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Abstract

In this paper language VQL s proposed, devoted to querying data stored in
multiversion databases. A multiversion database is assumed to represent different
states of the modeled universe. A formal model of such a database is presented
wn this paper. VQL, which is based on a first order calculus, provides a user with
a possibility of navigating through object versions, and through the states of the
unwerse modeled by the multiversion database.
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1 Introduction

Numerous papers on versions, which appear since twenty years, are mainly devoted to their organization
in file systems and databases [23, 16, 7]. Only few papers deal with retrieving versions from databases.
They may be grouped in two families.

The first one concerns query languages for temporal databases [27, 20, 28, 15, 25]. In such databases
timestamps are associated with object versions, tuple versions or attribute versions. Timestamps may
be either mono or multidimensional, based on validation time, transaction time or user-defined time. A
temporal database represents as many states of the modeled universe as the number of determined time
units. Query languages for temporal databases are founded on the semantics of time [26, 24, 20, 28].
Their characteristic feature is exploitation of the total ordering of versions imposed by each temporal
dimension. Note, however, that time is only one of multiple semantics which may be associated with
versions. For instance, in design applications like CAD or CASE, versions may represent variants or
alternative design choices. In such case version semantics is not related to time and version ordering is
no more total.

A special case of the first family of papers is [3], where query language IQL(2) is proposed as a unique
formal support for querying distributed databases and objects with multiple roles, views and versions.
We classify it as belonging to the first family, because of its concept of contert. A context is identified
and may be perceived as the place where an object or a value appears, for instance, a site in a distributed
database. Such contexts are to some extend similar to the states of the modeled universe appearing in
temporal databases.

In the second family of papers [7, 22], object versions have no particular semantics associated with
them. Object versions are implemented as objects. Query languages are extended by some primitives
which permit version manipulation. However, from the operational point of view, navigation in such
a database containing object versions does not differ much from the navigation in a database without
versions. As a consequence of the lack of version semantics, expressiveness of query languages is reduced
and a big part of the potential of the information contained in the database cannot be used.

In this paper we propose a data model and a query language VQL for multiversion databases. The data
model is an extension of the one proposed in [2] by version control which in turn is based on the Database
Version approach [6]. Query language VQL is conceived as an extension of the OQL standard [4, 5].

The main contributions of this paper are: (1) a formal model of a multiversion database, (2) a query
language based on a first order calculus and (3) a navigation technique through object versions and
through the states of the modeled universe.



The paper is organized as follows. In Section 2 the main concepts of the Database Version approach
are presented. In Section 3 a formal model of a multiversion database is proposed. This model is the basis
of the query language V@QL described in Section 4. In Section 5 V@QL is compared with other languages
proposed in the literature. Section 6 concludes the paper.

2 Database Version Approach

In this section the database version approach is presented from the user point of view. We limit its
description to the concepts necessary to understand the remainder of this paper: a database version
(DBV) and a logical /physical object version.

Database Version. A conventional monoversion database (i.e. a database without versions) represents
one state of the modeled universe. According to the database version approach, several states of the
modeled universe are represented simultaneously in a multiversion database. Each state is called database
version and denoted DBV (c¢f. Figure 1). A DBV has an identifier and contains one version, called a
logical version, of each object of the modeled universe (we assume that objects are multiversion). A
logical object version is similar to an object in a monoversion database: it has an identity and a value.
The identifier of the logical version of an object o in a database version v is a couple (o, v). To represent
the fact that an object does not exist in a DBV, its logical version contained in this DBV gets a special
value L.
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Figure 1: A multiversion Database.

Logical /physical version. When several logical object versions have the same value, it is stored only
once, in a physical version. The version manager controls the association between logical and physical
object versions. More details on the database version approach may be founded in [6, 13].

3 Data model

In this section the data model of a multiversion database is presented, which is an extension of the one
proposed in [2] for the multiversion case.

3.1 Basic elements

We assume the following countably infinite and pairwise disjoint sets of atomic elements:

1. relation names {R1, R, Ra, ...},



class names {Cy, Cs, Cs, ...},
attributes {Aq, As, 43, ...},
constants D = {dy, ds, d3, ...},

object identifiers O = {o1, 09, 03, ...},
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DBYV identifiers V = {v1, v, vs, ...}.

The product O x V denotes the set of logical object version identifiers (¢f. Section 2). In the DBV
approach, values are associated with logical object versions.

Definition 3.1 The set of o-values O- Value is the smallest set containing D U O and such that if ovy,

.oy 00 (k > 0) are o-values then [A; : ovy, ..., Ag: ovg] and {ovy, ..., ovg } are o-values.
Throughout this exposition, the generic notation [A; : ..., ..., Ag: ...], where k > 0, is used for a tuple
formed using any k distinct attributes Ay, ..., Ag; sets are represented using { } symbols and the empty

set is denoted 0.

Definition 3.2 The set of v-values V-Value is the smallest set containing V and such that if vy, ..., v
(k > 0) are v-values then [Ay : vy, ..., Ag: vg] and {vy, ..., vg} are v-values.

Definition 3.3 Let R be a finite set of relation names and C be a finite set of class names.

1. R is composed of two disjoint subsets: R = Ro U Rv, Ro for o-value relations, called o-relations,
and Rv for v-value relations, called v-relations;

2. A wv-value assignment for Rv is a function p,: Rv — V-Value mapping each name in Rv to a
v-value;

3. Let V. = {p,(R,) | Ry € Rv}. An o-value assignment for Ro is a patial function p, mapping each
couple (relation name in Ro, DBV identifier in V) to an o-value. p,: Ro x V. — O-Value;

4. An oid assignment for C is a function m: C — 2%, mapping each name in C to a finite set of

oids. 7 is called disjoint if C' # C' implies 7(C) N w(C’) = @, where C', C’ € C.

