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Abstract

We construct the basis of a stochastic calculus for a new class of processes: filtered
Poisson processes. These processes are defined by an fBm-like stochastic integral but
a Poisson process is subsided to the Brownian motion. We use Malliavin calculus to
first construct a gradient then a divergence operator, which will play the role of an
anticipative stochastic integral. We study into details the sample-paths regularity
of this integral and give an Itô formula for Itô-like processes.
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1 Motivation

Modeling physical phenomena by stochastic processes should satisfy two constraints:
a model must capture the prominent features of the phenomenon under considera-
tion but it must also lead to tractable computations. It is thus necessary to always
enlarge our catalog of processes for which we can do some calculations. Motivated
by potential applications to mathematical finance, we are interested in stochastic
calculus, anticipative or not, with respect to a new class of processes we call filtered
Poisson processes. By filtered Poisson process (fpp for short), we mean a process
defined by:

NK
t =

∫ t

0

∫
Rd

zK(t, s)ω(ds, dz), (1)
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where ω is a marked Poisson measure, i.e., with a deterministic compensator (or
dual predictable projection) ν and K a deterministic kernel. When K is of the
form K(t, s) = k(t − s), NK is a so-called Shot-Noise process. Such processes pro-
vide reasonable models for many phenomena in electronics, hydrology, climatology,
telecommunications (see [1], [2], [3] and references therein), insurance (see [4] and
references therein) and finance (see [5] and [6] for a review on this topic).

These processes are intimately related to pure jump Lévy processes. Pure jump
Lévy processes have the representation

Nt =
∫ t

0

∫
R

z(ω(ds, dz)− ν(ds, dz)),

where ν is the compensator of ω and is assumed to be deterministic. Taking K(t, s) =
1[0,t](s) and d = 1, a pure jump Lévy process thus appears to be a filtered Poisson
process plus a deterministic process. When it comes to stochastic calculus, determin-
istic processes are in some sense negligeable, thus what follows can also be applied
to pure jump Lévy processes.

If K, in (1), is smooth enough, NK is a semi-martingale so that stochastic calculus
with respect to this process can be done inside the classical framework. We want
here to construct the tools required to handle the situation of a somehow singular
kernel K and the tools required for anticipative calculus. This means that we want
to develop a Malliavin calculus for our new class of processes. Such a problem has
already been considered in several publications: a first track consists of using chaotic
decomposition as in [7,8] and more recently by [9–11] for pure jump Lévy processes.
Developing and using Hida calculus for pure jump Lévy processes, Di Nunno et al.
[10] constructed an anticipative integral and established, among other results, an
anticipative Itô formula.

As usual when it comes to Malliavin calculus for jump processes, we can choose
another approach and introduce a different gradient operator via a sample-path
perturbation (see [12,8,13]). That is the way we proceded here. Still, it must be
noted that our definition of the gradient does not coincide with the definition given
in [12] or [8]. Actually, our goal is to define a gradient such that its adjoint restricted
to predictable processes coincides with the Lebesgue-Stieltjes integral with respect
to ω − ν. For, we have to “twist” the perturbation in the definition of DF (h), see
(2), otherwise we would have additional terms as in [12, Formula 3.11]. The paper is
organized as follows. In Section 2, we construct the basis of the Malliavin calculus for
marked point processes. The material here is mainly excerpted of [13] though we can
establish more properties because of the specific form of the compensator. Once this
is done, we develop the stochastic calculus with respect to NK in Section 3. Since
NK may have finite variation, we take care to compare Lebesgue-Stieltjes integral
with our newly constructed integral. As Theorem 19 shows, they do not coincide.
Nevertheless, the divergence is an interesting tool because it is the convenient one to
establish the Itô formula by which we conclude this paper. The necessary material
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about deterministic fractional calculus is recalled in the Appendix.

2 Stochastic Calculus for Marked Point Processes

2.1 Introduction

The space of simple, locally finite on [0, T ] × Rd (T deterministic finite or not)
integer-valued measure is denoted by Ω. Assume that we are given a probability
measure η on Rd and a positive, square integrable function, λ, on [0, T ] (λ will both
denote the function s → λ(s) and the measure λ of density λ with respect to the
Lebesgue measure) such that m := infs∈[0,T ] λ(s) > 0. We define the probability P
as the unique measure on Ω such that the canonical measure ω is a Poisson random
measure of compensator ν(ds, dz) := λ(s) ds η(dz). The canonical filtration F is
defined by :

F0 = {∅, Ω} and Ft = σ
{∫ s

0

∫
B

ω(ds, dz), s ≤ t, B ∈ B(Rd)
}

.

The predictable σ-algebra on Ω × R+ × Rd is denoted by P . We denote by Tn the
n-th jump time and by Zn the n-th mark, this means that

ω(ds, dz) =
∑
n≥1

δTn,Zn(s, z).

The mark point process N is defined by

Nt =
∑

n∈N∗∗
ZnI[Tn≤t].

Following [14], we introduce the following notations: For every measurable and
locally bounded or non-negative process f ,

(f ∗ µ)t(ω) :=
∫ t

0

∫
Rd

f(s, z)(ω)µ(ω, ds, dz)

=
∑
n≥1

f(Tn(ω), Zn(ω))I[Tn(ω)≤t].

The process N is of finite variation on every compact of time. Thus, for every
measurable and locally bounded or non-negative process X the process defined by :

(X
(SL)
∗ N)t(ω) :=

∫ t

0
Xs(ω)dNs(ω)

exists for a.e. ω ∈ Ω and t ∈ R+ in Stieltjès-Lebesgue way and we have :

(X
(SL)
∗ N)t(ω) =

∑
n≥1

Zn(ω)XTn(ω)(ω)I[Tn(ω)≤t].
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We recall here the main results of [13].

Definition 1 A functional is said to be cylindric whenever it is of the form

F = f
(∫ T

0

∫
Rd

f1(s)g1(z)ω(ds, dz), . . . ,
∫ T

0

∫
Rd

fn(s)gn(z)ω(ds, dz)
)
,

where f is a bounded twice differentiable function with bounded derivatives, figi ∈
L2(ν) fi is continuously differentiable with bounded derivatives for all i = 1 . . . n.
We denote by S the set of cylindric functionals.

Definition 2 For any functionals F ∈ S and any h ∈ L2(ν), we define DF (h) by

DF (h) =

−
n∑

i=1

∂f

∂xi

(∫ T

0

∫
Rd

f1(s)g1(z)ω(ds, dz), . . . ,
∫ T

0

∫
Rd

fn(s)gn(z)ω(ds, dz)
)

.
∫ T

0

∫
Rd

f ′i(s)gi(z)
(

1

λ(s)

∫ s

0
h(r, z)λ(r) dr

)
ω(ds, dz). (2)

The main properties of DF (h) are summarized in the following theorem:

Theorem 1

(1) D is a derivation : for F, G ∈ S, and h ∈ L2(ν),

DFG(h) = FDG(h) + GDF (h).

(2) D satisifies the following integration by parts formula :

E [DF (h)] = E
[
F.(h

(SI)
∗ (ω − ν))T

]
. (3)

The particular hypothesis we have here, enables us to simplify the theory developed
in [13].

Theorem 2 For all F ∈ S there exists a constant c > 0 such that, for any h ∈
L2(ν), we have:

E
[
|DF (h)|2

]
≤ c||h||2L2(ν).

In what follows, c denote any irrelevant constant and may vary from line to line.

Proof. Using the boundedness of the functions fi, f ′i and gi there exists a constant
c such that:

E
[
|DF (h)|2

]
≤ c E

∣∣∣∣∣
∫ T

0

∫
Rd

1

λ(s)

∫ s

0
h(r, z)λ(r) dr ω(ds, dz)

∣∣∣∣∣
2
 .
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Since λ is lower-bounded by m > 0, we have:

E
[
|DF (h)|2

]
≤ c E

∫ T

0

∫
Rd

[∫ s

0
h(r, z)λ(r)dr

]
ω(ds, dz)

∣∣∣∣∣
2
 .

Moreover, using Cauchy-Schwarz inequality,

E

∣∣∣∣∣
∫ T

0

∫
Rd

h(s, z) ω(ds, dz)

∣∣∣∣∣
2


≤ 2E

∣∣∣∣∣
∫ T

0

∫
Rd

h(s, z) (ω − ν)(ds, dz)

∣∣∣∣∣
2
+ 2

∣∣∣∣∣
∫ T

0

∫
Rd

h(s, z) ν(ds, dz)

∣∣∣∣∣
2

≤ 2E
[∫ T

0

∫
Rd

h(s, z)2 (ω − ν)(ds, dz)

]
E
[∫ T

0

∫
Rd

(ω − ν)(ds, dz)

]

+ 2
∫ T

0

∫
Rd

h(s, z)2 ν(ds, dz)

≤ 2E
[∫ T

0

∫
Rd

h(s, z)2 ν(ds, dz)

]
.ν([0, T ]× E) + 2

∫ T

0

∫
Rd

h(s, z)2 ν(ds, dz)

≤ 2
(
1 + ν([0, T ]× Rd)

) ∫ T

0

∫
Rd

h(s, z)2 ν(ds, dz).

