
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 11, NOVEMBER 2003 1129

Creating and Encoding of Cartoons Using MPEG-4
BIFS: Methods and Results

Cyril Concolato, Jean-Claude Dufourd, and Jean-Claude Moissinac

Abstract—Our work focuses on the encoding of two–dimen-
sional (2-D) graphics animated cartoons with MPEG-4. This
stems from a need to stop encoding cartoons as videos and to start
using methods more adapted to animated 2-D vector graphics
sequences. We expected this could be an efficient coding with good
versatility for various types of terminals.

First, we present some technical specification for such cartoons.
Next, we give an overview of MPEG-4 BIFS encoding methods.
Then, we analyze how to optimize the use of these methods; some of
our proposals could be useful for 2-D graphics applications other
than animated cartoon. Last, we show some results with signifi-
cantly better encoding efficiency over simple BIFS encoding.

Index Terms—Cartoon design, efficient coding, MPEG-4 BIFS,
two–dimensional (2-D) vector graphics.

I. INTRODUCTION

T HE demand for two–dimensional (2-D) animated graphics
is growing rapidly. There is a need for low-bit-rate and

high-quality animations to be streamed over the Internet and the
need is even direr over wireless networks (e.g., GPRS, UMTS).
In particular, the need for efficient coding and streaming solu-
tions for high-quality cartoons is real. As a response for this
demand, many proprietary solutions [1] and many standards are
being developed [2], [3].

One possibility is to code a cartoon or an animation as a video,
but this solution lacks flexibility and presents some poor perfor-
mance in the tradeoff between quality and bit rate. For low bit
rates, a cartoon encoded with traditional video encoding tech-
niques will present some coding artifacts. These artifacts are
due to the use of transforms and quantization techniques that
perform badly on high-frequency regions. This is the case of the
kind of cartoons dealt with in this paper. They present a lot of
discontinuity in colors because two neighboring shapes usually
have different colors and the edge is also usually emphasized
with a dark sharp line.

2-D vector graphics encoding, however, brings a lot of flex-
ibility because an animation can be easily resized and adapted
to the capabilities of the terminal. A 2-D vector graphics ani-
mation can even be customized for the user. We will see in this
paper that vector coding is adapted to the coding of cartoons and
graphics animation.

Manuscript received November 2001; revised June 2003.
C. Concolato and J.-C. Dufourd are with the Department of Telecommunica-

tion and Electrical Engineering, Ecole Nationale Supérieure des Télécommuni-
cations (ENST) of Paris, 75013 Paris, France (e-mail: cyril.concolato@enst.fr;
Jean-Claude.Dufourd@enst.fr).

J.-C. Moissinac is with the Department of Computer Science and Networking,
Ecole Nationale Supérieure des Télécommunications (ENST) of Paris, 75013
Paris, France (e-mail: Jean-Claude.Moissinac@enst.fr).

Digital Object Identifier 10.1109/TCSVT.2003.817363

One candidate for the encoding of cartoons is MPEG-4.
While MPEG-2 was about the encoding of video and audio,
MPEG-4 offers some tools for the encoding of multimedia
scenes, including 2-D/three-dimensional (3-D) graphics. We
will show in this paper that MPEG-4 provides good perfor-
mance for the encoding of cartoons in terms of bit rate and
quality. Moreover, MPEG-4 is an international standard and
so this solution offers the benefits of interoperability. The
same MPEG-4 standard is also about encoding of natural
and synthetic audio and video and, therefore, enables easy
integration and synchronization of all types of media.

The remainder of this paper is organized as follows. Section II
gives an overview of the cartoon design techniques. Section III
gives an overview of the MPEG-4 BIFS standard, which is used
for the encoding of vector graphics. Section IV describes how
a mapping can be done between both sets of techniques and
gives a discussion of various optimizations. Finally, Section V
presents some experimental results.

II. OVERVIEW OF CLASSIC CARTOON DESIGNTECHNIQUES

Our work focused on the encoding of cartoons of a rather
classic kind. In this section, we describe the hypotheses made
on some features which are relevant for their efficient encoding.