In an object-oriented database, C is the set of all class names, R is the set of all persistent root
names and, O-Value is the set of all the oids and possible object values. In the multiversion case, a new
kind of relations is introduced: the v-relations, which are composed of DBVs. The traditional relations,
composed of o-values, are called o-relations.

The assignment functions p, and p, allow getting relation values. An o-relation value may change
from one DBV to another. The p, function allows getting the value of an o-relation in each DBV of
the multiversion database. When an o-relation R, is not defined (does not exist) in a DBV v, its value
po(Ro,v) is {} if R, is of set type, otherwise p,(R,, v) is undefined. The 7 function returns the oids of
objects associated with a given class.

Remark 3.1 From the language point of view, persistent roots are used as entry points to get information
from the database. Implementation aspects are beyond the scope of this paper.

Remark 3.2 The oid assignment function 7 defined above is global to all DBVs: an object belongs to
the same class in every DBV. This hypothesis simplifies type checking. For this reason, we assume that
the type of objects and o-relations does not change from one DBV to another.

3.2 Syntax and semantics of types

A new type dbv is used in the multiversion database case. The type of a v-relation is dbv, or set of dbv-s.
Types associated with objects and values are similar to the ones used in monoversion database case. The
set of type expressions Types(C) is defined as: Types(C)= types(C) U {dbv, {dbv}}, types(C) being the
set of type expressions associated with o-values.



Types associated with o-values. Let C be a set of class names and 7 be an oid assignment for C.
The set of type expressions types(C) is defined as follows:

r=0|D|C|[A1:7,..., A7) | {7} | (V)| (r AT);
where 7 is a type expression, C'€ C and k > 0.

Each type expression 7 is given a set of o-values as its interpretation [[7‘]] , in the following natural

s
manner:

. H@Hﬂ =0, HD}]# =D, HCHW = m(C), for each C € C;

c[rvvm] =[] o[ o [ ] = ]l
o (1] ={tov o1 5 > 0 andon € [r] i=1,.5);

. H[Al STy, ..., A :Tk]]]n = {[Al sovy, ..., Ak s ovg] | ov; € HTZ']]N,ZI 1,...,k}.

Types associated with DBVs. Let 7 be a type expression belonging to {dbv, {dbv}}. The interpre-

tation of T, [[7‘]] , 1s defined as follows:
. [[dbv]] e

o [tave}] =24,

Remark 3.3 (1) The set of type expressions Types(C) is depending on the set of class names C. This
is due to the fact that class names are used as type expressions, to designate abstract types. (2) In this
paper we limit type construction over dbv to sets. This constraint will be removed in future work.

3.3 Database schema and instances

Definition 3.4 A multiversion database schema is a quadruple Sy, = (Ro, Rv, C, T), where Ro is a
finite set of o-relation names; Rv is a finite set of v-relation names; C is a finite set of class names and
T is a function from Ro U Rv U C to the set of type expressions Types(C).

Definition 3.5 An instance I, of a schema S,,, = (Ro, Rv, C, T) is a quadruple (p,, pv, 7, V'), where
po 18 an o-value assignment for Ro; p, is a DBV assignment for Rv; 7 is a disjoint oid assignment for C
and v': {n(C) | C € C} x V — O-Value is a value assignment function such that:

1. po(Ro,v) C HT(RO)H , for each R, € Ro and v € V;,
™
2. py(Ry) C HT(RU)H for each R, € Ryv;

3. V(n(C),v) C [[T(C’)H , foreach C € C and v € V;

4. V' is total on m(C) x V| for each C € C with T(C)={r}.

Let Iyy= (po, pu, ™, V') be an instance of schema Sy,, = (Ro, Rv, C, T). Each oid occurring in I,
(i.e. in the ranges of p,, ™ and v’) belongs to some 7(C), where C' € C. This follows from conditions (1)
and (3) of the Definition 3.5 and from the semantics of types. A set valued oid in I, is an oid belonging
to a class C, where T(C)={r} for some 7 € types(C). In the same manner, a set valued o-relation R, is
an o-relation such that T(R,)={7}, 7 € types(C). A set valued v-relation R, is a v-relation such that
T(R,)={vbd}. The information contained in I, can be summarized as follows:

ground-facts(Imy) = {v|v € py(Ry), Ry is a set valued v-relation} U
{v|v=py(Ry), Ry is a non-set valued v-relation} U
{ov | ov € po(Ro,v), R, is a set valued o-relation, and v € V} U
{ov | ov = p,(R,,v), R, is a non-set valued o-relation, and v € V} U
{o|oen(C),CeC}U
{ov | ov € V'(0,v), 0 is a set valued oid, and v € V} U
{ov | ov = V'(0,v), 0 is a non-set valued oid, and v € V'}

(o,
(o,



Condition 4 of Definitiony 3.5 specifies that v’ is total for set valued oids. We follow the convention
that, given a DBV v, if for a set valued oid o there is no ground fact ov € v/(0, v) then v'(0,v) = {}, and
if for a non-set valued oid o there is no ground fact ov = v’(0, v) then v’(o,v) is undefined.

In section 2 we specified that an object has a logical version and then a value in each DBV. This value
being L in some DBVs. Formally, 1 is an empty set for set valued oids, and it is an undefined value for
non-set valued oids.

Example 3.1 To illustrate the concepts set out in this section, let us consider the “imaginary family”
multiversion database shown on figure 2. Three names of relations appear: My_parents and My_ friends
designate two o-relations and My DBVs designates a v-relation. For My parents the o-relation value is
the same in every DBV. For My friend the o-relation value varies according to the DBV.