We thus get the following relation:

E
[
|DF (h)|2

]
≤ c

∫ T

0

∫
Rd

[∫ s

0
h(r, z)λ(r)dr

]2
ν(ds, dz). (4)

Using the special form of the measure ν, we can write:∫ T

0

∫
Rd

[∫ s

0
h(r, z)λ(r)dr

]2
λ(s) η(dz)ds

≤
∫ T

0

∫
Rd

(∫ s

0
h2(r, z)λ(r)dr

)(∫ s

0
λ2(r)dr

)
λ(s) η(dz)ds

≤
∫ T

0

∫
Rd

(∫ T

0
h2(r, z)λ(r)dr

)(∫ T

0
λ2(r)dr

)
λ(s) η(dz)ds

≤||λ||22 ||λ||1
∫ T

0

∫
Rd

h2(r, z)λ(r)dr η(dz).

From that and from relation (4), we infer that

E
[
|DF (h)|2

]
≤ c

∫ T

0

∫
Rd

h2(r, z)λ(r)dr η(dz).

The proof is thus complete.

Theorem 3 For any F ∈ S, there exists ∇F ∈ L2([0, T ]×E×Ω, ν⊗dP) measurable
with respect to the three variables such that:

DF (h) =< ∇F, h >L2(ν) for all h ∈ L2(ν)
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Proof. Let F ∈ S be fixed. Consider the application:

φF : L2(ν)⊗ L2(Ω) → R

h⊗G → E [GDF (h)] .

It is clearly linear, let us show its continuity. One considers the projective tensor
product (see Köthe [15] section 41 for details) equipped with the following semi-
norm :

||z|| = inf
n∑

i=1

||hi||L2(ν)||Gi||2

where the ’inf’ is taken over all the possible decompositions of z in the form z =∑n
i=1 hi ⊗Gi. It is then sufficient to show the existence of a constant c such that:

|φF (
n∑

i=1

hi ⊗Gi)| ≤ c||
n∑

i=1

hi ⊗Gi||. (5)

According to Hölder inequality and to the previous theorem, we have

|φF (
n∑

i=1

hi ⊗Gi)| ≤
n∑

i=1

|E [GiDF (hi)] |

≤
n∑

i=1

||G||2||DF (h)||2

≤ c
n∑

i=1

||G||2||h||L2(ν)

≤ c||
n∑

i=1

hi ⊗Gi||.

Thus, φF is a continuous linear form. Using the identification of tensor product of
L2 type spaces:

L2(Ω× [0, T ]× Rd; dP⊗ v) ∼ L2(ν)⊗ L2(Ω),

we can invoke the Riesz representation theorem which ensures the existence of a
measurable random variable ∇F ∈ L2([0, T ]× Rd × Ω, ν ⊗ dP) such that:

φF (G⊗ h) =< ∇F ; G⊗ h >L2(Ω)⊗L2(ν)

= E
[
G < ∇F ; h >L2(ν)

]
= E [GDF (h)] .

The proof is thus complete.

Theorem 4 The application F → ∇F is closable in L2(P).

Proof. Let {Fn, n ≥ 1} a sequence of S such that Fn tends to 0 in L2(P) and such
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that ∇Fn tends to a limit called L. For any G ∈ S and any h ∈ L2(ν) we have :

E [< L, h > .G] = lim
n→∞

E
[
< ∇Fn, h >L2(ν) .G

]
= lim

n→∞
E
[
< ∇Fn.G, h >L2(ν)

]
= lim

n→∞
(E
[
< ∇(FnG), h >L2(ν)

]
− E

[
< ∇G.Fn, h >L2(ν)

]
)

= lim
n→∞

(E
[
< ∇(FnG), h >L2(ν)

]
− E

[
< ∇G, h >L2(ν) Fn

]
)

= lim
n→∞

(E
[
FnG.(h

(SI)
∗ (ω − ν))T

]
− E

[
< ∇G, h >L2(ν) Fn

]
)

= 0,

since Fn tends to 0 in L2(P). As S is dense in L2(P), we infer that L = 0 P-a.e..

Definition 3 On S, we introduce the norm : for any F ∈ S,

||F ||22,1 = ||F ||22 + E
[
||∇F ||2L2(ν)

]
,

and the space D2,1, the closure of S with respect to this norm.

The usual properties then follow (see [13]): for (F, G) ∈ (D2,1)
2, and φ ∈ C1

b , we
have:

∇FG = G∇F + F∇G and ∇(φ(F )) = φ′(F )∇F.

Definition 4 Let ζ be an L2(ν)-valued random variable, it is in the domain of δ
(dom(δ)) iff, there exists c such that for any F ∈ S we have :

|E [DF (ζ)] | ≤ c||F ||2

In this case, δ(ζ) is defined by:

E [Fδ(ζ)] = E [DF (ζ)] .

Proposition 1 Any element of L2(ν) belongs to dom(δ) and δ(h) = (h
(SI)
∗ (ω −

ν))T .

Proof. Since, for h ∈ L2(ν), we have:

E [DF (h)] = E
[
F.(h

(SI)
∗ (ω − ν))T

]
, (6)

it is clear that L2(ν) ⊂ dom(δ) and by identification that δ(h) = (h
(SI)
∗ (ω −

ν))T .

Theorem 5 For any a ∈ S and any h ∈ L2(ν), a.h belongs to dom(δ) and

δ(ah) = aδ(h)−Da(h) (7)
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Proof. For F ∈ S, it is easy to see, by definition of DF (h), that if a is a random
variable, we have:

DF (ah) = aDF (h).

Moreover, since S is an algebra, we get:

E [DF (ah)] = E [aDF (h)]

= E [D(aF )(h)− FD(a)(h)]

= E [Faδ(h)]− E [FD(a)(h)] .

It is then clear that:
|E [DF (aζ)] | ≤ c||F ||2,

this shows that a.h ∈ dom(δ) and that δ(ah) = aδ(h)−Da(h).

Now, we generalize the previous construction by considering L2(ν)-valued random
variable. The set of cylindrical processes S(L2(ν)) is the set of processes of the form:

Φ =
k∑

i=1

Fivi Fi ∈ S, vi ∈ L2(ν).

By definition,

DΦ(h) =
k∑

i=1

DFi(h)⊗ vi Fi ∈ S, vi ∈ L2(ν).

Proposition 2 For any Φ ∈ S(L2(ν)), ∇Φ is an Hilbert-Schmidt operator.

Proof. Note first that the map f 7→
∫ .
0 f(r)λ(r) dr is Hilbert-Schmidt from L2(ds)

into itself. Indeed, this can be written∫ T

0
1[0,t](r)λ(r)f(r) dr,

and the kernel (t, r) 7→ 1[0,t](r)λ(r) is clearly square integrable on [0, 1]2.

Let (aj, j ≥ 1) and (bj, j ≥ 1) be CONB of respectively L2(λ) and L2(η). It is clear
that

E

 ∞∑
j,k=1

< DΦ(aj ⊗ bk); DΦ(aj ⊗ bk) >L2(ν)


≤ c E

 ∞∑
j,k=1

[∫ 1

λ(s)

∫ s

0
aj(r)bk(z)λ(r) dr ω(ds, dz)

]2


≤ c E

 ∞∑
j=1

∫ (∫ s

0
aj(r)λ(r) dr

)2

ds

 ,

and the result follows.
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To motivate the following, recall that in the Brownian setting, it is well known that

E
[
δ(u)2

]
= E

[
‖u‖2

]
+ E [trace(∇u ◦ ∇u)] . (8)

Unfortunately, this property does not hold any longer in our situation. We want to
find its analog. On one hand, one can keep the analog of the second term of (8) but
we have to introduce an operator Γ such that:

E
[
δ(u)2

]
= E

[
< u, Γu >L2(ν)

]
+ E [trace(∇u ◦ ∇u)] .

This is the main result of theorem 6. On the other hand, one can keep the analog
of the first term of (8) but we have to define another gradient ∇̂ such that:

E
[
δ(u)2

]
= E

[
||u||2L2(λ)

]
+ E

[
trace(∇̂u ◦ ∇̂u)

]
.

This is the result of theorem 10, which is valid only when one does not have marks.
The gradient ∇̂ is easily linked with the covariant derivative introduced by Privault
in [16–19].

We need to introduce a few notations. Consider the following space Hν :

Hν =

{
h ∈ L2(ν) :

∂h

∂s
∈ L2(ν)

}

equipped with the following inner product:

< g, h >Hν=< g, h >L2(ν) + <
∂g

∂s
,
∂h

∂s
>L2(ν) .

Consider {εi : i ∈ N∗} a CONB of Hν . Obviously Hν ⊂ L2(ν) and define with
obvious notations S(Hν).

Proposition 3 Let us consider the following operator:

Γ : S(Hν) → L2(Ω× [0, T ]× E, dP⊗ ν)

ζ → ∑∞
i=1 < ζ, εi >Hν Γ(εi)

with Γ(εi) = ∇(δ(εi)). Then, Γ is continuous.

Proof. Let us show that for any h ∈ S(Hν),

E
[
||∇(δ(h)||2L2(ν))

]
< ∞.

9



First of all, let h ∈ Hν , we have:

||∇(δ(h))||2L2(ν) =
∞∑
i=1

< ∇(δ(h), ei >2
L2(ν)

=
∞∑
i=1

D(δ(h))(ei)
2.