Classic cartoons like the ones produced by Disney, or of
the style of Tex Avery, are generally made of a background
on which some characters move. The traditional manner of
composing pictures of such cartoons consists of drawing
the background and the characters on different transparent
celluloid sheets. Some sheets are then put on top of each other
and filmed. A cartoon character is represented on several sheets
that show different instants in time. The drawings are often
very different from one sheet to another. As a consequence, the
animation of the cartoon characters is not parametric. Further
demonstrations on this topic can be found in [4].

The drawings representing the characters are generally made
of zones of uniform colors and surrounded with a border line of
a different color. The characters are drawn separately and their
compositing is specified by the exposure sheet.

The exposure sheet describes, for each frame, the way to com-
pose the final picture. It describes the background to use and
the how the celluloid sheets should be stacked on the top of the
background. A short note indicates if an element of the previous
frame is to be reused in the next one.

From a technical perspective, this means that we can extract
the following points from the exposure sheet:

• a list of actions to perform for each frame: addition of
a new element to be displayed, removal of an element

1051-8215/03$17.00 © 2003 IEEE

1130 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 11, NOVEMBER 2003

present in the previous frame, or transformation to apply
to an element;

• A list of elements which need to be referenced more than
two times during the whole cartoon, and a list of elements
which will be referenced only twice (display and removal).

From the features of the classic cartoons that we have exposed
in this section, we propose to study how they can be encoded
using MPEG-4 BIFS.

III. OVERVIEW OF THE MPEG-4 BIFS STANDARD

In this section, we first present the MPEG-4 BIFS standard,
followed by a description of the different encoding techniques
offered by this standard used in this paper.

A. BIFS and VRML

MPEG-4 is an international standard defined by ISO/IEC for
the encoding of interactive audio–visual scenes [3]. It defines
the coded representation of audio–visual content [5], [6] as well
as the coded representation of the spatio-temporal positioning
of the audio–visual objects and their behavior in response to
interaction. This latter representation is called Binary Format
for Scenes (BIFS) and specified in Part 1 of the standard [7],
[11], [12].

The structure of a BIFS scene has been mostly inherited from
the VRML 2.0 (Virtual Reality Modeling Language) standard,
which is also an ISO/IEC standard [8]. An MPEG-4 scene con-
sists of a tree made of nodes of different types: time-dependent
media (audio, video, BIFS), static media (still pictures, 2-D or
3-D graphics, grouping or transforming nodes) and events gen-
erator (interpolators or sensors). Each node has a set of param-
eters, called fields, whose values can be modified dynamically
or interactively to change the behavior of the node.

A BIFS scene or a VRML scene may contain a large amount
of nodes. Therefore, to reduce redundancy of nodes, VRML has
defined the following mechanisms: the DEF/USE commands
and the PROTO concept. The DEF command allows to assign an
ID (or a name) to a pattern of nodes. While the USE command
allows to reuse this pattern elsewhere in the scene by just giving
its ID or name. The PROTO concept is more elaborate, allowing
the definition of a parametric pattern of nodes which can then
be reused with different values of the parameters. A PROTO is
defined by assigning an ID (or a name) and specifying the fields
of the particular nodes as the parameters in this pattern. It is then
instantiated as a regular node in the scene graph with the param-
eters (fields). We will see in Section IV that both mechanisms
are extensively used for efficient encoding of cartoons.

B. Improvements of BIFS Compared to VRML

Even though BIFS is based on VRML, it adds some key fea-
tures that are presented here: streamability and compression.

1) Streamability: The first feature that BIFS adds to VRML
is the ability to cut a scene description in timed pieces of scene.
Indeed, a BIFS scene can be updated at some points in time with
two different mechanisms: BIFS Commands and BIFS Anima-
tion Frames. BIFS Commands allow to do any kind of modi-
fications to the scene ranging from the update of the value of

a field to the insertion or deletion of a subtree of nodes. BIFS
animation frames are more specific to parametric animations.
They are used to regularly and continuously update the values
of some fields of type: integer, float, rotation, color, 2-D or 3-D
coordinates.

2) Compression:The second added feature of BIFS is com-
pression. While VRML is a textual format, BIFS uses a compact
binary format. A BIFS scene is coded by following a depth-first
order scan of the tree of nodes and by encoding each node
individually using a first-order contextual code. Each field of
each node is then individually encoded depending on its type:
boolean, float, integer, 2-D or 3-D coordinates, rotation, color,
string, time. In case the DEF/USE and PROTO mechanisms are
used, IDs are encoded on a different fixed number of bits.

