is given by 1 — 1 ¢y 4(s) Zle u; 2%
oo, for any p, 0 < p < 1, there exists N, such that, for all n > N,
Nbnt € S(p) n € [—vyt 0,1, and thus (néns,0) € C. Using (34) for
bounding Eyg,, o [|Xk-1,n]?] in (64), it follows that there exists M depend-

ing only on p, 3,04 and L such that, for all sufficiently large n and for all

Since limg, oo v, =

n € [—v, v,

To(n) < MZ. Y ¢*(kwn/n — twy,) .
keZ

Using that ¢ is C'! and compactly supported, we have

S k-0 - [ 60) di

keZ

lim sup h =0.

h—0 zcR

Eq. (62) shows that, for large enough n and for all n € [—v; !, v"!] we have

(65) L) < MZoww ! [ 60 de (14 o().

We get that, for all real valued estimator ES\n = gn(Xom, Xins--r, Xnn), as
n — oo,

vﬁl

sup oo [(6, —u"0(t))%] > / VaM0n0) Eyg, , o[(5n — n)?] dn >
(6,0)eC —opt

-1
( sup In(’?) + In(/\)> > (O(nw;l + U’?L))_l )
nel-vnton ']

where the first inequality is the Bayesian lower bound of the minimax risk
(recall that, for n sufficiently large (ngnt, o) € C for all |n| < v, 1), the
second inequality is the so called van Trees inequality (see Gill and Levit
(1995)) with Z,,(n) denoting the Fisher Information of the translation model
associated to the p.d.f. v,A\(v,-) and the last inequality is implied by (61)

and (65). The proof is concluded by choosing v, = wd and w, = n/(1+20),

Remark 7. Theorem 4 easily extends to cases where the distribution of
{Xon, n > 1} depends on € in a not too pathological way. Assume for
instance that Xo , follows the distribution of a stationary AR process with

parameter (6(0),0(0)) and with a given white noise (see e.g. Dahlhaus
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(1996b)). In this case, the lower bound (14) holds for ¢ > 0 and n sufficiently
large without further assumptions. This clearly follows from the proof : since
the distribution of Xy, only depends on (6(0),0(0)) and since, for ¢ > 0
and n sufficiently large (1¢,+(0),0(0)) = (0,04 ) does not depend on 7, the

computation of Z,(n) applies and the proof goes on similarly.

6. PERTURBATION EXPANSION OF THE ERROR

In this section, we first derive several approximation results of the error
terms 6(") and 6() defined by (40) in Section 6.1. Computational estimates
are then obtained in Section 6.3 and the proofs of Theorem 6 and Theorem 7

are finally obtained in Section 6.4 and Section 6.5 respectively.

6.1. General approximation results. Observe that Theorem 2 only pro-
vides a bound of the risk. The approach developed in this section relies
upon a perturbation technique (see Aguech et al. (2000)). Decompose the
LHS of (40) as 8j) = Ji*" + H"" with J§o" = 0, H§7 =0 and

kn N

0,0 e.0 .
I = (1 = e o[Fu(Xien)]) S0 + €57,

.70 .70 .70
A, = (1= (X)) HY + 1 (Bo g [Fu(Xi )] — F(Xie ) 000

70)

The inhomogeneous first-order difference equation satisfied by J,g.n yields
k
(66) T =S ki, 0,0) €%, 0<k<n,
i=0
where, for all p >0,0<i< k <mn, and (0,0),
k
¢n(l, Z? H, 9? U) =1 and wn(kv /La 122 97 O-) = H (I - NEG,O'[FM(Xj,n))]) .
J=i+1

For ease of notations, we write Fy, , := F,(Xy.), Fn := Frn(p)—Eo o [Frn ()],
E instead of Eg », ¥, (k, ) instead of W, (k, i; u), ¥n(k, i) instead of ¢, (k, 75 i1, 0, 0)
and so on. This decomposition of the error process {5,(;7)1, 1 <k <n} can

be extended to further approximation order s > 0 as follows.

(67) o = g0 gl g m ),
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where

T = (I~ pEFea)) IO + 60, s g,

T = (= pEFa)) I + uFrn 170, g =0,0<i <7,

ng:i-l)n (- HFkn)H( S)+HFknJ]£n)7 Hl(ns)—O 1=0,.

(e,

The processes J;, ") depend linearly on { and polynomially in the error
Fin. We now show that J(™9) and J (V’0)7 respectively defined by setting
€@ = ¢ and £ = ¢ in (66), are the main terms in the error terms

6™ and §(*) defined by (40).