But δ(h) is cylindrical, so we can write:

E
[
||∇(δ(h))||2L2(ν)

]
≤

∞∑
i=1

E

[∫ T

0

∫
Rd

∂h

∂s
(s, z)

1

λ(s)

∫ s

0
ei(r, z)λ(r)drω(ds, dz)

]2


≤
∞∑
i=1

∫ T

0

∫
Rd

[
∂h

∂s
(s, z)

1

λ(s)

∫ s

0
ei(r, z)λ(r)dr

]2

ν(ds, dz)

≤
∫ T

0

∫
Rd

[
∂h

∂s

2

(s, z)
1

λ(s)2

∞∑
i=1

< ei, I[0,T ] >2
L2(ν)

]
ν(ds, dz)

≤ 1

m2

∫ T

0

∫
Rd

∂h

∂s

2

(s, z) ||I[0,T ]||2L2(ν)ν(ds, dz)

≤ 1

m2

∫ T

0

∫
Rd

∂h

∂s

2

(s, z)ν(ds, dz)

≤ 1

m2
||∂h

∂s
||2L2(ν).

We thus have:

||δ(h)||2,1 = E
[
δ(h)2

]
+ E

[
||∇(δ(h))||2L2(ν)

]
≤ ||h||2L2(ν) +

1

m2
||∂h

∂s
||2L2(ν)

≤
(
1 ∧ 1

m2

)
||h||2Hν .

δ : Hν → D2,1 is thus continuous and ∇ : D2,1 → L2(Ω× [0, T ]× E, dP⊗ ν) is also
continuous by construction. Then,

∇ ◦ δ : Hν → L2(Ω× [0, T ]× E, dP⊗ ν)

is a linear continuous application, i.e., there exists a constant c such that, for any
h ∈ Hν :

E
[
||∇(δ(h))||2L2(ν)

]
≤ c||h||2Hν (9)

and thus for any i ∈ N∗

E
[
||∇(δ(εi))||2L2(ν)

]
≤ c. (10)

Consider now ζ ∈ S(Hν), ζ = Fh with F ∈ S (thus bounded) and h ∈ Hν . Then,
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we have:

E
[
||Γ(ζ)||2L2(ν)

]
= E

[
||
∞∑
i=1

< ζ, εi >Hν Γ(εi)||L2(ν)

]2

≤ ||F ||2∞
∞∑
i=1

< h, εi >2
Hν E

[
||Γ(εi)||L2(ν)

]2
≤ c ||F ||2∞

∞∑
i=1

< h, εi >2
Hν

≤ c ||F ||2∞ ||h||2Hν < ∞.

The proof is thus complete.

Theorem 6 (1) For any ζ ∈ S(Hν) we have:

δ(ζ) =
∞∑
i=1

[
< ζ, εi >Hν δ(εi)− << ∇.ζ, εi >Hν , εi(.) >L2(ν)

]
. (11)

(2) For ζ ∈ S(Hν) we have:

∇∗δ(ζ) =
∞∑
i=1

< ζ, εi >Hν ∇∗(δ(εi)) + δ(∇∗ζ).

∗ indicates the free variable.
(3) For any ζ ∈ S(Hν) we have:

E
[
δ(ζ)2

]
= E

[
< ζ; Γζ >L2(ν)

]
+ E [trace(∇ζ ◦ ∇ζ)] . (12)

Proof. To prove the first point, we reproduce the proof of Theorem 5. Furthermore,
by linearity and continuity of δ:

δ(ζ) =
∞∑
i=1

δ (< ζ; εi >Hν εi) .

Applying the first point of this theorem with a =< ζ; εi >Hν we get:

δ(ζ) =
∞∑
i=1

[
< ζ; εi >Hν δ(εi)− < ∇.(< ζ; εi >Hν ), εi(.) >L2(ν)

]
.

Since εi is deterministic, we can invert the inner product and the gradient and write:

< ∇.(< ζ; εi >Hν ), εi(.) >L2(ν)=<< ∇.ζ, εi >Hν , εi(.) >L2(ν),

so that the result holds.

On the one hand we know that:

δ(ζ) =
∞∑
i=1

[
< ζ, εi >Hν δ(εi)− << ∇.ζ, εi >Hν , εi(.) >L2(ν)

]
. (13)
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On the other hand:

δ(∇∗ζ) =
∞∑
i=1

[
< ∇∗ζ, εi >Hν δ(εi)− << ∇.(∇∗)ζ., εi >Hν , εi(.) >L2(ν)

]
. (14)

Applying ∇ to both sides of (13), we get:

∇∗(δ(ζ)) =
∞∑
i=1

[< ζ, εi >Hν ∇∗(δ(εi)) +∇∗(< ζ, εi >Hν )δ(εi)

−∇∗ << ∇ζ, εi >Hν , εi >L2(ν)]

=
∞∑
i=1

[
< ∇∗ζ, εi >Hν δ(εi)− < ∇∗ < ∇ζ., εi >Hν , εi(.) >L2(ν)

]
+

∞∑
i=1

< ζ, εi >Hν ∇∗(δ(εi))

=
∞∑
i=1

[
< ∇∗ζ, εi >Hν δ(εi)− << ∇∗∇ζ., εi >Hν , εi(.) >L2(ν)

]
+

∞∑
i=1

< ζ, εi >Hν ∇∗(δ(εi)).

According to (14), we get the second formula.

We are now in position to compute the second moment of δ(ζ). According to the
previous results, we have:

E
[
δ(ζ)2

]
= E [δ(ζ)δ(ζ)]

= E
[
< ζ∗,∇∗δ(ζ) >L2(ν)

]
= E

[
< ζ∗,

∞∑
i=1

< ζ, εi >Hν ∇∗(δ(εi)) >L2(ν)

]
+ E

[
< ζ∗, δ(∇∗ζ)) >L2(ν)

]
= E

[
< ζ∗, Γζ >L2(ν)

]
+ E

[
< ζ∗, δ(∇∗ζ)) >L2(ν)

]
.

Furthermore,

E
[
< ζ∗, δ(∇∗ζ)) >L2(ν)

]
= E

[∫ T

0

∫
Rd

ζs,zδ(∇s,zζ)ν(ds, dz)

]

= E
[∫ T

0

∫
Rd

∫ T

0

∫
Rd
∇u,vζs,z∇s,zζu,vν(du, dv)ν(ds, dz)

]
= E [trace(∇ζ ◦ ∇ζ)] ,

the proof is thus complete.

Consider, for Φ ∈ S(Hν) the following norm:

[
||Φ||Γ2,1

]2
=

1

2

(
E
[
||Φ||2L2(ν)

]
+ E

[
||ΓΦ||2L2(ν)

])
+ E

[
||∇Φ||2L2(ν)⊗L2(ν)

]
.
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Consider DΓ
2,1(Hν) the closure of S(Hν) with respect to this norm.

Remark 1 In the Brownian framework, Γ is equal to identity and we get the usual
norm D2,1.

Proposition 4 We have:

DΓ
2,1(Hν) ⊂ dom(δ).

Proof. Consider ζ ∈ DΓ
2,1(H

ν) and {ζn : n ∈ N∗} a sequence of S(Hν) which tends
to ζ in D2,1(H

ν). For any F ∈ S, we have:

|E [DF (ζn)] | = |E [Fδ(ζn)] |
≤ ||δ(ζn)||2||F ||2
≤ ‖ζn‖Γ

2,1,

according to (12) and the result follows.

We now define the integral with respect to Ñ .

Definition 5 For any u from [0, 1] into R, we set ũ(s, z) = z.u(s). If ũ ∈ dom(δ),

we define δÑ(u) by

δÑ(u) = δ(ũ),

and λ̃ is denoting the measure:

λ̃(ds) =
∫

Rd
z2ν(ds, dz) =

∫
Rd

z2η(dz)λ(s)ds.

Note that by construction, ||u||L2(λ̃) = ||ũ||L2(ν).

Proposition 5 For any h ∈ L2(λ̃), h belongs to dom(δÑ) and

δÑ(h) = (h
(SL)
∗ Ñ)T .

Proof. Since δ coincides with the Stieltjes-Lebesgue integral with respect to (ω−ν)
for predictable processes, we have:

δÑ(u) =
∫ T

0

∫
Rd

zu(s)(ω − ν)(ds, dz) = (u
(SL)
∗ Ñ)T .

We denote by DÑ the adjoint of δÑ .

13



Proposition 6 We have

DÑF (u) = DF (ũ) for any F ∈ S.

The associated gradient is equal to:

∇ÑF =
1∫

Rd z2η(dz)

∫
Rd
∇s,zFz η(dz) for any F ∈ S.

Proof. The first point comes from the following identity:

E
[
FδÑ(u)

]
= E [Fδ(ũ)] = E [DF (ũ)] .

For any F ∈ S, we have:

DÑF (u) =
∫ T

0

∫
Rd
∇s,zF z η(dz) u(s)λ(s) ds

=
∫ T

0

1∫
Rd z2η(dz)

∫
Rd
∇s,zF z η(dz)u(s)λ̃(ds)

=< ∇ÑF, u >L2(λ̃) .

Following the same lines as above, we can introduce, on the space of cylindrical
processes, a norm ||.||Ñ2,1 and extend this space with respect to this norm to get a

space denoted by DÑ
2,1(Hλ̃). We can easily prove the next theorem.

Theorem 7 (1)

DÑ
2,1(Hλ̃) ⊂ dom(δÑ)

(2) For any a ∈ D2,1 and any ζ ∈ DÑ
2,1(Hλ̃) we have:

δÑ(aζ) = aδÑ(ζ)− < ∇Ña; ζ >L2(λ̃)

(3) For any ζ ∈ DÑ
2,1(Hλ̃) we have:

E
[
δÑ(ζ)2

]
= E

[
< ζ; ΓÑζ >L2(λ̃)

]
+ E

[
trace(∇Ñζ ◦ ∇Ñζ)

]

Thus DÑ
2,1(Hλ̃) is included in the δÑ domain. We now state the relationships between

any of the integrals previously defined.