My_parents
r/\
ol 02
05
Date: 1990 My_DBVs
ate:
hﬂggﬂs State: university
ol 02

My_parents Date: 1980
— State: adolescence
ol o2 o7

% 99

My friends

Figure 2: The imaginary family database.

In this example, each DBV represents the state of persons that are “close to me”, at a given time.
Time is represented as an attribute of the object named DBV _Desc (i.e. DBV descriptor). In each DBV,
the value of this object describes the corresponding state of the modeled universe.

Database schema.
Ro = {My_ parents, My_ friends, DBV _Desc},
Rv = {My_DBYVs},
C = {Person, Descriptor} and
T is defined by:

ot



class Person : [Name : string, City : string, Kids : { Person})

class Descriptor : [Date : integer, State : string]

type My_parents : {Person}
type My_friends : {Person}
type DBV _Desc : Descriptor
type My_-DBVs: {dbv}

Instance description (see figure 2).

m(Person) = {o1,02,03,04,05,06} m(Descriptor) = {or}
po(My_DBVs) = {vy1,va, vs,va}

DBV v
po(My_parents,v1) = {01,032}
po(My_friends,vi) = {04, 05}
po(DBV _Desc,v1) = o7
V'(01,v1) = [Name : Ben, City : Paris, Kids : {}]
V'(02,v1) = [Name : Margareth, City : Paris, Kids : {}]
V'(03,v1) is undefined
V'(04,v1) = [Name : Charles, City : Paris, Kids : {}]
V'(05,v1) = [Name : Moustapha, City : St Denis, Kids : {}]
V' (06, v1) is undefined
V'(o7,v1) = [Date : 1980, State : adolescence]
DBV vy
po(My_parents,va) = {01,042}
po(My_friends, vy) = {03, 04}
po(DBV _Desc, vq) = o7
V'(01,v2) = [Name : Ben, Clity : Marseille, Kids : {}]
V'(09,v2) = [Name : Margareth, City : Marseille, Kids : {}]
V'(03,v2) = [Name : Imen, City : Nice, Kids : {}]
V'(04,v2) = [Name : Charles, City : Paris, Kids : {}]
v'(05,v9) = [Name : Moustapha, City : St Denis, Kids : {}]
V' (06, v2) is undefined
V'(o7,v2) = [Date : 1990, State : university]
DBV w3
po(My_parents,vs) = {01,042}
po(My_friends, vs) = {}
po(DBV _Desc,v3) = o7
v'(01,v3) = [Name : Ben, City : Tunis, Kids : {}]
V'(02,v3) = [Name : Margareth, City : Tunis, Kids : {}]
V' (03, v3) is undefined
V'(04,v3) is undefined
V'(05,v3) = [Name : Moustapha, City : St Denis, Kids : {}]
V' (06, v3) is undefined
V'(o7,v3) = [Date : 2000, State : possible]
DBV vy



po(My_parents,vs) = {01,032}
po(My_friends, vq) = {03, 04,05}
po(DBV _Desc, va) = o7

V'(01,v4) = [Name : Ben, City : Tunis, Kids : {}]

V'(02,v4) = [Name : Margareth, City : Tunis, Kids : {}]
V'(03,va) = [Name : Imen, City : Paris, Kids : {}]

V'(04,v4) = [Name : Charles, City : LosAngeles, Kids : {o6}]
V'(05,v4) = [Name : Moustapha, City : St Denis, Kids : {}]
V'(06,v4) = [Name : David, City : LosAngeles, Kids : {}]
V'(07,v4) = [Date : 2000, State : desired)

3.4 Summary of the introduced concepts

The model presented in this section extends the one presented in [2] by the concept of a DBV. As a
consequence, (1) a new set V has been added to contain DBV identifiers, and (2) the set of relation
names has been partitioned in two disjoint subsets, one for o-relation names and the other for v-relation
names. The o-value assignment function p, has been modified to take into account the fact that an o-
relation value may change from one DBV to another. The DBV assignment function p, has been defined
for mapping v-relation names to DBV identifiers.

Two new type expressions have been added: dbv and {dbv}. The interpretation of dbv is the set of
DBYV identifiers V, and the interpretation of {dbv} is the finite powerset of V.

At the schema level, a finite set of v-relation names has been added to the schema definition used
in the monoversion database case, and the type function T has been modified to take into account this
new kind of relations. At the instance level, a DBV assignment function has been added and the value
assignment function, denoted v in the monoversion database case, has been modified to take into account
object value changements in different DBVs.

4 Query language

In this section a query language VQL based on a first order calculus is proposed. This calculus extends
the proposals of [1, 3] to DBVs.

From the language point of view, there are two main contributions of VQL: (1) specific terms to denote
the modeled universe states (DBVs), and (2) a dereferencing operation taking into account the “DBV
dimension”. The first one enables user to specify the states of the modeled universe he/she wants to query.
The standard predicates € and = are applied on terms denoting DBVs, and no restriction is placed on
the quantification on DBVs. The second one makes it possible to keep the track of an object through
DBVs (i.e. through different states of the modeled universe). A new predicate Undef () is introduced to
enable user to determine logical object versions having L as a value.

This section is organized as follows. In section 4.1, a complex value calculus integrating DBVs is
proposed followed by some examples of queries explaining the use of VQL language. In section 4.3, the
semantics of VQL queries is defined. In section 4.4, a navigation technique for multiversion databases is
proposed. In section 4.5, the use of quantifiers over DBVs is analyzed and in section 4.6, the use of L
values is described.