Proposition 20. Assume (A1) with ¢ > 4 and let p € [1,q/4). Let 8 €
(0,1, L>0,0< p <1, and 0 < o_ < oy. Then, there exist constants
M and po > 0, such that, for all (8,0) € C(B,L,p,04,0_), p € (0, uo] and
1<k <n,

(68) "1 < M (o),
(w,0) _
(69) 1855, = Tinllpor < M /i (npr) ™.
Proof. From (48) in Lemma 19 (which holds under the assumptions of Theo-

rem 15, there exist § > 0, pg > 0 and M > 0 such that, forall 0 < i < k < n,
w € [0, up] and (8,0) € C,

(70) |n (K, 13 11,0, 0)] < M (1 =6 )™~

Note that ¢ (k,i— 1) —n(k, i) = —pn(k, 1) E[F; ). Asin (54), write, for
all 1<k <n,

(71) %D = 4 (k—1,0) E0) (k, 0) 41 Y ton(k—1,5) E[Fj_1,0] Z57 (K, j).
j=1
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Using (56), (51) and Lemma 33 shows (68). By (67), we have §(*) — j(%:0) =
HWO0) = g1 1 gW1)  where, for all 1 < k < n,

k—1

(72) IO = 1S (k= 1,7) Fi I,
j=0
k—1

(73) HYY =10y Wk —1,5) Fjp IO
j=0

Set ¢j(x) = Yn(k — 1,j)FH(X)J(WO), j =0,...,k —1. Note that, from
(49), (70) and (68), for all u € (0, o], 0 < j <k <nand (6,0) €C,
DilLir) < [Yn(k —1,7)] |J](,V7V{0)| Fulriy < M (1= 06p)5 7 (un)~".

By applying Proposition 29 componentwise, we get, for all u € (0, o], 1 <
k <nand (0,0) €C,

k—1 o 0 k—1 4 1/2
S wnlk = L) Fn IV <M )™ | S —apmh
§=0 q/2 i=0

Hence, for all p € (0, up], 1 <k <nand (0,0) €C

(74) |70, < M v en) 2.

Let u be such that 2/q+2/q 4+ 1/u = 1/p. Thus, by Theorem 15 and (51),
for all pu € (0, 0], 1 <k <nand(0,0) €C,

(w,1 (w,1)
(75) HHk I < MZH‘I’ HuHFJan/QHJ g2

N

-1
< M (un) =0y (1= o) < M (un) P
1

<.
Il

O

Proposition 21. Assume (A1) with ¢ > 7 and let p € [1,2q/11). Let
g€ (0,1, L >0,0<p<1,and0 < o_ < oy. Then, there exist
constants M and po such that for all (8,0) € C(8,L,p,0_,04), p € (0, uo]
and 1 <k <n,

(76) 175578, 0) | q.0.0 < M /i,
(77) 1607 — 18708, 0) 0. < M p.
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Proof. The Burkholder inequality (see (Hall and Heyde, 1980, Theorem
2.12)) shows that for all 1 <k <mn, u € (0, up] and (8,0) € C,

1/2 1/2
k—1 k—1
1Ty < Mpos Lies [ S lnlk— 1,02 | <Mp [ S (1-8p)?
j=0 j=0

and (76) follows from (52) and (70). We now bound
k—1
TV = p 3k~ L) F I, 1<k <.
§=0

Let us pick 2 < k < n. By plugging (66) with £ = £ we obtain

(78) J,i,v,;” = Z 5 (X;n) Yij(Xin) Tit1,n €it1m
0<i<j<k—1

where, forall 0 <i< j<k-—1,

(79)  ¢i(%) == Yulk = 1,j) Fu(x) and  7;;(x) := ¢n(j — 1,7) Lu(x).

From (49) and (50) we have, for all 0 < i < j < k, ¢; € Li(R%, 1,R% x R%; 1)
and v; ; € Li(R%, 1,R% 0) and, furthermore, from (70),

|6jliy < M (1=36p)"*7 and  |yijlui) < M (1—dp) ",

where, as usual, M and § are positive constant neither depending on indices

i,7,k,m, on u € [0, uo] nor on (0,0) € C. The following uniform bounds

follow.
t—1
sup |9jlLi) < M, Z |bilniy < M,
0<j<t =
1
2
sup i jlLio) < M, sup | > Piglisoy | < MpV
0<i<j<t 0<j<t 0<icj

By applying Proposition 30 componentwise, we obtain HJ,EVT’LI) < Mu

2q
uniformly over 1 < k <mn, u € [0, o] and (8,0) € C. Asin (75), let u > 1
be such that u=' +2/q + 7/2¢ = 1/p. Then, for all 1 < k < n, u € [0, uo]
and (0,0) € C,

7

k—1
v,1 . = v,1
I < 1> 1@k = L)l 1Falls 50" 20
j=1

and thus | Hy"V |, < M p2 F? o S¥21 (1 — 6p)* 7 which yields (7). O
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6.2. Proof of Proposition 5. We may write, for all 1 < k < n,
k
Xk,n = ﬁn(ka 07 0) XO,TL + Z ﬁn(ku% 0) Ojin€in,
j=1

where o and (3, are defined right after (30) and in (33), respectively. Thus,

Eo,0[XknXf ] = Ba(k,0) E[X0nX{ ] Bn(k,0)"+

k—1
> Balk k= 1) okt n (Bulk k= 1) op_1n)"
=0

Let 8 € S(p) with p > 1, t € [0,1] and let {Zk, k € Z} denote the sta-
tionary AR(0(t),o(t)) with i.i.d. centered unit variance innovations denoted
by {ex}rez. Recall that (¢, 60,0) denotes the d x d covariance matrix of
{Zk, k € Z}. Then, using classical results on AR models (see Brockwell
and Davis (1991)), we have [Z), ... Zy_4]T = > ;5 O!(t, 0)0(t)ek—;, where
o(t) == [o(t) 0 ... 0]T, © is defined by (29) and the convergence holds in
the L? sense. It follows that