Theorem 8 Let u ∈ D2,1(L2(ν)), then we have:

δ(u) = (u
(SI)
∗ (ω − ν))T −

∫ T

0

∫
Rd
∇s,zus,zν(ds, dz).

14



Furthermore, for u ∈ DÑ
2,1(L2(λ̃)), we have:

δÑ(u) = (u
(SL)
∗ Ñ)T −

∫ T

0
∇Ñ

s usλ̃(ds).

Proof. For the sake of clarity, we will prove only the second point. The first one is
analogous. Let u =

∑n
i=1 uiI(ti,ti+1] with ui ∈ D2,1 and let φ ∈ S. Since the Skohorod

integral and the Stieltjès-Lebesgue coincides on deterministic processes:

E
[
(u

(SL)
∗ Ñ).φ

]
= E

[
n∑

i=1

ui(I(ti,ti+1]

(SL)
∗ Ñ)φ

]
=

n∑
i=1

E
[
δÑ
(

I(ti,ti+1]

)
uiφ

]

=
n∑

i=1

E
[
< ∇Ñ [uiφ]; I(ti,ti+1]) >L2(λ̃)

]
=

n∑
i=1

E
[
< φ∇Ñui; I(ti,ti+1] >L2(λ̃)

]
+

n∑
i=1

E
[
< ui∇Ñφ; I(ti,ti+1] >L2(λ̃)

]
= A1 + A2.

Moreover,

A1 = E
[
φ
∫ T

0
∇Ñ

s (
n∑

i=1

uiI(ti,ti+1](s))λ̃(ds)

]
= E

[
φ
∫ T

0
∇Ñ

s usλ̃(ds)

]
,

and

A2 = E

〈∇Ñφ;
n∑

i=1

uiI(ti,ti+1]

〉
L2(λ̃)

 = E
[
φ δÑ

(
n∑

i=1

uiI(ti,ti+1])

)]
.

The equality is true for any φ, so, the result is established for processes of the form
u =

∑n
i=1 uiI(ti,ti+1]. The general result follows by a limit procedure.

Note that ∇Ñ
s us is equal to 0 dP⊗ λ̃(ds) a.s. for u predictable and in D2,1(L2(ν)),

it is then straightforward that

Theorem 9 The integrals δ and
(SI)
∗ coincide for predictable processes and the

integrals δÑ ,
(SL)
∗ and

(SI)
∗ coincide for predictable processes.

2.2 Covariant derivative and Weitzenböck formula

Consider the space

Hλ∗ =
{
h ∈ L2(λ) : h′ ∈ L2(λ), h(T ) = 0

}
,

where h′ denotes the time derivative of h, equipped with the scalar product

< g, h >Hλ∗=< g, h >L2(λ) + < g′, h′ >L2(λ) .

15



Introduce the following operators:

I1 : L2 → Hλ∗

u 7→ (t 7→
∫ t
0 u(s) ds)

and
I−1 : Hλ∗ → L2

u 7→ u′.

Definition 6 For (u, v) ∈ Hλ∗, we define:

∇̃u(v) = − 1

λ
I−1[v]I1[λu]. (15)

We can write
∇̃u(v) =< ∇̃.(v), u(.) >L2(λ)

where

∇̃s(v) : (t) → ∇̃s(v)(t) = − 1

λ(t)
I−1[v](t)I[0,t](s). (16)

Proposition 7 Let (u, v) ∈ [Hλ∗]
2
. We have:

D(δ(v))(u) = δ(∇̃u(v))+ < u, v >L2(λ) (17)

Proof. Consider qu : s → 1

λ(s)

∫ s
0 u(r) λ(r) dr. We have v′qu = −∇̃u(v) and by the

very definition of D:

D(δ(v))(u) =
∫ T

0
∇̃u(v)(s)ω(ds)

= (∇̃u(v)
(SI)
∗ (ω − λ))T −

∫ T

0
v′(s)qu(s)λ(s)ds

= δ(∇̃u(v))−
(

[v(s)qu(s)λ(s)]T0 −
∫ T

0
v(s)[quλ]′(s)ds

)
= δ(∇̃u(v))+ < u, v >L2(λ) .

Proposition 8 Consider now F ∈ S and (u, v) ∈ [Hλ∗]
2
. We have:

D(DF (u))(v)−D(DF (v))(u) = DF (∇̃v(u)− ∇̃u(v)).

The proof rests on the following lemma.

Lemma 1 Let (u, v) ∈ [Hλ∗]
2
, then

I−1[qu]qv − I−1[qv]qu = qw, (18)

with

w =
1

λ

(
I1[λv]I−1[u]− I1[λu]I−1[v]

)
= ∇̃u(v)− ∇̃v(u). (19)
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Proof. On the one hand, as

I−1[qu] = −I−1[λ]

λ2
I1[λu] + u,

we have:

I−1[qu]qv − I−1[qv]qu

= −I−1[λ]

λ2
I1[λu].

1

λ
I1[λv] +

u

λ
I1[λv] +

I−1[λ]

λ2
I1[λv].

1

λ
I1[λu]− v

λ
I1[λu]

=
1

λ

(
uI1[λv]− vI1[λu].

)

On the other hand, letting g = uI1[λv]− vI1[λu] we have:

I−1[g] = I−1[u]I1[λv] + uλv − I−1[v]I1[λu]− vλu

= I−1[u]I1[λv]− I−1[v]I1[λu].

Thus I−1[g] = λw with w defined by (19). Since g(0) = 0, we can say that g = I1[λw]
and λ−1g = qw which ends the proof of the lemma.

Proof of Proposition 8. Since D is a derivation operator, it is enough to show the
results for an elementary cylindrical variable of the form F = f(

∫ T
0 f1(s)ω(ds)). We

have:

DF (u) = −f ′(
∫ T

0
f1(s)ω(ds)).

∫ T

0
f ′1(s)qu(s)ω(ds)

D(DF (u))(v) = f ′′(
∫ T

0
f1(s)ω(ds)).

∫ T

0
f ′1(s)qu(s)ω(ds).

∫ T

0
f ′1(s)qv(s)ω(ds)

+ f ′(
∫ T

0
f1(s)ω(ds)).

∫ T

0
I−1[f ′1qu](s)qv(s)ω(ds).

Thus, we have

D(DF (u))(v)−D(DF (v))(u)

= +f ′(
∫ T

0
f1(s)ω(ds)).

∫ T

0
[I−1[f ′1qu](s)qv(s)− I−1[f ′1qv](s)qu(s)]ω(ds).

Apply lemma 1, we have:

I−1[f ′1qu]qv − I−1[f ′1qv]qu = f ′′1 quqv + f ′1I
−1[qu]qv − f ′′1 qvqu − f ′1quI

−1[qv]

= f ′1q∇̃u(v)−∇̃v(u).

17



The proof is completed if we remark that :

D(DF (u))(v)−D(DF (v))(u)

= +f ′(
∫ T

0
f1(s)f2(z)ω(ds, dz)).

∫ T

0
f2(z)f ′1(s)q∇̃u(v)−∇̃v(u)(s, z) ω(ds, dz)

= −DF (∇̃u(v)− ∇̃v(u)).

Definition 7 We define the space S(Hλ∗) of cylindrical functionals of the form Fu
with F ∈ S and u ∈ Hλ∗. Consider ζ = Fu and φ = Gv in S(Hλ∗), it is possible to
extend the covariant derivative definition by:

∇̂uF (vG) = FvDG(u) + FG∇̃u(v) (20)

and to define the associated gradient still denoted by ∇̂:

s → ∇̂s(vG) = v∇sG + G∇̃s(v) (21)

with ∇ defined by the Theorem 3 and ∇̃ by the relation (16).

Proof. By definition, we have:

∇̂uF (vG) = FvDG(u) + FG∇̃u(v)

= Fv < ∇.G, u(.) >L2(λ) +FG < ∇̃.v, u(.) >L2(λ)

=< v∇.G, u(.)F >L2(λ) + < G∇̃.v, u(.)F >L2(λ)

=< v∇.G + G∇̃.v, u(.)F >L2(λ) .

The proof is thus complete.

Proposition 9 Let Φ ∈ S and (ζ, φ) ∈ [S(Hλ∗)]2. We have:

D(DΦ(ζ))(φ)−D(DΦ(φ))(ζ) = DΦ(∇̂φ(ζ)− ∇̂ζ(φ)).

Proof. We start with the left-hand-side, we can write:

D(DΦ(ζ))(φ)−D(DΦ(φ))(ζ)

= GD(FDΦ(u))(v)− FD(GDΦ(v))(u)

= GFD(DΦ(u))(v) + GDΦ(u)DF (v)− FGD(DΦ(v))(u)− FDΦ(v)DG(u)

= FG(D(DΦ(u))(v)−D(DΦ(v))(u)) + GDΦ(u)DF (v)− FDΦ(v)DG(u)

= FGDΦ(∇̃v(u)− ∇̃u(v)) + DΦ(uGDF (v))−DΦ(vFDG(u))

= DΦ(FG(∇̃v(u)− ∇̃u(v) + uGDF (v)− vFDG(u))

= DΦ(∇̂vG(uF )− ∇̂uF (vG)).

The proof is thus complete.

18



Theorem 10 Let ζ ∈ S(Hλ∗), we have:

E
[
δ(ζ)2

]
= E

[
||ζ||2L2(λ)

]
+ E

[
trace(∇̂(ζ) ◦ ∇̂(ζ))

]
.