4.1 Calculus

Terms. There are two categories of terms: terms denoting DBVs and terms denoting o-values.

e Terms denoting DBVs (DBV terms)

1. Ry, for each R, € Rv;
2. z,, where z is a variable of type 7 € {dbv, {dbv}}.

o Terms denoting o-values (o-value terms)

1. d, for each din D;

2. R,(t), for each R, € Ro and t a DBV term of type dbv;
3. z,, where z is a variable of type 7, 7 € types(C);
4

. constructed terms such that:



— tuples [Ay : t1,..., A, 1 t,], where Ay, ..., A, are attribute names and t1,...,%, (n > 0)
are o-value terms;

— sets {t1,...,tn}, where t1,...,t, (n > 0) are o-value terms;

— projection t.A, where t is an o-value term of type tuple and A is an attribute name;

5. dereferencing (t1,t2), where t; is an o-value term denoting an oid and t; a DBV term of type
dbv.

Each variable has a type, and each value (simple or complex) belongs to the interpretation of a type
(cf. Definition 3.5). Therefore, each term has a type that can be determined easily. For example, the

type of a tuple [A1 : #1,..., An : t,], where tq,... ¢, are terms of respective types 7y,..., 7, is 7 =
[A1 i 71, ..., An s Tl
Formulas. Predicates = and € applied to terms with the proper type restrictions yield atomic

formulas: t = t', t € ¥/, with ¢t and ' terms of compatible types.

In addition, we define a new predicate Undef(). Applied to dereferencing terms, Undef(*(t1,t2)),
where t; denotes an oid o and t5 denotes a DBV v, indicates whether v/(0, v) is defined or not. The use of
this predicate is extended to o-relation terms : Undef(R,(t2)), where R, is an o-relation name, indicates
whether p,(R,,v) is defined or not. Undef(*(t1,12)) and Undef(R,(t3)) are atomic formulas.

Formulas are obtained from atomic formulas by application of the connectives A, V, =, and the
quantifiers 3 and V. If L; and L, are two formulas, then L1 A Ly, L1V Lo, Ly, are formulas. If z, is a
free variable of Li(z,), then 32, (L1(2;)) and Va,(Li(z;)) are formulas.

Queries. A query on a multiversion database can be expressed in two ways:

1. { z | ¢}, where ¢ is a formula and « the free variable of ¢;

2. { (z,y) | ¢}, where ¢ is a formula and z, y are the free variables of o,
z is of type T € types(C) and y is of type dbv.

The result of the first kind of queries is a selection of DBVs, objects or values. When DBVs are
selected, the execution of a query gives as a result a multiversion instance composed of the selected
DBVs and all the logical object versions and values they contain. When o-values (oids or values) are
selected, the output multiversion instance is composed of the selected o-values and as many DBVs as the
queried database contains.

The second kind of queries selects couples (o-value, DBV). In this case, the output multiversion
instance is composed of the selected DBVs with the selected logical object versions or values as a content.
Let (01, v1) and (02, v2) be the result of a query. The output multiversion instance is therefore composed
of two DBVs : v and vy. The only object existing in 1 is 01, and the only one existing in vy is 0s.

4.2 Examples of VQL queries
4.2.1 DBYV selection

Consider the “imaginary family” database (¢f. Example 3.1). The following query selects the DBV
representing the year 1990.

@:: {y| ye& My_DBVs A *(DBV_Desc(y), y).Date = 1990 }

The term DBV_Desc(y) denotes object o7 for each y in My_DBVs. The dereferencing of this object
* (DBV_Desc(y), y) allows the access to the value of o7 in each of My_DBVs.

Object o7 is of the tuple type, the projection on attribute Date allows to find out the corresponding
year for each DBV. Only the DBV corresponding to 1990 is selected. In the following, the selected DBV
is denoted Current_ DBYV. The expression of query ()1 in an OQL-like syntax is:

define Current_DBV as element ( SELECT vy
FROM y in My_DBVs
WHERE (DBV_Desc, y).Date = 1990 )

Here, the term DBV_Desc(y) has been simplified in DBV_Desc. This syntactic simplification is consid-
ered in the following, each time the designated o-relation does not vary from a DBV to another.



4.2.2 Object selection

Query @2 retrieves an object representing “my friend Charles” in the “past DBV”. In the following, this
object will be denoted My_ friend.

Q2: { x| =z€ My_friends(Current_DBV) A *(z, Current_DBV).Name = “Charles” }

in an OQL-like syntax:

define My_friend as element ( SELECT =
FROM z in My_friends (Current_DBV)
WHERE (z,Current_DBV) .Name = “‘Charles’ )

Remark 4.1 A selection made in a fixed DBV is equivalent to the one in a monoversion database. For
instance, if the current DBV is considered as a default DBV, query @2 can be written in OQL [4, 18] as
follows:

SELECT =
FROM z in My_friends
WHERE z.Name = ‘““‘Charles”

4.2.3 Value selection

Query Q3 retrieves the “possible” and the “desired” residence cities of “my friend Charles” in 2000.

Qs: {z| 3Ty (y€ My DBVs A *(DBV_Desc(y), y).Date=2000 A
z = *(My_friend(y), y).City ) ¥

in an OQL-like syntax:

SELECT (My_friend, y).City
FROM y in My_DBVs
WHERE (DBV_Desc, y).Date = 2000

Remark 4.2 This query can be expressed in a simpler way if we look for the residence city in the
“current DBV”: (My_friend, Current_DBV).City,or My_friend.City,if the past DBV is the one taken
by default by the system.

4.2.4 (o-value, DBV) couple selection

The purpose of the (o-value, DBV) couple selection is to allow a user to know which DBV contains which
logical object version or value selected.

The following query looks for “my friends” in different DBVs. Each retrieved object is associated with
the DBV in which it represents a “friend of mine”.