Moreover, BIFS Commands allow to use elaborated tech-
niques to achieve even better compression: linear quantization
(LQ), predictive and arithmetic coding, and efficient float
coding for BIFS Commands; and arithmetic coding for BIFS
Animation Frames. We will see in Section IV how these
techniques match the requirements of cartoons encoding.

• BIFS Commands LQ
To perform LQ, a special node needs to be present in

the scene. This node, called QuantizationParameter node,
is signaled by its positioning to which subtree of the scene
the quantization should apply. Furthermore, the fields of
this node specify: to which type of fields the quantization
should apply; on how many bits the values of those fields
should be represented; and the maximum and minimum
values.

Moreover, LQ is performed on an update per update
basis. This means that to update a part of the scene, which
was quantized when created, if the content of the update
needs to be quantized, then aQuantizationParameternode
has to be put within the update.

The following formula describes the quantization
process and the inverse quantization process for all the
cases except for angle and rotation quantization processes
where a normalization step is needed:

LQ step (1)

inverse quantization step (2)

where represents the nonquantized value,represents
the quantized value, and respectivley represent
the minimum and maximum value thatcan take, and
represents the number of bits on which the quantized value
is represented.

• BIFS Commands Predictive and Arithmetic Coding
When encoding an array of values, one might want to

exploit the correlation between the different values. The
so-calledPredictiveMFFieldencoding, used on top of the
previous LQ step, performs a prediction step followed by
an adaptive arithmetic coding (AAC) step. This technique,
when used, adds a 1-bit flag to all the arrays of the scene

CONCOLATOet al.: CREATING AND ENCODING OF CARTOONS USING MPEG-4 BIFS 1131

TABLE I
DESCRIPTION OF THEEFFICIENT FLOAT CODING TECHNIQUE

which signals whether the array is just quantized or pre-
dicted and arithmetically coded. Since this technique de-
pends on the presence of aQuantizationParameternode,
it also work on a per-update basis.

• BIFS Commands Efficient Float Coding
Default BIFS encoding of floating-point values uses

IEEE 754 32-bits format [9]. It is obvious that, in some
cases, these 32 bits are not needed. Therefore, BIFS de-
fines a variable length encoding for floats as follows.

After decoding the values of the parameters, ,
, , , and according to Table I, the

float value is then reconstructed as follows:

(3)

Use of Efficient Float Coding is signaled through the
useEfficientCodingfield of aQuantizationParameternode
and apply to a subtree of the scene as for the LQ. Again,
the scope of this technique is an update.

IV. CARTOON ENCODING OPTIMIZATIONS

In Section IV-A, we first presented the type of cartoon we are
interested in representing using MPEG-4 and the features of a
BIFS scene for these cartoons. In Section IV-B, we discussed
why some encoding techniques, presented in Section III, are
applicable to the efficient encoding of these scenes.

A. Working Assumptions

From now on, we assume that the cartoons to be represented
are of a rather classical kind, as described in Section II: 2-D
drawings accumulated on a background, made of uniform colors
generally surrounded with a border line of a different color. In
the cartoons described in this paper, all the elements are either
polygons filled with a uniform color and surrounded with an
other color or polylines drawn with a uniform color. Hence, the
major part of the description of these elements is a list of 2-D
coordinates.

The BIFS nodes that are used are the following:

• OrderedGroup: to create a layered scene;
• Background2D: to set the background properties like the

color or the texture;
• Transform2D: to translate, re-scale, and/or rotate some

part of the scene;

• QuantizationParameter: to apply LQ (see Sec-
tion III-B.2);

• Shape: to signal a graphical primitive;
• Appearance: to describe the appearance of a shape;
• Material2D: to describe the color, the fill of the shape;
• LineProperties: to describe the width and color of the

border of a shape;
• Coordinate2D: to list the coordinates of the points com-

posing the shape;
• IndexedFaceSet2D: to signal that the shape is a face de-

limited by some points referenced directly or by the use
of indexes;

• IndexedLineSet2D: to signal that the shape is a line de-
scribed by some points referenced directly or by the use
of indexes.