>0 T
HW@zZWWM@@%@Wﬁ
1=0
Denote Oy, := O(k/n,0) and ¥y, := 3(k/n,0,0). We obtain

(80) Eoo[XknXinl = Sk = ulk, 0) (E[X0.nX5 5] — Bo.n) B (k,0)"

[y

3 (Bulksk = D @t Bulksk = D orotn)” = Oy 1 (B o))
l

o

Il
o

+ Z (ﬁn(ka O)Gé}f oo (Bn(k, O)@é;ﬁ UO,n)T - @i;,n Okn (@gcn o'k,n)T) .
=k

Note that, for any matrices Ay, ..., A, and By, ..., B, with compatible sizes,

r r r j—1 r
(81) Hm—H&:Z< M%@Jﬁ II B:
i=1 i=1 j=1 \k=1 k=j+1
From uniform exponential stability (see Proposition 13 and its proof), there
exists M such that for all 1 <1 < k <nand (0,0) € C*, |Bn(k,k—1)| < M 7!
and \@fgn| < M 7! and thus
-1
Bk k= 1) = O | < M7 " |04_jin = Opu| < M~ P71,
§=0
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Similarly, there exists M such that, for all 1 <1 <k <n and (0,0) € C*,
-k -k — I—k
06 — O M < Mn P77 (1 — k) kP,

Bk, k= 1) ohtp Bu(k k= 1) 0p10)" — O Ok (O O'k,n)T‘

< Mn’ﬁ 22 lﬂﬂ7

Bn(k, O)Gé}f 001 (Bn(k, O)C—)f),_rf 0'07n)T - 6.2:,71 Okn (@i:n O'k,n)T‘

<M n B2 EP,
The result follows by inserting these bounds in (80).

6.3. Further approximation results. To derive tractable asymptotic risk
)

3 ~ 31 3 3 (W,O) (V70
estimates, we need to derive approximate expressions of kan and Jk’,n .

We first derive approximations of E[Fy, ,,], 1 < k < n and related quantities.

Lemma 22. Assume (A1) withq > 4. Letf€ (0,1, L>0,0<p<T1 <1,
and 0 < o_ < oy. Then there exist positive constants §, vy and M such that,
for all0 <k <l<n,ve(0,1] and (8,0) € C*(B,L,p,0—,04),

(82) (I—vX(/n,0,0) 7 < (1-0dv)F,

(83)  |X(1/n,0,0) —Eoo[Fu(Xpn)l| < M (7F + 0Pl —k+1)P +v),
(84) |%(1/n,0,0) — Eg o [L LY (Xpn)]| < M (78 + 0P (1 — k +1)P +-v).

Proof. By continuity of (0, z,t) — |0(z;t)| (see (6)) and since

d
{0 eR? W[ <L, 1-) 92" #£0forall 2] < pl}
=1

is a compact set, there exist § > 0 and M > 0, such that, for all (8,0) € C*,

o*(t)

(85) 0 < inf inf

< min by ;07
lz|=1t€[0,1] |0(z;)|? Amin (3(t 6, 0))

o2(t)

< Amax (E(t;a,g)) < sup sup <M.
12=1 tefo] 1025 1)]2

Eq. (82) then follows from Lemma 31. Similarly, there exists M < oo, such
that, for all (0,0) e C*and all 0 < s <t <1,

(86) 12(t;0,0) — X(s;0,0)| < M(t — s5)°.
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By Proposition 5, we get, for all 1 <k <1 <n and (6,0) € C*,

(87) |X(I/n;0,0) — E[anX;‘gnH < |2(/n;0,0) — X(k/n;0,0)|+
1S(k/n;0,0)) — EXpnXP )| < M (7F + 078 (1 - k+1)7).

This is (83) and (84) with v = 0. One easily shows that, for all x € R? and
v >0, |F,(x) —xxT| <vx[*and |L,LI(x)| < 2v|x|*. Since ¢ > 4, we
deduce (83) and (84) for v > 0 from (87) and uniform L* boundedness. [

Let p € (0,1) and let 8 € S(p) and o : [0,1] — RT. Define the follow-
ing sequence of recurrence equations applying to some increment process
(£ 0<k<n}

k
(88)  J,(0.0) =3 (I~ pS((k+1)/n,0,0) €0 0<k<n.
j=0
We now show that J(":0) and J(*:0) may be approximated by J) and J(*)
respectively defined by setting £(*) = £(") and ¢(®) = ¢() in (88) and then we

compute asymptotic equivalents of J™) and of J)’s variance respectively.