Q;: {(r,y)| y€ My_DBVs A =z € My_friends(y) A
( *(DBV_Desc(y), y).Date=1980 V
* (DBV_Desc (y), y).Date=1990 )}

in an OQL-like syntax:

SELECT (=, y)

FROM y in My_DBVs, z in My_friends(y)

WHERE (DBV_Desc, y).Date = 1980 or
(DBV_Desc, y).Date = 1990

In this example, selected couples identify logical object versions. The selection is restricted to the
DBVs of 1980 and 1990 (v1 and v3). Also, the content of these DBVs is restricted to the logical versions
of objects representing “my friends” (04 and o5 in v1 and oz, 04 in va, as presented in Figure 3).
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Figure 3: Query @4 output instance.

4.3 Semantics

The notions presented in this section are staightforward extensions of those used for the semantics of IQL
in [2]. They are slightly complicated by the use of DBVs in VQL.

For the comprehension of VQL query semantics, we need to define projections of multiversion database
schemas an instances. Let Sy, =(Ro, Rv, C, T) be a multiversion database schema.

A schema S, = (Ro', Rv', C', T') is a projection of schema S, if Ro’ C Ro, Rv' C Ry,
C’ C C and T is the mapping of T on Ro' URv' U C'.

Given a multiversion instance Iy = (po, pu, ™, V') of Spmy, its projection on S

! v denoted Iy [S)],
is defined as a mapping of p,, py, ™ and v’ on Ro’, Rv’ and C’. I, [5),,] is an instance of S/, .

A VQL query, denoted Ty (Smous Smu—ins Smu—out), is composed of formulas over a schema Sp,,. Tts
semantics is a binary relation between multiversion instances. This relation, denoted 7, , associates a
multiversion instance over the output schema Sp,y_out to each instance over the input schema Spy_in,
where Spy_in and Spy_our are two projections of Sy,,. Intuitively, Sy,,_;n contains the names of
the queried relations, the class names associated with the queried objects and the corresponding type
assoclation function, and Sy, _ou: contains the names of the retrieved relations, the class names of the
retrieved objects and the corresponding type function. The input of a query is a multiversion instance
Iimy over Spy_in, the computation of the query defines a multiversion instance J,,, over Sy,,, and the
output is Joy [Smu—out]-

Valuation. Given a multiversion instance I, = (po, pv, T, V'), the valuation of VQL queries is done
using two disjoint functions: 6, for DBV valuation, and 8, for o-value valuation.

A DBV valuation function 0, is a partial function from variables y of type 7 € {dbv, {dbv}} to VUQ}’M
such that: if 8, (y) is defined, then 6, (y) € [[7‘]] A DBYV valuation can be extended to DBV terms as

follows:
8, (RU) = v such that v = p,(Ry).

An o-value valuation function is a partial function from variables z of type 7 € types(C) to o-values
such that: if 4, (x) is defined, then 6, (r) € [[7‘]] ). An o-value valuation can be extended to o-value

™
terms as follows:

9, (d) = d:

g, (Ro(t)) = ov such that ov = p,(R,, 0, (t));

9, ({tl,...,tk}> - {0, (t1>,...,60 (tk>},

60([A1 s A :tk]) -4 :00(t1),...,Ak :60<tk)],

where k > 0;
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9, (t.A) = ov such that ov =46, (t) A,
8, ( * (tl,tz)) = ov such that ov = v/(0, (t1> .0, (t2>).

Satisfaction. Let I,,, be a multiversion instance, #, a DBV valuation that must be defined on DBV
terms 1, t2, and 0, an o-value valuation that must be defined on o-value terms #{, t5. The following rules
allow to determine whether I,,, satisfies (=) a VQL query or not.

Iy 11 €12 180, (1 )ee (t2): Ino 1L €518 0,(t4) €0, (14);
o 11001 =0 ) o bt = 4 80, (1) = 0. (1)
Iy | (11 € to) if 0, ( ) (t2>, Lo £ (8, € 1) if@o(t’l) ¢ao(tg),
I = —(ts = 11) MU( ) (tQ), I = —(th = 1)) if@o(t’1> ¢Ho(t’2>;

Iy |E Undef(*(t), 1)) if v/ (0, t’l),ﬂv (tl)) is undefined;
Lo = = Undef(t’l,tl ) if v/ 90( ) ( ) is defined:
Imy |E Undef(R,(t1)) if p(R,, U(tl is undefined;

Imy |E — Undef(R, (1)) if p(R,, 0, tl)) is defined.

In addition, let Ly, Ly be two formulas. We say that:

Iy ': Ly ANLyif I, ': Ly and I,y IZ Lo;
Iy ': LV Loyif I, ': Ly or Iy, IZ Lo;

7 € {dbv, {dbv}}, if it exists v = 0, (:L) such that I,y | L1(v) ;
z;)), T € types(C), if it exists ov = 0, (x) such that Iy, |: Li(ov) ;

)
)

z;)), 7 € {dbv,{dbv}}, if for each v = 0, (x) me = L1(v) ;
z;)), T € types(C), if for each ov = 0, J,), mv = L1(ov) ;

Iy ': —'(L1 A Ll) if Lo ': =L or Iy lZ —Lo;
Im'u ': ﬁ(L]_ V LQ) if Im'u ': _|L1 and ]mv ': _|L2;
Iy |E ~(F27(Li(27))) if Iy | Ve, (= L1(27));
Iy = = (Y2, (L1 (2:)) if Iy b= 327 (L1 (27).