As described in Section III-B.1, BIFS offers two kinds of
streams: BIFS Command and BIFS Animation Frame. As we
have seen in Section II, classic cartoons cannot be represented
using parametric animations, therefore the BIFS Animation
Frame technique appeared not to be relevant. Therefore,
this paper shows one representation of the described type of
cartoons using only BIFS Commands. The initial BIFS scene is
composed of a background on top of which are several layers.
At regular intervals in time, depending on the frame rate, new
Shape, Appearanceand/orLinePropertiesnodes are placed in
the appropriate layer.

If a Shape, Appearance, or LinePropertiesnode is to be
reused somewhere else in the scene or at a different point in
time, the node is given an ID (see Section III-A) and placed
in the lists ofShape, Appearanceand LinePropertiesnodes.
These lists are present in the scene but not displayed. When a
node of a list needs to be displayed, theUSEcommand with its
ID is then inserted in the appropriate layer.

The target BIFS profiles for our cartoons are theAdvanced2D
scene graph profileand theAdvanced2D Graphics profile.

B. Effective Encoding

Efficient coding of the type of cartoons that we described
consist in efficiently coding both the structure of the scene and
lists of 2-D points.

1) Encoding of the Structure:As a result of the use of BIFS
commands, most of the updates consist in inserting two repeti-
tive patterns of nodes in the scene. These patterns are made of: a
Shapenode, whoseappearancefield is anAppearancenode and
whosegeometryfield is either anIndexedFaceSet2Dor Indexed-
LineSet2Dnode. In both cases, the face or line nodes contain, as
coordfield, aCoordinate2Dnode which lists, in itspoint field, a
set of 2-D coordinates. Throughout the scene, only theappear-
anceand thepoint fields change. Therefore, two PROTOs are
created, one in case ofIndexedFaceSet2Dand one in case ofIn-
dexedLineSet2D.

In both cases, the encoding of the pattern, without theAp-
pearancenode and the list of points, uses 30 bits. The definition
of the corresponding PROTO takes 81 bits to which the number
of bits to code a PROTO ID (protoIDbits) and the number of bits
to code a node ID (nodeIDbits) must be added. Then, the instan-
tiation of the PROTO, not taking into account the encoding of

1132 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 11, NOVEMBER 2003

TABLE II
MAXIMUM LENGTH (IN BITS) OF RATIONALS REPRESENTEDWITH

EFFICIENT FLOAT CODING

the Appearancenode and the list of points, consumes 14 bits
plusprotoIDbits.

So, the equation is simple, PROTOs are worth using when

where is the number of repetitions of the structure in the
scene. Since we need only two different PROTOs,protoIDbits
equals to 1. This leads to a minimum number of occurrence of
the same structure of . Finally,
with the assumption thatnodeIDBitswill be less than 14, which
allows for assigning IDs to nodes, PROTOs are useful for
this structure if the structure is repeated more than seven times
and the gain is then of 15 bits per repetition. In case the structure
represents a polygon, this means particularly that the PROTO
tool is worth being used when the scene contains more than
seven polygons.

Rule 0: Use PROTO when the number of repetitions of the
structure is more than the appropriate .

2) Encoding of a List of Coordinates:In this section, we
present and explain the rationales for the encoding tools that we
used for encoding lists of coordinates. We also expose a list of
rules to code cartoons but some of the rules can apply to other
scenarios (3-D model coding, other 2-D graphic scenes). As all
the techniques that we presented previously work on an update
basis and as in our scenario each frame corresponds to an update,
all the rules that we will expose are scoped by a frame.

• Efficient Float Coding
To evaluate the efficiency of this encoding tool, we an-

alyze the results given when encoding the floats whose
integer part is comprised between 0 and and whose
fractional part is a multiple of . This range of floats
seems to be relevant because the coordinates of the points
are often given with a precision of th of pixels by 2-D
graphics software. Hence, the float 998,25 would corre-
spond to and .

Table II represents the maximum number of bits needed
to code a float with respect to and . Table III shows
the average numbers of bits to code a float with respect to

and .
As we can see, the Efficient Float Coding tool is a

simple compression tool which allows for reducing the
number of bits needed to code a float. Since a cartoon
scene contains a lot of floats (2-D coordinates), and since
the cost in bits to signal the use of this encoding is limited
(16 bits per frame), we can infer the following rule for car-
toons encoding.