Proposition 23. Assume (A1) with ¢ > 4. Let 8 € (0,1], L >0, p < 1,
and 0 < o_ < o4. Then, there exist constants M > 0 and pg > 0 such that,
for all (6,0) € C*(B,L,p,0-,04), p€ (0, 0] and 1 < k <mn,

(89) [T D0, 0) = T2 (8,0)] < M (jun) P ((un) ™% + p),

90)  [I00.0) — J(.0) 460 < M VE((1n) " + p).
Proof. Let Ay (k, j; j1,0,0) =y (k,ji 1, 0,0)— (I —pnX(k/n,0,0))F 17 for
all 0 < j <k <mn, u>0and (0,0). The definitions of J(*0 and J(*) yield

(91) —J) = ZA k-1, 1<k<n

n n’

From (81), we get, forall 0 < j <k <mn, u>0and (0,0) € C*,

k-1
An(k—=1,j) =p Zd}n —1,i+1) (B[Fsn] — S(k/n)) (I — pX(k/n)) =971,

=j
Using (70), (82) and (83), there exists § > 0, po > 0 and M > 0, such that,
forall 1 <j<k<n,pe(0,u] and (8,0) € C*

(92) |An(k = 1,5) < M p (1= 6p)* (7 + 077 (k = )77+ p (k= ).
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We further write, for all 1 < j < k < n,
p (I = pS(k/n)* I~ E[F-10] — Z(k/n)).

Applying (92), (82) and (83) and observing that F7 is finite, we get that there
exists 6 > 0, pp > 0, 7 € (p,1) and M > 0, such that, for all 1 < j < k <n,
w € (0, o] and (0,0) € C*,

(93) [An(k = 1,5) = An(k = 1,5 = 1)| <
M1 = 8 7 (07 (b = )P (u (k= ) + 1) + (k= ) + 1)+ 7).

By integrating (91) by parts, for all 1 < k < n, J,g;’lo) — j,f:) reads

1

k—1
An(k = 1,002 (k,0) + > " (An(k = 1,5) = Ap(k — 1,5 — 1)) E (k, 5).
j=1

Using (56) and (58) to bound ]E%W)] and |ZV),,||, respectively together with
(92), (93) and Lemma 33, there exists § > 0, pp > 0 and M such that, for
all 1 <k <n, pe(0,u) and (8,0) €C,

-8B k—1 . 1 8
(w,0) _ 7)) — ar (pn)"+p 1— su) 7+ J+
1 = Tl < M| i(pn) ™ 4 ) 4+ 2 D0 (1 = o 77T
j=0
Using Lemma 33, we have, for any o > 0,
> (=6p) 757 (+1)* < (1=7) " sup(1—-6p)’ (j4+1)* < C (1—7) 7" (6p) .
We thus obtain (89) and (90). O

Proposition 24. Let 5 € (0,1], L >0, p < 1, and 0 < o_ < o4 and
let (8,0) € C*(B,L,p,0_,04). Let t € (0,1] and assume that there exists
0,5 € R L' >0 and B > B such that (18) holds true for all u € [0,t].
Then, for all € (0, up) and n > 1,

gy LB+ 1)

_ -8
[tn],n (1 n)ﬂ () etﬂ

<M ((Mn)—ﬁ' + n+ 0 _5”)m> :

(k)P
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where M and o are positive constants only depending on 3,L,p,0_,0., L'
and (3.
Jw

[tn],n

Proof. Let us write —Jnp =

[tn]—1

> I ([tn)/m) 1 [0 — 07 ((tn] )7 = ([tn] = 1= 5)°) B1,0],
§j=0
where, within this proof section, we denote

[tn]—1

Jni= 07037 (T=pS({en)0) = (0] = 5)° = ([tn] = 1= ))) O
j=0

Using (18), the partial sums of the terms between brackets in the next-to-last

equation satisfy, for all 0 < j < [tn] — 1,

[tn]—1

S e = ((tn) = 0% = (ftn] = 1 )7) 0] | =

1=j

10Gi/m) = O([tn]/m) + n~([tn] = )7015| < L'n™ ([tm] = )7

Integration by parts with this bound and (82), and then Lemma 33 give
that there exists a constant M such that, for all u € (0, uo] and n > 1,

‘j(w) Jn| < M(un)™"

[tn];n —

Now, from (82) and using Lemma 33, we have, for all u € (0, ug] and n > 1,

Jn =17 Sp(I = p 3 ([tn] /) Oy, <

M~ (1= 6 )l S (1= 6 ) 191 < M (1= 6 )l (um) ",
>1
where Sg(A) := 3% A’ ((i + 1) — i?). Using that A — Sg(A) is a power
series with unit radius of convergence, (82) and (86), from the mean value

theorem and Lemma 33, we have, for all u € (0, po] and all n > 1,

|Sa(I = p3([tn]/n)) = Sp(I — pS(1)| < M pn =Py " (1=6 )" < M (un) ™.
i>1

Collecting the last three inequalities together with Lemma 33, we obtain the
result. O
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Proposition 25. Assume (A1) with ¢ > 4. Let 3 € (0,1], L >0, p < 1,
and 0 < o_ < o4. Then, there exist constants M > 0 and pg > 0 such that,
fOT’ all (070) € C*(/Ba L?/Ou U_,U+), IS (07/’1/0] and 1 < k <n,
o?(k/n) _
Boo [J07) - ZE 1 < (ot G+ (- 510
Proof. Since {f(")i’n, j > 0} is a martingale increment sequence, for any