4.3.1 Example of valuation

Lets consider query (s, presented in section 4.2. FI;, denotes the input instance of this query. The
computation of @) is done following the next valuation steps :

11



FlLi, EQ2if FI, =« € My_friends(Current_ DBV) and
FI;, E *(z, Current_ DBV).Name = “Charles”

i.e., if FlL, E0, ( ) ( My _friends(Current _ DBV) ) and
FL, =0, ( (z, Current_ DBV).Name ) =40, ( “Charles” )

i.e., if FL, =0, (.L’) € po( My _ friends, 0, (Current_DBV) ) and
FL, =0, (*(.’L‘ Current DBV)) .Name = “Charles”

i.e., if FL, =0, (.L’) € po( My_ friends, p, (Current  DBV) ) and
FL, Ev'(0, (x), 8, ( Current_ DBV )).Name = “Charles”

e if FL, =0, .L’) € po( My _friends, vy ) and
FIL, = V' (0, ( ) pyv(Current DBV) ).Name = “Charles”

i.e., if (1) FLin = 0, ( ) € {03,04} and

(2) FL, E V'(6, (x), vy ).Name = “Charles”

Query Q5 looks for o-values ov = 8, (1) such that conditions (1) and (2) are satisfied. Instance FI;,

satisfies v/(04, va ).Name = “Charles”, but it does not satisfy v/(03, va ).Name#“Charles”. So, o4 is the
only object retrieved by @2, i.e. 04 is the only oid occurring in @J3 output instance.

Treatment of | values. Lets imagine that object 04 does not exist in DBV wvs, i.e. it has L as a
value in DBV vy. Formally this means that v/(o4, v4) is undefined and, consequently, F'I;, doesn’t satisfy
v'(04, va ). Name = “Charles”.

4.4 Navigating through object versions

The queries described in Section 4.1 take DBVs one at a time. Thus, they are similar to a queries devoted
for monoversion databases. In some cases, the selection predicate has to be computed on several DBVs.
For example, query @5 retrieves - from among “my friends” in 1990 - those that did change their residence
between 1980 and 1990. Note that “my friends” in 1990 are different from those in 1980. Query @5 checks
for each of “my friends” in 1990 if he/she had the same residence in 1980.

Qs: { (z,y) | y€ My_DBVs A *(DBV_Desc(y), y).Date
z € My_friends (y)
dz (z € My_DBVs A  *(DBV_Desc(z), z).Date = 1980 A

—(x(xz, 2z).City = *(z, y).City) ) )

1990 A

>

in an OQL-like syntax:

SELECT  (,y)

FROM y in My_DBVs, z in My_friends(y),
z in My_DBVs

WHERE (DBV_Desc, y).Date = 1990 and (DBV_Desc, z).Date = 1980 and
(xz,y).City !'= (z,z).City

In this example, the selected objects are followed in two DBVs corresponding to 1990 and 1980. Each
queried object is first selected in the DBV of 1990, then its values in both the VBDs of 1990 and 1980
are reached by the use of the dereferencing operation. The comparison of these values makes it possible
to deduce the “evolution” of the object through these two DBVs. We assume that no changes occurred
in between 1980 and 1990, otherwise they would be represented in the database as separate DBVs.

Paths through DBVs

In a declarative language, a query states the required information and the path to reach it. In a
monoversion database, a path goes through a finite sequence of objects/values [9, 8, 17]. In a multiversion
database, a path may either be limited to one DBV only - as in the case of a monoversion database - or
it may go across DBVs (cf. Figure 4).
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Entry point

/ Required information

DBV jump

Figure 4: A path going across several DBVs.

The dereferencing operation can be used to “jump” from one logical version of an object to another
logical version of the same object, i.e. from one DBV to another. A path beginning in a DBV v; can
continue in a DBV ws, after an object dereferencing in v1. So, a user may navigate in a multiversion
database through a finite sequence of logical object versions/values, possibly contained in different DBVs.

The following example concerns paths across DBVs. We consider the “imaginary” family database
with the following schema and instance additions.

class  Person : [Name : string, City : string, Kids : { Person}, Diploma : Certificate]
class  Certificate: | Title: string, Institute : string]
type My_best_friend : Person

po(My_best_friend,v1) =
po(My_best_friend, vy) = o4
po(My_best_friend, vs) is undefined
po(My_best_friend, vs) =

035

03

V'(05,v2) = [Name : Moustapha, City: St Denis, Kids : {}, Diploma : 0g]
V'(0g,v2) = [ Title: MD 93 - Computer Science, Institute: Univ. of St Denis |
V' (09, v3) is undefined

V'(09,v4) = [ Title: MD 93 - DB and Al, Institute: Univ. of St Denis ]

The title in 2000 of the diploma obtained in 1990 by the best friend y had in 1980 is required. Query
Qe retrieves it. In this query, paths expressed by the term *(*(My_best_friend(¢), z).Diploma,
y) .Title, go through three DBVs. Each path begins at the o-relation My_best_friend in the 1980 DBV,
continues through the logical version of object o5 in the 1990 DBV, then through the logical version of
object o9 in the 1990 DBV, and ends at a logical version of object o9 in one the DBVs representing year
2000. This example shows that it is possible to select information contained in one DBV, starting from
an entry point contained in another.

Qs: { (z, y) | y€ My_DBVs A *(DBV_Desc(y), y).Date = 2000 A
dz 3t ( z € My_DBVs A  *(DBV_Desc(z), z).Date = 1990 A
t € My_DBVs A  *(DBV_Desc(t), t).Date = 1980 A

z =% (k(My_best_friend (), z).Diploma, y).Title ) }

in an OQL-like syntax:

SELECT (xz, )
FROM y in My_DBVs, z in My_DBVs, ¢ in My_DBVs
WHERE (DBV_Desc,y) .Date=2000 and

(DBV_Desc,z) .Date=1990 and

(DBV_Desc,t) .Date=1980 and

z =% (x(My_best_friend(t), z).Diploma, y).Title
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Paths expressed here go through two DBVs. Each path begins at a logical object version representing
one of “my friends” in the 1990 DBV, and ends at a logical object version representing a diploma in the
2000 DBV. This example shows that it is possible to select information contained in one DBV, starting
from an entry point contained in another.