TABLE III
AVERAGE LENGTH (IN BITS) OF RATIONALS REPRESENTEDWITH

EFFICIENT FLOAT CODING

Rule 1: For each frame, always set the Efficient Coding
flag.

A first direct consequence of this rule is that all the
floats of the scene will need less bits to be coded, though
this compression is not the best one as we will see. A
second consequence, less trivial, is that the additional
QuantizationParameternodes will cost less, as we will
see in the next paragraph.

• LQ
When encoding 2-D coordinates theQuantizationParam-
eternode presented in Section III-B.2) is restricted to the
following fields:

• position2Dmin: a pair of floats for the minimum
values for the and coordinate;

• position2Dmax: a pair of floats for the maximum
values for the and coordinate;

• position2Dquant: a flag which activates the quanti-
zation for the subtree;

• position2DnbBits: an integer which specifies the
number of bits on which each 2-D coordinate will
be represented.

This raw encoding of such aQuantizationParameternode
uses 198 bits. If this node is put in the scope of theQuan-
tizationParameternode as recommended byRule 1, then
the same structure uses less than 171 bits.

Indeed, under these conditions, sinceposition2DnbBits
ranges between 0–31, it is by default quantized on 5 bits
and so saves 27 bits. Moreover, this number of bits can
be reduced because the fieldsposition2Dminand posi-
tion2Dmaxcan be coded using Efficient Float Coding. For
example, if the coordinates are made of integers between
0–1024, thenposition2Dminandposition2Dmaxare also
between these bounds. So, each newQuantizationParam-
eternode will only use 85 bits.

When using LQ, not taking into account the cost in
bits of the structure, the precise number of bits to code
the same range of floats than the one used for computing
Table II follows in Table IV.

Assuming that there are more than 76 points in a frame,
the cost of the structure per float is less than 1 bit. There-
fore, LQ is always better than Efficient Float Coding.

Rule 2: For each frame, always add a secondQuanti-
zationParameternode which sets the bounding box and
coordinate precision of the frame.

A consequence ofRule 2is that each point in a frame
uses a constant number of bits. Let —always 16
bits—be the cost ofQuantizationParameternode from

CONCOLATOet al.: CREATING AND ENCODING OF CARTOONS USING MPEG-4 BIFS 1133

TABLE IV
MAXIMUM LENGTH (IN BITS) OF RATIONALS REPRESENTEDUSING

LINEAR QUANTIZATION

Rule 1; let be the cost ofQuantizationParameter
node fromRule 2; let be the number of points in the
frame, then the cost of each point in the scope of these
QuantizationParameternodes is

(4)

In order to evaluate the additional gain that a newQuan-
tizationParameternode would bring, we now assume that
we introduce a new node to quantize a part of the picture.

Let be the cost of thisQuantizationParameternode;
let be the number of points in this part of the frame,
and be the difference between theposition2DnbBits
fields of the 2 nodes. So, the additional cost for each point
is and the additional gain for each point is

(5)

Equation (5) shows the conditions under which this new
QuantizationParameternode brings additional encoding
efficiency and gives the following new rule.

Rule 3: Depending on , if (5) is satisfied, add the
corresponding newQuantizationParameternode.

• Indexation of Points
The reuse of some points of an array is not a simple

problem. The major part of the points that are reused con-
sists in the portions of borders that are shared by neigh-
boring shapes. To be indexed, these points need to be
gathered within the same array. To form a shape (line or
polygon), all the points of a shape need to be in the same
array. So, this array will contain all the points of both
shapes. Gradually, almost all the points of a layer of an-
imation would be gathered in the same array.

A shape defined withIndexedFaceSet2Dor IndexedLi-
neSet2Dis a face or a line delimited by some points refer-
enced directly or by the use of indexes. A direct definition
uses a table of points. An indexed definition uses a table
of indexes on a previously defined table of points. If the
same table of points is used by several shapes, we have to
evaluate the cost of the indexed definition in regard to the
direct definition.

Let be the average reuse of points. 0 means the points
are used only once on the average, 1 means the points
are used twice, etc. Let be the cost of each point [see
(4)]. Let be the cost of each index. This latter cost is the
sum of the encoding of the index itself plus the cost of the

Fig. 1. Block diagram ofPrectiveMFFieldcoding.

structure that contains this index divided by the number of
indexes in this structure.