Proof. Let φ = vG and ζ = uF in S(Hλ∗). Using integration by parts and derivation
properties of D, we have:

E [δ(ζ)δ(φ)] = E [FD(δ(Gv))(u)]

= E [FD(Gδ(v))(u)]− E [FD(DG(v))(u)]

= E [F [GD(δ(v))(u) + δ(v)DG(u)]]− E [FD(DG(v))(u)]

= E
[
FGδ(∇̃u(v))

]
+ E

[
FG < u, v >L2(λ)

]
+ E [Fδ(v)DG(u)]

− E [FD(DG(v))(u)]

= E
[
< ζ, φ >L2(λ)

]
+ E

[
D(FG)(∇̃u(v))

]
+ E [D(FDG(u))(v)]

− E [FD(DG(v))(u)]

= E
[
< ζ, φ >L2(λ)

]
+ E

[
D(FG)(∇̃u(v))

]
+ E [DG(u)DF (v)]

+ E [FD(DG(u))(v)]− E [FD(DG(v))(u)]

= E
[
< ζ, φ >L2(λ)

]
+ E

[
FDG(∇̃u(v))

]
+ E

[
GDF (∇̃u(v))

]
+ E [DG(u)DF (v)] + E

[
FDG(∇̃v(u)− ∇̃u(v))

]
= E

[
< ζ, φ >L2(λ)

]
+ E

[
GDF (∇̃u(v))

]
+ E

[
FDG(∇̃v(u))

]
+ E [DG(u)DF (v)] .

Taking φ = ζ, we get:

E
[
δ(ζ)2

]
= E

[
||ζ||L2(λ)

]
+ 2.E

[
FDF (∇̃u(u))

]
+ E

[
[DF (u)]2

]
= E

[
||ζ||L2(λ)

]
+ B.

The trace term has the following integral expression:

trace(∇̂(ζ) ◦ ∇̂(ζ)) =
∫ T

0

∫ T

0
∇̂sζ(t)∇̂tζ(s)λ(ds)λ(dt)

=
∫ T

0

∫ T

0
[u(t)∇sF + F ∇̃s(u(t))][u(s)∇tF + F ∇̃t(u(s))]λ(ds)λ(dt)

=
∫ T

0

∫ T

0
u(t)∇sFu(s)∇tFλ(ds)λ(dt)

+ 2.
∫ T

0

∫ T

0
u(t)∇sFF ∇̃t(u(s))λ(ds)λ(dt)

+
∫ T

0

∫ T

0
F ∇̃s(u(t))F ∇̃t(u(s))λ(ds)λ(dt) = B1 + B2 + B3.

Note, then, that B2 is nothing but the first term of B, B1 is the second one and B3

is equal to zero because (s, t) → ∇̃s(u(t)) ∇̃t(u(s)) is non null on a λ⊗λ negligeable
set.
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As in the previous section, we define, for φ ∈ S(Hλ∗) the following norm:[
||φ||C2,1

]2
= E

[
||φ||2L2(λ)

]
+ E

[
||∇̂φ||2L2(λ)⊗L2(λ)

]
,

and we consider DC
2,1(Hλ∗) the closure of S(Hλ∗) with respect to this norm. The same

demonstration as that of Proposition 4 implies that DC
2,1(Hλ∗) is a subset of dom(δ).

Following the ideas of Privault [18,17,19] we can introduce exterior derivative, for
φ ∈ S(Hλ∗) by:

dφ(s, t) =
1

2

(
∇̂sφ(t)− ∇̂tφ(s)

)
for all (s, t) ∈ [R+]2

and

< dφ, h1 ∧ h2 >L2(λ)∧L2(λ) =
1

2

(
< ∇̂h1φ, h2 >L2(λ) − < ∇̂h2φ, h1 >L2(λ)

)
,

thus

||dφ||L2(λ)∧L2(λ) =
1

2

∫ T

0

∫ T

0
(∇̂sφ(t)− ∇̂tφ(s))2 λ(ds) λ(dt).

We can now state a Weitzenböck type formula:

Theorem 11 Let ζ ∈ S(Hλ∗), we have:

E
[
δ(ζ)2

]
+ E

[
||dζ||2L2(λ)∧L2(λ)

]
= E

[
||ζ||2L2(λ)

]
+ E

[
||∇̂(ζ)||2L2(λ)

]
.

Proof. Follows from Theorem 10 by polarization.

3 Stochastic Calculus for Filtered Poisson Processes

3.1 Filtered Marked Poisson Processes

Let K be a deterministic kernel and define, when it exists, the following process:

NK
t =

∫ t

0
K(t, s)dNs :=

∫ t

0

∫
Rd

zK(t, s)ω(ds, dz). (22)

We call it Filtered Poisson Process and its compensated version is defined by:

ÑK
t :=

∫ t

0

∫
Rd

zK(t, s)(ω − ν)(ds, dz). (23)

If {(Tn, Zn) : n ∈ N} denote impact times and corresponding marks of N, we can
write:

NK
t =

∑
n≥1

K(t, Tn)ZnI[Tn≤t]. (24)
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Hypothesis 1 (1) The kernel (s, z) → zK(t, s) belongs to L2(ν) for any t > 0.
(2) K is triangular in the following way:

K(t, s) = 0 for all s > t > 0.

(3) K “does not explode on the diagonal”:

K(t, t) < ∞ for all t ≥ 0.

(4) For any t ≥ 0 the function:

K(t, .) : [0, t[ −→ R is càdlàg.

s −→ K(t, s)

(5) For any s ≥ 0 the function:

K(., s) : [s, T [ −→ R has bounded variations.

t −→ K(t, s)

Note that under hypothesis 1, the processes NK and ÑK are well defined, with
càdlàg sample-paths and NK has finite variation on [0, T ].

Example 1 From the expression (24), one can note that this class of processes
includes ” Shot Noise processes ”, which corresponds to a convolution kernel
K(t, s) = k(t− s).

Example 2 One can also take the kernel defining the fractional Brownian motion:
K(H). This process will be called fractional Poisson process. This process is a
fractional Lévy motion, a class of processes defined in [20]. Note that the third
point of the hypothesis 1 excludes the case of the kernel K(H) with H < 1

2
.

Example 3 One can also introduce an “Ornstein-Ulhenbeck process” by consider-
ing the kernel:

(s, t) → eα(t−s)

where α a positive constant. It will be denoted by N (OU).

The following proposition is clear.

Proposition 10 NK is not a marked point process. If K is continuous then NK has
the same jump times as N and if K is null on the diagonal and if K is continuous,
then NK is continuous.
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Theorem 12 The following results hold for any t ∈ [0, T ] and any t′ ∈ [0, T ]:

E
[
ÑK

t

]
= 0.

E
[
(ÑK

t )2
]

=
∫ t

0

∫
Rd

z2K(t, s)2ν(ds, dz) =
∫ t

0
K(t, s)2λ̃(ds).

Cov(ÑK
t ; ÑK

t′ ) :=
∫ t∧t′

0

∫
Rd

z2K(t, s)K(t′, s)ν(ds, dz)
∫ t∧t′

0
K(t, s)K(t′, s)λ̃(ds).

These formulas are known as the Campbell’s formulas. However, one can give a new
proof y using the following lemma which is a very interesting result in itself:

Lemma 2 If for any r ∈ [0, T ] we have:∫ T

0

∫
Rd

z2K2(r, s)ν(ds, dz) < ∞.

Then, for every fixed r ∈ [0, T ], the process:{
M r

t :=
∫ t

0

∫
Rd

zK(r, s)(ω − ν)(ds, dz), t ≥ 0
}

is a (Ft)-martingale with the following quadratic variation:

< M r, M r >t:=
∫ t

0

∫
Rd

z2K2(r, s)ν(ds, dz) for all t ∈ [0, T ].

Proof. A time r fixed, we are in the presence of a stochastic integral relative with
the martingale measure (ω − ν) and thus in the presence of a martingale.

Proof of Theorem 12. The first equality is the definition of Ñ . For the second one,
as M r is a (Ft)-martingale, we have:

E
[
(M r

t )2
]

= E [< M r, M r >t]

:=
∫ t

0

∫
Rd

z2K2(r, s)ν(ds, dz).

It is now enough to take r = t to get:

E
[
(M t

t )
2
]

= E
[
(NK

t )2
]

:=
∫ t

0

∫
Rd

z2K2(t, s)ν(ds, dz).

The third one follows by polarization.

Theorem 13 NK is a semi martingale but not a martingale.

Proof. It is a semi-martingale because it is a finite variation on time compact pro-
cess. It is not a martingale because it is continuous (in the case K null on the
diagonal).
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Theorem 14 For any function f locally bounded, it is possible to define, in Stieltjès-
Lebesgue way, the following processes:

{
(f

(SL)
∗ NK)t : t ∈ R+

}
.

Proof. The process NK being of finite variation. The integral is well defined in
Stieltjès-Lebesgue way.

Theorem 15 There exists an application K∗ : L2(λ̃) → L2(λ̃) linear, continuous,
satisfying K∗(I[0,t]) = K(t, .) and, for any f ∈ L2(λ̃) locally bounded,

(f
(SL)
∗ ÑK)t = (K∗(f)

(SL)
∗ Ñ)t for all t ∈ R+.