The valuation of variable ¢, z and y gives :

8, (t) = v, 6U<z) =vy et 6U<y) € {vs, va}.

Two path expressions are valuated: (1) *(*#(My_best_friend(w;), vs).Diploma, w3).Title and
(2) *(*(My_best_friend(v1), v2).Diploma, v4).Title.

Since, 6, (*(*(My_best_friend(vl) , v3).Diploma, ’03)) 1s L, only the second path valuation re-

turns a value for z : 6, (1) —“DB et AI".

4.5 Quantifying on DBV

In VQL, the quantification on DBVs is done in the same way as on objects or values. Quantification
on DBVs is usually associated with quantification on objects and/or values. Query @7 is an example of
association in the form {...|Vz Jv...}, where = designates an o-value and v a DBV. In this association,
the value of v depends on that of x.

Query Q7 looks for “my friends” in 1990, whose all children own a PhD. Note that in each DBV only
the diplomas obtained in the year corresponding to this DBV are represented.

Q7: { (x,y)| y€ My_DBVs A *(DBV_Desc(y) ,y) .Date=1990 A
r € My_friends (y) A
VE(t € *(z, y).kids A 3z(z € My_DBVs A

*(*(t,z) .Diploma,z).Title = “PhD ) ) }

in an OQL-like syntax:
SELECT (2, y)
FROM y in My_DBVs, z in My_friends(y)
WHERE (DBV_Desc, y).Date = 1990 and
for all ¢t in (x, y).kids :
exists z in My_DBVs : ((¢,z).Diploma, z).Title="PhD”’

The PhD defense year is specific to each child. So, the DBV containing this information (PhD defense)
depends on the child.

4.6 Using L value

As mentioned in section 2, a logical version of an object o contained in a DBV v gets a special value L
to indicate that object o does not exist in DBV v. Formally, this value is {} for set valued oids and it is
undefined for non-set valued oids. Value L can be used as a selection criterion. For example, query @s
looks for the kids of “my friends” in 2000 that (the kids) are “born” after 1990, i.e. wich are represented
by objects having as a value L in the DBV of 1990 and a value different from L in one DBV of 2000.

Qs: { (z,y)| y€ My_DBVs A *(DBV_Desc(y),y).Date=2000 A
r € My_friends(y) A t€ *(z,y).Kids A
dz (z € My_DBVs A *(DBV_Desc(z),z).Date=1990 A

Undef(x(t,z)) A = (Undef(x(t,y))) )}

in an OQL-like syntax:

SELECT (=, y)

FROM y in My_DBVs, z in My_friends(y),
z in My_DBVs

WHERE (DBV_Desc, y).Date
(DBV_Desc, z).Date
t € *(r,y) .Kids and
(¢, z) = L and (¢, y) '= L

2000 and
1990 and

5 Related work

In this section the main tools and languages are analysed, which are proposed in the literature for querying
databases with versions. There are two categories of works which will be successively presented : works
based on version models, and work based on temporal models.
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5.1

Most of version models proposed so far provide manipulation primitives in order to create, read and
update object versions [7, 16, 22, 23]. However, few papers are concerned with querying databases with
versions [23, 14], and they don’t allow querying the states of the modeled universe (¢f. Table 1). The
only concept used in these works is entity (or object) versioning. The limits of these models are shown
in [12]. For application needs, in some version models the concept of a context is introduced, being as a
set of object versions [7, 22, 23], in order to make the management of current (or default) versions easier.
In [16] contexts are defined as a binding between a version of a composite object and a version of each
of its components. In both cases, such concepts of context have not been proposed as an element of a
multi-context query language.

Table 1 summarizes the previous contributions. The first column gives a paper reference. The second
column indicates whether a query language is proposed or not. The next three columns give an idea on
selection possibilities (“=” denotes unmentioned operations). The fifth column concerns keeping track of
an object through its versions, and the last column indicates whether a formal support for a language is
proposed or not.

Version approaches

Version Query Object Generic Universe object Formal
model language version objet state tracking | support
selection | selection selection
1 2 3 4 5 6 7

[7] no yes - no - no
[16] no mentioned - no mentioned no
[22] no yes - no - no
[23] yes yes yes no - no
[3] yes yes no yes limited yes
[14] yes yes - no - no
[28] yes yes - Temporal model - no
[20] yes - - Temporal model - no

Table 1: Version and temporal query tools

In contrast to previous approaches, IQL(2) [3] proposes a formal support integrating its own definition
of context and combining different features such as distributed databases, objects with several roles,
versions and views. In this model, a database is composed of objects contained in different contexts.
For instance, in a distributed database with two sites Paris and Los Angeles, each site corresponds to a
context.

Two objects contained in different contexts may represent the same entity of the modeled universe.
Thus, a context may be compared to one state of the modeled universe. IQL(2) introduces an operator
= in order to allow users to determine objects representing the same entity in different contexts. For
instance, the following query looks for the phone number in Los Angeles of an employee existing in the
Paris context, and called Mary.

SELECT E’.phone
FROM E in Emp(Paris), E’ in Emp(LA)
WHERE E = E’ and E.name = ’Mary’

Intuitively, the evaluation is the following. First the object representing employee Mary in the Paris
context is selected from the persistent root Emp(Paris). Then, the equivalent object is selected from
Emp(LA). However, if Mary is not considered as an employee in Los Angeles, the preceding query can’t
find her phone number. Moreover, if the user doesn’t know the object representing Mary in Los Angeles
is attached to which persistent root, querying Mary’s phone number will be problematic.

So, in IQL(2), to be able to keep track of an entity through different contexts, user need to know how
to access objects representing this entity in each context.