The cost of a direct definition of a list of points is
. The cost of an indexed definition of this

list is .
Equation (6) shows the conditions under which this in-

dexed encoding is more compact than the direct encoding

(6)

Equation (6) could be useful in the following form:
.

For a known and a computed , we obtain an upper
bound for the index size, and so, an upper bound for the
number of points in the array of indexesor in the form:

.
For a known and a known number of points, we obtain

an lower bound for the average reuse of points.
These formulas could help in implementing an opti-

mized encoder which chooses on the fly between direct
or indexed encoding by following the next rule.

Rule 4:Depending on and , use indexing of points
when the conditions of (6) are met.

• PredictiveMFFieldcoding
As seen in Fig. 1,PredictiveMFFieldcoding applied

on an array of points is divided into three steps: LQ, pre-
diction on the quantized values, and adaptive arithmetic
coding on the differences. If the LQ represents a coordi-
nate onposition2DnbBits, this means that the range of a
quantized coordinate is

and so the range of a differencebetween coordinates is

which need to be represented withposition2DnbBits.
To initialize the model for AAC, the maximum number

of bits for the codes is computed as follows:

So, we obtain thatcompNbBitshas an upper bound
which is position2DnbBits. After AAC, each value is
represented with a variable length code (VLC) whose
length follows:

So, depending on the statistics of the points, thePredic-
tiveMFFieldcoding could achieve worse results than the

1134 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 13, NO. 11, NOVEMBER 2003

TABLE V
STATISTICS OF THEDIFFERENTSEQUENCES

TABLE VI
STATISTICS ON THENUMBER OF REUSES

LQ alone. This latter point will be investigated in future
work in order to extract a new rule.

V. RESULTS

In this section, we present the results of the encoding of five
relevant sequences. The BIFS encoder we use, mp4tool, has
been developed by our team [10]. In Section V-A, we present
the different sequences, why they are relevant, and what their
statistics are. InSection V-B, we show a synthesis of the use of
some of the encoding techniques exposed previously.

A. Test Set

The following five sequences were used.

• Sequence1: This sequence represents a character moving
toward the viewer while a background, made of the
ground, a tree, and a small house, moves backward. This
sequence is the more visually complex.

• Sequence2: This sequences shows a rhinoceros running on
a white background. This sequence is quite small in terms
of number of frames because it is a cycle.

• Sequence3: This sequence shows a forward zoom onSu-
perman. It is interesting because of the camera motion.

• Sequence4: This sequence is the longest one. It shows a
whole story with three characters.

• Sequence5: This sequence shows a rather simple scene
with two characters rapidly moving on a gray background.

All the scenes are of width 768 pixels and of height 576 pixels
which corresponds to the quality of the PAL television system
with square pixels. The different statistics of the sequences are
given in Tables V and VI.

B. Synthesis of the Different Results

The important result to point out is the significant reduction
of the file sizes thanks to the different optimizations that were
proposed. The ratio between the raw encoding and the optimized
encoding is 2.85, as shown in Table VII. Actually, the file sizes

TABLE VII
SIZES AND BIT RATES FORDIFFERENTENCODING

for the optimized versions of the sequences range from between
10% to 30% above the corresponding Flash [1] file sizes. How-
ever, it has to be noted that the Flash files do not come from
the same source of cartoons. In particular, the number of points
is not exactly the same. Therefore, the comparison is not really
fair and is just given here for informative purposes.

Some of the above analyses also show that BIFS encoding
can still be improved in order to achieve even better efficiency
on such a promising domain as cartoons.

VI. CONCLUSION

We presented the encoding methods for 2-D scenes offered by
MPEG-4 BIFS. We applied these methods to cartoons and we
saw which techniques allow us to optimize such an encoding.
As a result, the size in bits of the sequences is divided by three
in comparison to a naïve MPEG-4 encoding. These techniques
maintain the structure of the sequences.

These techniques can be applied to scene types other than
cartoons, provided that the coordinates contribute the most to
the encoded scene size.