Proof. For any f ∈ L2(λ̃), we have the following relationship:

||f ||L2(dt) ≥ c ||f ||L2(λ̃). (25)

In fact, by definition we have:

λ̃(ds) =
∫

Rd
z2 η(dz)λ(s)ds,

thus using the lower-boundedness assumption on λ we can write:

∫ T

0
f 2(s)λ̃(ds) =

∫
Rd

z2 η(dz)
∫ T

0
f 2(s)λ(s)ds ≥ m

∫
Rd

z2 η(dz)
∫ T

0
f 2(s)ds

and (25) follows. Now, let us introduce the following operator K:

K : L2(λ̃) → L2(dt)

f →
∫ T
0 K(t, s)f(s)λ̃(ds)

.

It is known [21] that K is a continuous operator from L2(dt) in L2(dt), according
to (25) it is also continuous from L2(λ̃) into L2(dt). Consider now the operator:

IT
T− : L2(λ̃) → L2(dt)

f →
∫ T
. f(s)ds
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We have:

||IT
T−(f)||2L2(dt) =

∫ T

0
(
∫ T

s
f(u)du)2ds

≤
∫ T

0

∫ T

0
f 2(u) du ds

≤ c
∫ T

0
f 2(u) ˜λ(u)du

≤ c||f ||2L2(λ̃)

thus IT
T−is continuous from L2(λ̃) into L2(dt), moreover, its adjoint is given by:

I0+ : L2 → L2(λ̃)

f → 1

λ(.)

∫ .
0 f(s)ds.

In fact, we have:

< f , I0+(g) >L2(λ̃) =
∫ T

0
f(s)

1

λ̃(s)

∫ s

0
g(t)dt λ̃(s) ds

=
∫ T

0
f(s)

∫ T

0
g(t) I[0,s](t)dt ds

=
∫ T

0

∫ T

0
f(s) g(t) I[t,T ](s)dt ds

=
∫ T

0
g(t)

∫ T

t
f(s) ds dt

=< g , IT
T−(f) >L2 .

Then, we introduce for g ∈ L2(λ̃), the linear form:

θg : L2(λ̃) → R

f →
∫ T
0 g(s)K(f)(s)ds.

Using the Cauchy-Schwartz inequality and the relation (5), we have:

|
∫ T

0
g(s)K(f)(s)ds| ≤ ||g||L2(dt)||K(f)||L2(dt)

≤ c4||g||L2(dt)||f ||L2(λ̃)

≤ c||f ||L2(λ̃).

The linear application is thus continuous, so there exists a continuous operator K∗

such that:
θg =< K∗(g), f >L2(λ̃),

this means: ∫ T

0
g(s)K(f)(s)ds =

∫ T

0
K∗(g)(s)f(s)λ̃(s)ds.
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For any g ∈ L2(λ̃), using Fubini in the third equality, we get:

< K∗f , g >L2 =
∫ T

0
f(s)

∫ T

0
K(s, v) g(v) λ̃(v) dv ds

=
∫ T

0

∫ T

0
f(s) K(s, v) g(v) λ̃(v) ds dv

=
∫ T

0

[∫ T

0
f(s) K(s, v) ds

]
g(v) λ̃(v) dv.

Thus,

K∗ : L2 → L2(λ̃)

f →
∫ T
0 K(s, .)f(s)ds.

Finally, we define the operator:

K∗ : L2(λ̃) → L2(λ̃)

f → K∗ ◦ [IT
T− ]−1(f)

.

K∗ is linear and continuous from L2(λ̃) to L2(λ̃). It is then easy to show that

K∗(I[0,t]) = K(t, .). (26)

Let us now show that

(f ∗ ÑK) = (K∗(f)
(SL)
∗ Ñ) for all f ∈ L2(λ̃).

For any t ∈ [0, T ], we have:

(I[0,t] ∗ ÑK)t = ÑK
t = (I[0,t]

(SL)
∗ ÑK)t.

In fact,

(I[0,t] ∗ ÑK)t = (K∗(I[0,t])
(SL)
∗ Ñ)t

= (K(t, .)(I[0,t])
(SL)
∗ Ñ)t

= ÑK
t

= (I[0,t]

(SL)
∗ ÑK)t.

It is then routine to extend this result to any f ∈ L2(λ̃).

We now define the vector space

I = span{I[0,t] : t ∈ [0, T ]},
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equipped with the following scalar product:

< I[0,t]; I[0,s] >IK=< K(t, .); K(s, .) >L2(λ̃) .

Finally, let IK be the closure of I with respect to this inner product.

Theorem 16 K∗ is an isometry from IK into L2(λ̃) and for any f ∈ IK, g ∈ IK

we have:

E
[
(f

(SL)
∗ ÑK)T .(g

(SL)
∗ ÑK)T

]
=< f, g >IK .

Proof. For any t ∈ [0, T ], we have:

||I[0,t]||IK = ||K(t, .)||L2(λ̃) = ||K∗(I[0,t])||L2(λ̃).

The isometry identity is thus satisfied by elements of I. Since K∗ is continuous,
the result holds for elements of IK . The second point follows from the following
computations:

E
[
(f

(SL)
∗ ÑK)T .(g

(SL)
∗ ÑK)T

]
= E

[
(K∗(f)

(SL)
∗ Ñ)T .(K∗(g)

(SL)
∗ Ñ)T

]
= 〈K∗(f),K∗(g)〉L2(λ̃)

=< f, g >IK .

Theorem 17 The processes ÑK and Ñ have the same filtrations.

Proof. On the one hand, for any t ∈ [0, T ], there exists (αi, ti) ∈ (R× [0, T ])N such
that:

K(t, .) = L2 − lim
n→∞

n∑
i=1

αiI[0,ti]. (27)

On the other hand, for any s ∈ [0, T ], there exists (βi, si) ∈ (R× [0, T ])N such that:

I[0,s] = L2 − lim
n→∞

n∑
i=1

βiK(si, .). (28)

From (27), we deduce that

(K(t, .)
(SL)
∗ Ñ) = L2(P)− lim

n→∞

n∑
i=1

αi(I[0,ti]

(SL)
∗ Ñ)

ÑK
t = L2(P)− lim

n→∞

n∑
i=1

αiÑti .
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Thus, ÑK
t ∈ Ft which shows the first inclusion. Now, from (28):

(I[0,s]

(SL)
∗ Ñ) = L2(P)− lim

n→∞

n∑
i=1

βi(K(si, .)
(SL)
∗ Ñ)

Ñs = L2(P)− lim
n→∞

n∑
i=1

βiÑ
K
si

.

It follows that Ñt belongs to FK
t and the result follows.

We now turn to the definition fo the Skohorod-like integral with respect to marked
point processes.

Definition 8 For any u such that K∗(u) ∈ dom(δÑ) we define the integral with
respect to ÑK by:

δÑK

(u) = δÑ(K∗(u)) = δ(z.K∗(u)).

Definition 9 For any F ∈ S, for any h ∈ L2(λ̃) we define the directional derivative
by:

DÑK

F (h) = DÑF (K∗(h))

= DF (z.K∗(h))

= −
n∑

i=1

∂f

∂xi

(∫ T

0

∫
Rd

f1(s)g1(z)ω(ds, dz), . . . ,
∫ T

0

∫
Rd

fn(s)gn(z)ω(ds, dz)
)

.
∫ T

0

∫
Rd

f ′i(s)gi(z)
(

z

λ(s)

∫ s

0
K∗(h)(r)λ(r) dr

)
ω(ds, dz).

The following properties motivate the previous definition:

Proposition 11 For any F, G ∈ S and any h ∈ L2(λ̃) we have:

DÑK

(FG)(h) = F.DÑK

G(h) + G.DÑK

F (h).

E
[
DÑK

F (h)
]

= E
[
F.δÑK

(h)
]
.

Proof. Let F, G ∈ S and h ∈ L2(λ̃) we have:

DÑK

(FG)(h) = DÑ(FG)(K∗(h))

= F.DÑ(G)(K∗(h)) + G.DÑ(F )(K∗(h))

= F.DÑK

G(h) + G.DÑK

F (h).

E
[
DÑK

F (h)
]

= E
[
DÑF (K∗(h))

]
= E

[
F.δÑ(K∗(h))

]
= E

[
F.δÑK

(h)
]
.
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Proposition 12 For any F ∈ S, the L2(λ̃)-valued random variable, ∇ÑK
(F ), de-

fined by

∇ÑK

(F ) = K ◦ ∇Ñ(F ),

satisfies

DÑK

F (h) =< ∇ÑK

(F ), h >L2(λ̃) .

We call ∇ÑK
the gradient map associated to DÑK

.

Proof. Let F ∈ S and h ∈ L2(λ̃), we have:

DÑK

F (h) = DÑ(F )(K∗(h))

=< ∇ÑF ;K∗(h) >L2(λ̃)

=< K ◦ ∇ÑF ; h >L2(λ̃) .

It is obvious that this gradient satisfies the properties of derivation and integration
by parts. Moreover, it is the adjoint operator of δÑK

and it follows from Proposition
11 that the mapping F → ∇ÑK

F is closable in L2(P). Consider the following space:

HK =
{
ζ ∈ L2(λ̃) : K∗(ζ) ∈ Hλ̃

}
With notations now classical, we define on S(HK) the operator ΓK by:

ΓK : S(HK) → L2(Ω× [0, T ]× Rd, dP⊗ ν)

ζ 7→ K ◦ ΓÑ ◦ K∗(ζ)

and we set

||Φ||ΓK

2,1 =
1

2

(
E
[
||Φ||L2(λ̃)

]
+ E

[
||ΓKΦ||L2(λ̃)

])
+ E

[
||∇Ñ(K∗Φ)||2L2(λ̃)⊗L2(λ̃)

]
.