5.2 Temporal approaches

In temporal databases, data varying over time are time-stamped. Thus, implicitly, there are as many
universe states represented in the database as there are time units. The common point between temporal
languages and VQL is that they are devoted to databases representing simultaneously different states of



the modeled universe. However, temporal languages are based on temporal logic which is founded on
the semantics and the specificity of time. A lot of temporal query languages have been proposed in the
literature [26, 24, 20, 28]. Most of them are devoted to relational databases [27, 26, 24]. Those devoted to
object-oriented databases may be separated in two categories: some of them, like TOOSQL, TOSQL [19]
or TMQ [15], carry on the work done for the relational model; others, like OODAPLEX, propose new
querying facilities due to object-oriented potential.

TOOSQL

TOOSQL [20] extends SQL to temporal object-oriented databases. It supports two time dimensions, valid
time and transaction time, which appear on timestamps associated with attributes. Specific temporal
constructs are used in TOOSQL. For instance, the next query retrieves the third change of manager for
Mary and the duration over which he/she was Mary’s manager.

SELECT A.Manager.Nth(4), A.Manager.Nth(4).Duration(vt)
FROM A: ADULT
WHERE A.Name = “Nary”’

Here, the Nth(4) operation returns the 4th manager of Mary. Duration(vt) is an operation defined
on different time dimensions such as valid time (vt). In this example, it returns the length of the valid
time interval during which the 4th manager of Mary didn’t change. The FROM clause specifies that
variable A ranges over class ADULT.

Other temporal clauses are defined in TOOSQL (e.g. WHEN, TIME-SLICE, ROLLBACK TO). For instance,
the WHEN clause returns a time point or a time period over which other conditions specified in the query
must hold. The TIME-SLICE clause selects only the objects valid during the time period specified in
the clause. The ROLLBACK TO clause is used to determine the values of an object properties recorded
sometime in the past.

OODAPLEX

In OODAPLEX [28], a query is a function mapping objects to objects. For example, the nested query
name (dept (e)) returns the name of the department where employee e works. In this model, properties of
objects, relationships among objects, and operations on objects are all uniformly modeled by functions,
which are applied to objects. Time-varying properties, relationships, or behavior are modeled by functions
that return another function mapping time elements into snapshot values of the properties, as shown
below.
function salary (e: employee —
f+ ([valid_time: time, transaction_time: time] — s: money))

The following query salary(e) (1, ts) returns the employee e’s salary at time 1, as recorded by the
database at time 5.

OODAPLEX introduces quantification over time. Time is treated as a first class object, and variables
and quantifiers are allowed to range over time. For instance, the next query returns John’s salary when
he worked for the Shoes department.

for each e in Extent(employee) where name(e) = ’John’
for each t where name(dept(e)(#)) = ’Chaussures’
salary(e) (¢)
end
end

In contrast to a language such as TOOSQL, OODAPLEX proposes no special constructs. The retrieval
of temporal and non-temporal information is uniformly expressed. By allowing variables and quantifiers
to range over time, queries that require special operators, like when or shift, in other languages can be
formulated naturally.

6 Conclusion - Future work

In this paper we have proposed a query language VQL for multiversion databases, based on a sound
formalism. The DBV concept, corresponding to the modeled universe states, is integrated into both the
underlying data model (Section 3) and VQL formal support (Section 4.1). This is done in order to allow
users to query simultaneously object versions and the states of the modeled universe where these versions
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appear. The result is a straightforward language allowing users to easily formulate queries which may be
complex. An implementation of VQL on a version manager corresponding to the DBV model is under
development.

An important characteristic of VQL is its generality: no special semantics is associated with versions,
in contrast to temporal languages. For instance, in a CASE application where DBVs correspond to
software configurations, DBVs may be associated with their creator, with their owner, with valid time,
with hardware support, with software choices, etc. Thus, several version dimensions may be considered
in an application. Some of these dimensions may be ordered (e.g. time), while others may be not ordered
(e.g. hardware support). The DBV descriptor (DBV_Desc, ¢f. Example 3.1) can be used to combine
information related to different version dimensions. It is also possible to have many DBV descriptors,
each one related to a specific version dimension or combining some of them.

From the language point of view, there are two main contributions of VQL: (1) specific terms to denote
the modeled universe states (DBVs), and (2) a dereferencing operation taking into account the “DBV
dimension”. The first one permits to query the states of a modeled universe. The standard predicates €
and = are applied on terms denoting DBVs, and no restriction is placed on the quantification on DBVs.
The second one makes it possible to keep the track of an object through DBVs (i.e. through different
states of the modeled universe). A new predicate Undef (t1, ta2), where t; denotes an object and to
denotes a DBV, is introduced to enable user to determine logical object versions having a L value.

VQL will be used as a support to several current works on multiversion databases such as constraint
expression, view definition and querying in the case of a versioned schema. Constraints on a multiversion
database may be “internal” to a DBV, as they may be applied on several DBVs [10]. For example, the
fact that “my parents” are always the same, whatever is the DBV, is a constraint on several DBVs (cf.
Example 3.1). Expressing such a constraint can be naturally done in VQL.

Queries on multiversion databases can be used for view definition, as queries on monoversion databases.
A view may be used to restrict the vision of the user to some elements (DBVs, objects, logical object
versions or values) stored in the database. Tt may also be used to construct new elements, imaginary
elements [21], computed from the ones stored in the database. The output instance of query @4, described
in Section 4.2, is an example of a view restrained to the logical object versions representing “my friends”
(cf. Figure 3).

To take into account schema versioning, VQL requires extensions to the data model described in
Section 3, as well as an appropriate type checking technique.

Moreover, manipulation operations will be added to VQL, in order to develop a complete database
programming language. These operations have been presented in [11].

Finally, an implementation of the DBV model has been done on a relational system. In this case too,
a manipulation language is required, as an extension to SQL. The concepts developed in VQL will be
transposed to the relational framework.
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