1<k<n,E [j,gvr)lj,ngT} reads

k—1
D = /) 0 B (X)) (T = S (/)
7=0

=K Ulz,n (ka - ék,n) + Rk,na

where, for all 1 < k < n,

k—1
G =p Y (I —uS(k/n)*" I S(k/n) (I = pE(k/n))*~",

j=—o00
—1
Grni=p > (L= p3(k/n))* =TS0k /m) (I = pS(k/m) =,
" k—1
|[Rin| < My (1= 0p)* 9 (77 4070 (k= )7 + )
§=0

<My <u+(un)’ﬁ>-

For bounding Ry, ,,, we have used (82), (84), o € A(f3, L) and then Lemma 33.
From (82) and (85), we have, for all i € (0, o], 1 < k < n,

(94) (G| < M (1= 5 0)",

From the previous bounds, we obtain, for all u € (0, po] and 1 < k < n,

95)  [E[II0T] — not, G

<My <M+(un)’ﬂ+(1 —M)k)

Now, by definition of G} ,,, we have
(I = pX(k/n) Grpn (I — p5(k/n) + pE(k/n) = Grp, 1<k <n,
which gives, for all 1 < k < n,

(S(k/n) (I = 2Gn) + (I — 2Gp) Sk /) = 21 (k) G S(k/m).
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From (94), sup; <<, |Gr,n| < oo uniformly over p € (0, ug]. We thus have,
for all € (0,p0) and 1 <k < n,

[S(k/n) (I = 2Gy) + (I — 2Gi ) S(k/n)] < M p.

For any d x d matrix C' and positive definite matrix .S, the equation S B +
BS = C has a unique solution B linear in C' and continuous in S over
the set of positive definite matrices (see (Horn and Johnson, 1991, Corol-
lary 4.4.10)). Hence we obtain, for all u € (0,up] and 1 < k < n, |I —
2Gkn ()| < M p, which, with (95), gives the claimed bound. O

6.4. Proof of Theorem 6. We use the decomposition of § as

S (60 — g0y (50 — g VO (W:0) _ FOy (g (v0) — JOV)y 4 j W)y J(V),

Let n € (0,1). Applying (53), (69), (77), (89) and (90), there exists M > 0
such that, for all t € [, 1], p € (0, uo) and n > 1,

19n(t; 1) = 0) = Tin) = To0) 200 < M (VA (un) 7 + (un) ™ + )

We then obtain (19) by applying Proposition 24 and Proposition 25, and
using that o is B-Lipschitz to approximate o2([tn]/n) by o%(t).

6.5. Proof of Theorem 7. We use that § = 6 4§ 4 (§(%) — w0y ¢
(JO0) — JO)) 4 JO¥) Observe that there exists C' > 0 such that A(3, L) C
A(1,C L). Hence we may apply (53), (59), (69) and (89), so that, there
exists M and pg such that, for all u € (0, o]

(96) sup  sup [0 (t; i) — O(t) — ~[tvnv})n
(8,0)€C* ten,1] ’

[p6.0 < M (Vi + (un)72).

Now, since f > 1, for all (8,0) € C* and ¢t € (0,1], we may apply the
Taylor expansion @(u) = 0(t) + 6(v)(u — t), where v € [u,t], which yields
0(u) — O(t) + 0(t) (t —u)| < |0(v) —O(t)||u—t| < L|t —ul’'. Hence (18)
holds (8 =1 and ' equal to the actual ) at every point ¢ > 0 and we may
apply Proposition 24 for computing J™), which easily yield the result.

APPENDIX A. PROOF OF THEOREM 16

We first derive two simple lemmas, valid under the assumptions of The-
orem 16. We let 1y and § denote some constants only depending on r, Ry,

v1, a1, C1, A\, B and s and we write E;, for E¥.
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Lemma 26. For any a > 1, there exist § > 0 and vo > 0 such that, for all
k€N and v € [0, 1],

a

} p—

Proof. Under (C-1), we have |[I —vA;| <1 for all k € N and v € [0,11] (see

Lemma 31) so that we may assume a = 1 without loss of generality. We

k+r

[T ¢ -va)

i=k+1

(97) L(or < Ri) By {

write
k+r
(98) Il G-vA)=T-vDy+ S,
I=k+1
where
k+r r o
Dk = Z Al and Sk = Z(—l)JV] Z Ak—i—ij ‘e Ak+i1'
I=k+1 j=2 1<in <. <ij <r

For € (1/s,1) where s is defined in (C-3) and v > 0 denote
Bk(l/) = {|Ak+1‘ < V_ﬂv SR |Ak+r‘ < V_ﬂ}

and Bf(v) its complementary set. From (C-1), we have that, for all v €
(0,v1], |vDy| < rv!=PI(B(v)) + rI(B¢(v)). Choosing v2 € (0,v1] such
that ryzl_ﬁ < 1, we get that, for all v € [0,19], 2|v Dg|I(Jlv Dg| > 1) <
2rI(B§(v)). Hence, using (98) and Lemma 31, we obtain, for all v € [0, 1],

k+r

I] t-vay

I=k+1

<1- V)\min(Dk) + 27“1(8%(1/)) + ’Sk’

Eq (97) easily follows from this bound with (C-2) and the two following

inequalities, which will be shown to hold for all v € [0, v1],

(99) I(¢r < ROELIBL()] < Civ,
(100) (o < R E[|SK] < MO p2,

IN

where M is some constant only depending on r. We now conclude the proof
by showing these two last inequalities successively.