Consider DK
2,1(HK) the closure of S(HK) with respect to this norm. We, of course,

have
DK

2,1(HK) ⊂ dom(δÑK

).

Theorem 18 For any a ∈ D2,1 and any ζ ∈ DK
2,1(HK) we have:

δÑK

(aζ) = aδÑK

(ζ)− < ∇ÑK

a; ζ >L2(λ̃) (29)

and for any ζ ∈ DK
2,1(HK) we have:

E
[
δÑK

(ζ)2
]

= E
[
< ζ; ΓKζ >L2(λ̃)

]
+ E

[
trace(∇Ñ(K∗ζ) ◦ ∇Ñ(K∗ζ))

]
. (30)
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Proof. Apply theorem 7 to K∗ζ.

Theorem 19 Let u ∈ DK
2,1(L2([0, T ]), then, if the different terms converge, we get

the following equality:

δÑK

(u) = (u
(SL)
∗ ÑK)T −

∫ T

0
∇ÑK

s usλ̃(ds)

Proof. Let u =
∑n

i=1 uiI(ti,ti+1] with ui ∈ DK
2,1 and let φ ∈ S, we have:

E
[
φ(u

(SL)
∗ ÑK)T

]
=

n∑
i=1

E
[
((I(ti,ti+1]

(SL)
∗ ÑK)T )uiφ)

]

=
n∑

i=1

E
[
δÑK

(I(ti,ti+1])uiφ
]

=
n∑

i=1

E
[
< ∇ÑK

[uiφ]; I(ti,ti+1] >L2(λ̃)

]
=

n∑
i=1

E
[
< φ∇ÑK

[ui]; I(ti,ti+1] >L2(λ̃)

]
+

n∑
i=1

E
[
< ui∇ÑK

[φ]; I(ti,ti+1] >L2(λ̃)

]
= C1 + C2.

C1 = E
[
φ
∫ T

0

n∑
i=1

∇ÑK

s [ui]I(ti,ti+1](s)λ̃(ds)

]

= E
[
φ
∫ T

0

n∑
i=1

∇ÑK

s [uiI(ti,ti+1](s)]λ̃(ds)

]

= E
[
φ
∫ T

0
∇ÑK

s usλ̃(ds)

]
,

C2 = E

〈∇ÑK

[φ];
n∑

i=1

uiI(ti,ti+1])

〉
L2(λ̃)


= E

[
φ δÑK

(
n∑

i=1

uiI(ti,ti+1])

)]
= E

[
φ δÑK

(u)
]
.

We then get the following relation:

E
[
φ(u

(SL)
∗ ÑK)T

]
= E

[
φ
∫ T

0
∇ÑK

s usλ̃(ds)

]
+ E

[
φδÑK

(u)
]
.
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Since this relation holds for all φ ∈ S, the result is proved for processes of the form
u =

∑n
i=1 uiI(ti,ti+1]. The general result follows by a limit procedure when both terms

converge.

Theorem 20 Let t ∈ [0, T ] be fixed. Consider K∗t the adjoint of K in L2
t (λ̃)

not
=

L2
t ([0, t], λ̃).

For any u ∈ L2
t (λ̃), we have:

K∗t (u) = K∗T (u I[0,t]) I[0,t].

Proof. It is enough to show that for any g ∈ L2
t (λ̃) we have:

< K∗t (u) , g >L2
t
=< K∗T (u I[0,t]) I[0,t] , g >L2

t
.

We have,

< K∗t (u) , g >L2
t (λ̃) =< u , K(g) >L2

t (λ̃)

=< uI[0,t] , K(g) >L2(λ̃)

=< [IT−]−1(uI[0,t]) , K(g) >L2(λ̃)

=
∫ T

0

∫ T

0
K(j, v)g(v)λ̃(v)dv.[IT−]−1(uI[0,t])(τ)dτ.

We then get:

< K∗t (u) , g >L2
t (λ̃)=

∫ T

0

∫ T

0
K(τ, v).[IT−]−1(uI[0,t])(τ) dτg(v)λ̃(v)dv.

Set

Ψ(t, v) =
∫ T

0
K(τ, v).[IT−]−1(uI[0,t])(τ) dτ.

Let us show that Ψ(t, v) = 0 as soon as v ≥ t:

Ψ(t, v) =
∫ T

v
K(τ, v).[IT−]−1(uI[0,t])(τ) dτ +

∫ v

0
K(τ, v).[IT−]−1(uI[0,t])(τ) dτ.

On the one hand, by triangularity, K(τ, v) = 0 as soon as v ≥ τ thus the last term
is null. On the other hand, [IT−]−1(uI[0,t]) has its support included in [0, t] ⊂ [0, v].
It follows that the first summand is also equal to zero. This implies the following
relations:

Ψ(t, v) = K∗ ◦ [I−T ]−1 (uI[0,t])(v) = K∗(uI[0,t])(v)I[0,t](v).

The proof is thus complete.

Remark 2 We then have

δ(K∗t (u))− δ(K∗s(u)) = δ(K∗(u I]s,t])).
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Hypothesis 2 There exists α > 0 such that K is continuous, triangular and one-
to-one and onto from L2 into Iα+1/2,2.

Hypothesis 3 We assume that the operator Γ is continuous from L2(Ω×[0, T ], dP⊗
λ̃) to L2(Ω× [0, T ], dP⊗ λ̃).

Consider the following norm: for any Φ ∈ S(Hλ̃),

||Φ||M2,1 = E
[
||Φ||2L2(λ̃)

]
+ E

[
||∇ÑΦ||2L2(λ̃)⊗L2(λ̃)

]
and define DM

2,1(Hλ̃) as the closure of S(Hλ̃) for this norm.

Proposition 13 Under the Assumption 2, we have:

DM
2,1(Hλ̃) ⊂ DÑ

2,1(Hλ̃).

Proof. The operator Γ is linear and continuous thus

E
[
||ΓΦ||2L2(λ̃)

]
≤ c E

[
||Φ||2L2(λ̃)

]
.

Then, we have

||Φ||Ñ2,1 ≤ c
(
E
[
||Φ||2L2(λ̃)

]
+ E

[
||∇ÑΦ||2L2(λ̃)⊗L2(λ̃)

])
,

the result follows.

Theorem 21 For any α ∈ [1/2, 1[, under the Assumptions 2 and 3, if u belongs to

DÑ
p,1(Hλ̃) ∩ dom(δK) with αp > 1, then, the process

{δK(K∗t (u)) = δÑK

(u I[0,t]) : t ∈ [0, T ]}

admits a modification whose paths are a.s. (α− 1/p)-Hölder continuous. Moreover,
there exists a constant c > 0 such that:

||δK(u)||L2(Ω;Hol(α−1/p)) ≤ c ‖K∗T‖ . ||u||Ñp,1

Proof. Let (s, t) ∈ [0, T ]2. By the relation (2) and by continuity of the divergence

from DÑ
2,1(Hλ̃) to L2(Ω), there exists a constant c such that:

E
[
|δÑ(K∗(u I[s,t]))|2

]
≤ c

[
||K∗(u I[s,t])||Ñ2,1

]2
(31)

≤ c
[
||K∗(u I[s,t])||M2,1

]2
,

where the last inequality comes from the Assumption 2. On the other hand, the
Assumption 2 of continuity of K from L2 to Iα+1/2,2 coupled with the fact that α > 1

2
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insure that K is continuous from L2 into Iα−1/2,2. Consequently K∗ is continuous

from
[
Iα−1/2,2

]∗
= I1/2−α,2 to L2. Denote by ‖K∗‖ its operator norm. We have:

E
[
|δÑ(K∗(u I[s,t]))|2

]
≤ c1 M ‖K∗‖

(
E
[
||u I[s,t]||2I1/2−α,2

]
+ E

[∫ T

0
||∇Ñu I[s,t]||2I1/2−α,2

dr

])
.

According to the Proposition 15 with β = α−1/2 and q = 2, we know that Iα−1/2,2

is continuously embedded in L(1−α)−1
p, hence:

L
1
α =

[
L

1
1−α

]∗
⊂
[
Iα−1/2,2

]∗
= I1/2−α,2

Since the embedding is continuous,

||u I[s,t]||I1/2−α,2
≤ c2 ||u I[s,t]||L 1

α
.

Apply now Hölder inequality to write:

||u I[s,t]||I1/2−α,2
≤ c2 ||u||Lp ||I[s,t]||Lq

with 1
α

= 1
p
+ 1

q
(by assumption αp > 1). It is easily seen that ||I[s,t]||Lq = |t−s|α−1/p

hence:

E
[
|δÑ(K∗(u I[s,t]))|2

]
≤ c ‖K∗‖ |t− s|α−1/p E

[
||u||p +

∫ T

0
||∇Ñu||p dr

]
≤ c ‖K∗‖ |t− s|α−1/p||u||Ñp,1

and thus, by the very definition of the norm on Hölder space, we have:

||δK(u)||L2(Ω;Hol(α−1/p)) ≤ c ‖K∗T‖ . ||u||Ñp,1,

and the result follows.