Future extensions of this work will be on the streamability of
such sequences, on the coding and decoding complexity. Indeed,
the decoding of a video sequence is independent from its content
while the decoding of a BIFS sequence is strongly dependent
on the content. So, it is necessary to have a method to estimate
usability of BIFS for a given sequence and a given player. Be-
yond various complementary optimizations that we want to val-
idate, we think that some additions to the standard would allow
a significant increase in coding efficiency, in particular, when
the target relates to very low bit rates; we thus hope to specify
and to propose these extensions as future MPEG amendments.

Future work will also include the study and implementation
of transcoders from popular vector graphics formats, whether
open standard like SVG or proprietary, to MPEG-4 BIFS.

REFERENCES

[1] Macromedia Flash. [Online]. Available: http://www.macromedia.com
[2] (2001, Sept.) W3C Recommendation, Scalable Vector Graphics 1.0

Specification. [Online]. Available: http://www.w3.org/TR/SVG
[3] (2001, Mar.) Overview of the MPEG-4 Standard,

ISO/IEC JTC1/SC29/WG11 N4030. [Online]. Available:
http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm

[4] P. Blair,Cartoon Animation. Tustin, CA: Walter Foster, 1994.
[5] Coding of Audio-Visual Objects—Part 2: Visual, ISO/IEC 14 496-2,

2000.
[6] Coding of Audio-Visual Objects—Part 3: Audio, ISO/IEC 14 496-3,

2000.
[7] Coding of Audio-Visual Objects—Part 1: Systems, ISO/IEC 14 496-1,

2000.
[8] Computer Graphics and Image Processing—Part 1: Functional Specifi-

cation and UTF-8 Encoding, ISO/IEC 14 772-1, 1997.

CONCOLATOet al.: CREATING AND ENCODING OF CARTOONS USING MPEG-4 BIFS 1135

[9] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE 754-
1985.

[10] PC/Windows Executable and Documentation. Mp4tool. [Online].
Available: http://www.comelec.enst.fr/~dufourd/mpeg-4/

[11] A. Puri and T. Chen, Eds.,Multimedia Systems, Standards and Net-
works. New York: Marcel Dekker, 2000.

[12] J. Signes, “Binary format for scene (BIFS): Combining MPEG-4 media
to build rich multimedia services,” inProc. Visual Communications and
Image Processing’99, 1999, pp. 1506–1517.

Cyril Concolato received the engineering degree from the Ecole Nationale
Supérieure des Télécommunications (ENST), Paris, France, in 2000. He
also studied at the Institut Eurecom, Sophia-Antipolis, France, majoring in
multimedia communications. He is currently working toward the Ph.D. degree
in computer science at ENST.

He was an Intern at the Rockwell Science Center (RSC) between Feb-
ruary–September 2000, working on MPEG-4 video coding. Since October
2000, he has been a Research Assistant at ENST, working with the MPEG-4
Tools and Services team.

Mr. Concolato has been an active participant in MPEG-4 Systems since 2001
and is the Editor of the MPEG-4 BIFS Amendment on Advanced Text and
Graphics.

Jean-Claude Dufourd received the engineering degree from the Ecole
Nationale Supérieure des Télécommunications (ENST), Paris, France, and the
Ph.D. degree in computer science from the Ecole Normale Supérieure, Paris,
France, in 1983.

He was a Research Engineer VLSI CAD at France Telecom R&D, Grenoble,
France. He then joined ENST as an Assistant Professor of Electrical Engi-
neering. He has been a Full Professor since January 2002. He has participated
in MPEG-4 since 1995, in the Systems, SNHC, and Requirements groups.

Dr. Dufourd is the Editor of the MPEG conformance and of the MPEG ref-
erence software documents (ISO/IEC 14496-4 and 14496-5). He has also been
Chairman of the MPEG Integration subgroup since October 2002.

Jean-Claude Moissinacreceived the Ph.D. degree in computer science from the
Ecole Nationale Supérieure des Mines de Saint-Etienne, Saint-Etienne, France.

He has worked for more than 20 years on innovations in computer science for
video and multimedia. He has been an Associate Professor in the in Department
of Computer Science and Networking, Ecole Nationale Supérieure des Télé-
communications (ENST), Paris, France, since July 2001. He has participated in
various French national projects, with a focus on multimedia, adaptation, and
mobility.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