Using the Markov inequality we obtain Ej[I(Bf(v))] < Zfigﬂ Pu{|A;| >
v B} < v Z;tl;rl Eg[|A;|*], which implies (99) using (C-3).
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Forall j =2,...,r, for all ordered j-tuple 1 <i; < --- < i; <, using (C-
1), we have, for all v € [0, v1], v/ ‘Ak_l’_il o Akﬂ-j‘ < V2 |Apyi, Agri,|. Hence,
for some constant M; only depending on r, for all v € [0, 1],

Exl|Skl] < Miv?  sup  Eif|AgyiArl] -
1<i<j<r
Put § = s A2. The Holder inequality gives

5—1

s S
Er[|Ap+iArtil] < ABk[|Aktsl ]} {Er[|Arj5-1]} =

Observing that =57 — 5 > 0 and using (C-1), we have, for all v € [0, 1],

5—1

Exl|Ar+5]77] < Egl|Apss Flv™ =17, showing

5—1

1 3
Ex[|Sk|] < My v° { sup Ek[|Ak+z‘!§]} { sup EkHAk—i-j|S]}

1<i<r 1<j<r

i } ) 3/s
ngmmmmmﬂSMf(mwmeﬂ -
1<i<lr 1<i<lr

The proof of (100) then follows by bounding the above sup by a sum and
by applying (C-3). O

Define N, := S 1(¢y, < Ry). We have
Lemma 27. There exist ag > 0 and v > 0 such that, for all n > 0,
Eq [0 M| < e~ 1],
Proof. Observe that, using (C-4), for all k € N,
Er [Vigs1yr]) < Vir My > B1) + BL(@gr < Ry)] = Vi A @5 F1) BH@ORr <)

Let {Wg,, k € N} be the process defined by

INF 70\ M-y
WO = % and Wk,‘r = <A> <B> V]ﬁn, k > 1.

Since Ny, is Fi,.-measurable, we obtain, for all £ € N,

1 k+1 A Ng,
Eer[Wig1)r] = <)\> (B) Egr [Vikt1yr]

1 k )\ Nkrfl(d)k'rSRl)
<(+) (3) Ve =
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Hence, by induction, Eo[Wj,] < Wy =V} and, since Vi, > 1, we get

<B> ] < MR <>\> <B> Vik+1yr

< MR [Wikgaye] < AT,

Eo

Noting that Ny,44 = Np, for all ¢ =0,1...,r — 1, the proof follows. ([

We now turn back to the proof of Theorem 16. From (C-1), for all k € N
and v € [0, v1],

(k+1)r P
a0y | I a-vay| <
l=kr+1
(k+1)r p
e~ (6/2) VI(drr<R1) H (I —vA)| e¥2Y1(¢r, < Ri) + Ly > R1) 3,
I=kr+1
where ¢ is defined in Lemma 26. Let n = mr + t, where m € N and
t=0,1,...,r — 1. Eq. (101) and the Cauchy-Schwarz inequality show that
n P
Eo H(I —vA)| < 7&/2 W;/Q, where m =Eg [e‘é”N"} and
I=1
m—1 (k+1)r 2p
m=Eo | [[q| II Z-vA)| € (b < R1)+1¢py > Ri)
k=0 | |i=kr+1

Let Up = 1 and define recursively Upyq for kK =0,1,...,

(k+1)r 2p

Uky1 = H (I — VAl) €6VI(¢kr < R1) + I((ﬁkr > Rl) Us.
I=kr+1

Applying Lemma 26 with a = 2p, we obtain that (U, Fy,.) is a super-
martingale. Consequently my < 1. Lemma 27 and the Jensen’s inequality
show that, for all v € [0, ap/d],

]Eo[eféz/Nn] < (Eo[efaoNn])(SV/OéO Sef'yéyn‘/m

which concludes the proof.
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APPENDIX B. BURKHOLDER INEQUALITIES FOR THE TVAR PROCESS

Throughout this section we let 5 € (0,1], L, 0 < p < 1,0 < o_ < oy
and we set C := C(0,L,p,0_,04). We further let 7 € (p,1). The following
Lemma is adapted from (Dedecker and Doukhan, 2003, Proposition 4).

Lemma 28. Let (2, F,P,{F.;n € N}) be a filtered space. Let p > 2,
p1,p2 € [1,00] such that pl_1 +p2_1 = 2p~! and let {Z,;n € N} be an
adapted sequence such that E[Z,] =0 and || Z,]||, < oo for alln € N. Then

1
n 2

>

i=1

(102)

n n
< |22 1%l > IE" (2],
» i=1 Jj=ti

Proposition 29. Assume (A1) with q > 2 and let p > 0 such that 2(p+1) <
q. Then there exists M > 0 such that, for all (0,0) € C, 1 <s<t<n and
sequence {¢;}s<i<t in Li(R?, 1, R; p),

t 2

> ($i(Xin) — Boo6i(Xin)))

1=s ie{87"'7t}

t
<M sup il O 1bilLig)-

]
w100

Proof. Let us apply Lemma 28 with Z; = ¢4(X;,,) —Eg ¢ [¢i(Xin)] and p1 =
p2 = q/(p+1). From the LY stability, we see that ||Zl|\% 0.0 < M |Pi|Li(p)-
P b b

. Fin
It now remains to bound HIE&U [Zk]‘

. Using the exponential stability

g

w19

and the LY stability, Proposition 11p shows that, for all s < ¢ < k <,

(6,0) €C, HE?U" [Zk]‘ < M k= |$x|Li(p)- The proof follows. O
9 9 o

P+

Another application of Lemma 28 is the following result.

Proposition 30. Assume thatq > 5 and let p,r > 0 such that u := 2(p+r)+
5 < q. There exists a constant M such that, for all (0,0) € C,1 < s<t<n
and sequences {7 j}s<i<j<t and {¢;}s<i<t respectively in Li(R,1,R;p) and
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LI(R7 17 R; /r)l

(103) D 7ii(Xin) Oitin €irin (65(X;n) — Boo[6;(X;n)])

s<i<j<t 2
A AWAS ?q,e,o

t
<M S swp ijluigy Y 16iluie)+
sSi<yst i=s+1

¢ 3 j 3
sup [ PilLi sup ijlts
<s<i§t| l’Ll(T‘) i_zs—:’-l | Z|L1(T)> scj<t (ZZ_; | 2]‘L1(p)>
PTOOf. Let Ci,j =Yi—-1,5 (Xi—l,n) Oin €in and Uj = (ﬁj(Xj;,J - Egﬂ[(ﬁj (ij)]
forall s <7 <j <t Foralls<i<j<t U; and (;; are F; ,-measurable.
All along the proof, we denote by M some constant independent of s, t, n
and (0,0) € C. From uniform L? stability, for all s <1i < j <t,

(104) (16l 00 < M Vi1l and  (|Ujll o 0.0 < M|¢jlLicr)-

1

Denote Z; := U; E?:sﬂ Gi,j- The LHS of (103) then reads

(105) || Y GU;
s<i<j<t 2 g,

t

< Y [EeolGyUll+ || Y (Z5 —EeolZ)])

s<i1<j<t j=s+1 2
A J=s+ 2995

By Proposition 11, for all s <1 < j < t,

(106) |ES i)

< M 777 ¢ Licr)-

q
1000

Using (104) and (106), for all s < i < j <t,

-7:1' n
[EolGis Ujll = [EoolGia Egs [U31]] <

-T_'Ln
Eg." [Uj]

< M7 sl 165 |nie) -

1Cislaoe o,

It then follows that

t J
> BoolGi Uil < Ml Y. 10iluiy D ™70 < Mok o1,

s<i<j<t Jj=s+1 i=s+1
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where Yloco 1= SUPy<icjcq il and @1 == S0 L |6ilLir); Applying
this bound to the RHS of (105), this yields the first term of (103).
We now bound the second term in the RHS of (105). Applying Lemma 28

with p = q/u, p1 = q/(p+7r+2) and pa = q/(p+ r + 3), this terms satisfies

t 2

Z 7] 4q Z HZ Hp+r+2’9‘7 ZHE ’
Jj=s+1

%,e,a

e 20

where Z; := Z; — Eg,[Z;]. Applying the Holder inequality, (104) and the
Burkhdélder inequality (see (Hall and Heyde, 1980, Theorem 2.12)) shows
that, for all s < 57 <'t,

1Z;1

0.0 < MIdjlLi Mo with 2] == sup [Z 1Vi-1,5 Ll(p)]
i=s+1

+7+27 s<j<t

From the two last displays, we see that, in order to obtain the second term
in the RHS of (103) and thus to conclude the proof, it is now sufficient to
show that, for all s < j <'t,

LA

where ¢l := SUPs<i<t |@ilLi(r)- In fact, below, we bound the LHS of the
previous equation by A; + B; and show this inequality successively for A;
and Bj. Denoting ¢; Uy := (i x Up — Eg,»[Ci Uk, we have

> 57, ()
t
Aji=D

k=j

0o < M¢Jcr>o ,},;7007
+T+3’ 7

< Aj + Bj, where

9
prr73:90

Z Egg [ G Uk

i=s+1

)

‘ _aq
orr73:90

t k
B=3 3 [For [l ,_,,

k=j i=j+1 pr+3

The bound on A; is obtained as follows. The centering term in the defini-
tion in A; may be forgotten by multiplying the leading term by a factor 2
Then we use that ¢, € Fj, for all ¢ < j and all £ > 4 with the Hélder
inequality, and finally apply (106) and (104) with the Burkhélder inequality
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for martingale sequences to the obtained norms. These three steps read

14<2§:

Z Egg (i Ur]

1=s+1

q
prrrz:00

t
<2 ||Eg W]
k=j

Zg

1=s+1

_9q
r+l

3,1 7070'

2

t
<MD gl (
pa

It remains to show a similar inequality for B;. From (104) and (106), for all
s<i<j<k<t

i=s+1

Fom [T
(107) HEo& [Q&l@]‘ HE ka%]‘ ‘g
+.,»+27 0 pHr+2° 0
< 201G Bgl U 1|2, 0.0 < 201Gkll_s; 0.0 [Eg%" (U] | 2, 6.0

s

< M7k V- 1.k Litp) |9k Li(r)-

This bound is in fact useful only when k — j is large. We now derive another
bound of the same quantity useful when j—1 is large. Since for all ¢ < j < k,
Eo,o[Cik] = Eg i "™ [¢jk) = 0, we have

f

Eg P [Cj k Uk] E Tim [¢k(Xk n) Vi—-1 k(Xj—l,n) Ojmn fj,n] -

Eg,0 (0% (Xkn) ¥j—1,6(Xj=1,0) 0jn €5n]-
Note that Ojn€jn = Xj,n 0

Lemma 32 and since sup;, [0;-1,] < 00, Vj—11(Xj-1,n) ok (Xk,n) 0jn €
as a mapping of (X;_1,n, X;n, Xk.n), belongs to Li(R?, 3, R; p+r+2) and its

G ln j—1,n is linear in (Xjfl,nan,n)- By

norm is bounded by M |7;j_1 k|ri(p) |k |Li(r)- Hence, applying Proposition 11
and L4 stability to the RHS of the previous display, gives, for all i < j < k,

o2 (G

< M 777" i1 ki) [0kl
prri3®

Combining with (107) we get

fm =V
< MU NVED) |y ki) kL)

300

o2 1GTe]
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Applying these bounds to the definition of B;, since, for all ¢ <,

S UV <2/(r(1 - 7)(1 - V7)),
i<j<k<t
we finally obtain B; < M 'ylopo ol <M 'y;OO ¢l which achieves the proof.
O

APPENDIX C. TECHNICAL LEMMAS

Lemma 31. Let A be a positive semi-definite symmetric matriz and let I
denote the identity matriz with same size as A. Then |I — A| < 1—Apin(A)+
2|AI(|A] > 1).

Proof. Since |-| denotes the quadratic operator norm, we have |I — A| =
max(1l — Amin(A), Amax(A4) — 1). If 1 — Apin(A4) > Amax(A4) — 1, the claimed
inequality is trivially true. Since A is positive semi-definite, Apax(A) = |A].
If 1 —Amin(A4) < Amax(A4) —1, [I — A| = |A| — 1. In addition, in this case, we
necessary have |A| > 1. Hence the right-hand side of the claimed inequality
in this case reads 1 — Amin(A4) + 2|A4] = 1 + |A| + Amax(4) — Amin(4) >
|A| — 1. O

Lemma 32. Let (E,|-|g) and (F,|-|r) be two normed spaces.

(1) Let (G,| - |c) be a normed space. For any pi1,pa > 0, there exists
C > 0 such that, for all ¢ € Li(G,1,F;p1) and ¢ € Li(E, m, G;p2),

1
|¢ © ¢|Li(p1p2+p1+p2) <C |¢’L1(P1) (1 + ‘wvﬁ(—;g))

(2) Let (G, ||g) be a normed algebra. For any p1,p2 > 0 and any integers
mi,mg > 1, there exists C > 0 such that, for all ¢ € Li(E, m1,G;p1)
and ¢ € Li(F, ma, G; p2),

|¢ w‘Li(pl—l-pg-‘,-l) <C |¢’Li(p1) |¢|Li(p2)'

Lemma 33. Let >0 and v € (0,1). Then, there exists constants C1, Co
only depending on (8 such that

supt?(1 —v)t < CLv P,
>0
o0

Z(l —v)%s? < Gy~ (HP)
s=1



48 ERIC MOULINES*, PIERRE PRIOURET', AND FRANCOIS ROUEFF*

with the convention 0° = 1. Assume now that 3> 0. Then, asv | 0,

oo

(108) DT -v)y((s+ 1) —s7) =T(B+1)r 7 (1+0w)).

s=0

where I' is the Gamma function.

Proof. The result is trivial for § = 0, so we assume § > 0. A straightforward
computation shows that sup;> tP(1—v)t is attained at t = t := —3/ log(1—
v). Since log(1—v) is bounded above by —v, the first bound is obtained. The
second bound is obtained by bounding (1 — V)SS’B by this sup for s < tg+ 1

and by bounding the remainder of the sum (whose terms are decreasing) by

o0 1 o
1—v)s’ds = 5P d
[ 0wt = e [
which easily yields the first bound. For all 5 > 0 and v € (0, 1),

S::i(l—y)s<(s+1 ) ﬁz 1—v)* /SHtﬁldt.

s=0

The proof of (108) follows by then writing

(1-) s<g/ W' 1dt = T3+ 1)(—log(1 — 1)) P < .
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