3.2 Without marks

In this case, we can proceed as in Definition (20):

∇̂K
uF (vG) := FK∗(v)DG(K∗(u)) + FG∇̃K∗(u)(K∗(v))

An obvious consequence of relation (19) and proposition 9 is:

Proposition 14 Let Φ ∈ S and (ζ, φ) ∈ [S(Hλ∗)]2. We have:

DÑK

(DÑK

Φ(ζ))(φ)−DÑK

(DÑK

Φ(φ))(ζ) = DÑK

Φ(∇̂K
φ (ζ)− ∇̂K

ζ (φ)).
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The analog of theorem 10 cannot be written in terms of covariant derivative but we
can state:

Theorem 22 Let ζ ∈ S(Hλ∗), we have:

E
[
δÑK

(ζ)2
]

= E
[
||K∗(ζ)||2L2(λ)

]
+ E

[
trace(∇̂(K∗(ζ)) ◦ ∇̂(K∗(ζ)))

]
= E

[
||ζ||2IK

]
+ E

[
trace(∇̂(K∗(ζ)) ◦ ∇̂(K∗(ζ)))

]
.

To write Weitzenböck formula, it is enough to define an exterior derivative:

dKφ = d(K∗(φ)).

The result then follows from theorem 11:

Theorem 23 Let ζ ∈ S(Hλ∗), we have:

E
[
δÑK

(ζ)2
]
+ E

[
||dKζ||2L2(λ)∧L2(λ)

]
= E

[
||ζ||2IK

]
+ E

[
||∇̂(K∗ζ)||2L2(λ)

]

We can then extend S(Hλ∗) to alarger space named DC,K
2,1 (Hλ∗) by considering the

norm: [
||ζ||C,K

2,1

]2
= E

[
||K∗(ζ)||2L2(λ)

]
+ E

[
||∇̂(K∗(ζ))||2L2(λ)

]
By using this norm, we can avoid hypothesis 3 of continuity of ΓK to establish
theorem 21. In fact, relation (31) is replaced by:

E
[
|δÑ(K∗(u I[s,t]))|2

]
≤
[
||K∗(u I[s,t])||C2,1

]2
,

the rest of the proof remains the same. We get:

Theorem 24 For any α ∈ [1/2, 1[, under the assumption 2, if u belongs to DC
p,1(Hλ∗)

and to dom(δK) with αp > 1. Then, the process

{δK(K∗t (u)) = δÑK

(u I[0,t]) : t ∈ [0, T ]}

admits a modification whose paths are a.s. (α− 1/p)-Hölder continuous. Moreover,
there exists a constant c > 0 such that:

||δK(u)||L2(Ω;Hol(α−1/p)) ≤ c ‖K∗T‖ . ||u||Cp,1.

4 Itô formula for cylindrical functionals

Theorem 25 Let F be a C2
b function and u belong to S(L2(ν)) i.e. u = F.v with

F ∈ S and v ∈ L2(ν). Consider Zt = z + (u
(SL)
∗ ÑK)t. Then u.F ′ ◦ Z is in
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DomδÑK and we have P-almost surely: for any t ∈ [0, T ],

F (Zt) = F (z) + (u(s) F ′(Zs)
(SL)
∗ ÑK)t. (32)

Proof. Consider ε > 0, we have:

F (Zt+ε)−F (Zt) = F ′(Zt)(Zt+ε−Zt)+(Zt+ε−Zt)
2
∫ T

0
F ′′((1−u)Zt+ε+uZt)(1−u) du.

For any test function Ψ we get:

E [(F (Zt+ε)− F (Zt)) . Ψ] = E [F ′(Zt)(Zt+ε − Zt) . Ψ]

+ E
[
(Zt+ε − Zt)

2
∫ T

0
F ′′((1− u)Zt+ε + uZt)(1− u) du . Ψ

]
= A1 + A2.

Apply theorem 19, we get:

Zt+ε − Zt = (uI[t,t+ε]

(SL)
∗ ÑK)T

= δÑK

(uI[t,t+ε]) +
∫ T

0
∇ÑK

s (uI[t,t+ε])(s)λ̃(s)ds

= δÑ(K∗(uI[t,t+ε])) +
∫ t+ε

t
(K∇Ñ)s u(s) λ̃(s)ds.

Thus A1 splits into two terms:

A1 = E
[
F ′(Zt) δÑ(K∗(uI[t,t+ε])) . Ψ

]
+ E

[
F ′(Zt)

∫ t+ε

t
(K∇Ñ)s u(s) λ̃(s)ds . Ψ

]
= D1 + D2.

On the one hand, it is obvious that:

lim
ε→0

1

ε
B2 = E

[
F ′(Zt) (K∇Ñ)t u(t) λ̃(t) . Ψ

]
. (33)

On the other hand, we have:

D1 = E
[∫ T

0
∇Ñ

s (F ′(Zt)Ψ)K∗(uI[t,t+ε]) λ̃(s)ds

]
.

An application of the derivation formula splits D1 in two terms and using the
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adjunction property we get:

D1 = E
[∫ T

0
Ψ∇Ñ

s (F ′(Zt))K∗(uI[t,t+ε])(s) λ̃(s)ds

]

+ E
[∫ T

0
F ′(Zt)∇Ñ

s (Ψ)K∗(uI[t,t+ε])(s) λ̃(s)ds

]

= E
[∫ T

0
Ψ (K∇Ñ)s(F

′(Zt)) u(s)I[t,t+ε](s) λ̃(s)ds

]

+ E
[∫ T

0
F ′(Zt) (K∇Ñ)s(Ψ) u(s)I[t,t+ε](s) λ̃(s)ds

]

= E
[
Ψ
∫ t+ε

t
(K∇Ñ)s(F

′(Zt)) u(s) λ̃(s)ds
]

+ E
[
F ′(Zt)

∫ t+ε

t
(K∇Ñ)s(Ψ) u(s) λ̃(s)ds

]
.

Thus,

lim
ε→0

1

ε
E
[
Ψ
∫ t+ε

t
(K∇Ñ)s(F

′(Zt)) u(s) λ̃(s)ds
]

= E
[
Ψ (K∇Ñ)t(F

′(Zt)) u(t) λ̃(t)
]
, (34)

lim
ε→0

1

ε
E
[
F ′(Zt)

∫ t+ε

t
(K∇Ñ)s(Ψ) u(s) λ̃(s)ds

]
= E

[
F ′(Zt) (K∇Ñ)t(Ψ) u(t) λ̃(t)

]
. (35)

Note that:

(K∇Ñ)t(F
′(Zt)) u(t) + F ′(Zt) (K∇Ñ)t u(t) = (K∇Ñ)t(F

′(Zt) u(t)).

Consequently, by the relations (33), (34) and (35), we have shown that:

lim
ε→0

1

ε
A1 = E

[
F ′(Zt) (K∇Ñ)t(Ψ) u(t) λ̃(t)

]
+ E

[
Ψ . (K∇Ñ)t(F

′(Zt) u(t)) λ̃(t)
]

Moreover, since F ′′ is bounded,

lim
ε→0

1

ε
A2 = 0. (36)

Thus, we have:

lim
ε→0

1

ε
E [[F (Zt+ε)− F (Zt)] . Ψ] = E

[
F ′(Zt) (K∇Ñ)t(Ψ) u(t) λ̃(t)

]
+ E

[
Ψ . (K∇Ñ)t(F

′(Zt) u(t)) λ̃(t)
]
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We can now write:

E [F (Zt) Ψ]− F (z) =
∫ t

0
E [F ′(Z(s)) Ψ] ds

=
∫ t

0

1

ε
E [[F (Zt+ε)− F (Zt)] . Ψ] ds

= E
[∫ t

0
F ′(Zs) (K∇Ñ)s(Ψ) u(s) λ̃(s)ds

]
+ E

[
Ψ .

∫ t

0
(K∇Ñ)s(F

′(Zs) u(s)) λ̃(s)ds
]

= E
[∫ t

0
∇Ñ

s (Ψ)K∗t (F ′(Zs) u(s)) λ̃(s)ds
]

+ E
[
Ψ .

∫ t

0
(K∇Ñ)s(F

′ ◦ Z(s).u(s)) λ̃(s)ds
]

= E
[
Ψ . δÑ (K∗t (F ′(Zs) u(s)))

]
+ E

[
Ψ .

∫ t

0
(K∇Ñ)s(F

′ ◦ Z(s).u(s)) λ̃(s)ds
]
.

We then apply theorem 20 to write:

E [F (Zt) Ψ]− F (z) = E
[
Ψ . δÑ

(
K∗(F ′(Zs) u(s) I[0,t](s))

)]
+ E

[
Ψ .

∫ t

0
(K∇Ñ)s(F

′ ◦ Z(s).u(s)) λ̃(s)ds
]

= E
[
Ψ . δÑK

(
F ′(Zs) u(s) I[0,t](s))

)]
+ E

[
Ψ .

∫ t

0
(K∇Ñ)s(F

′ ◦ Z(s).u(s)) λ̃(s)ds
]

= E
[
Ψ .

(
δÑK

(
F ′ ◦ Z(s).u(s) I[0,t](s)

)
+
∫ T

0
(K∇Ñ)s(F

′ ◦ Z(s).u(s)) I[0,t](s) λ̃(s)ds

)]

= E
[
Ψ .(F ′ ◦ Z.u

(SL)
∗ ÑK)t

]
The relation (32) is obtained by identification for all t ∈ [0, T ] P-a.e. but both terms
are continuous so it is true P-a.s. for all t ∈ [0, T ].

5 Appendix : Deterministic Fractional Calculus

For f ∈ L1([0, T ]), the left and right fractional integrals of f are defined by:

(Iα
0+f)(x) =

1

Γ(α)

∫ x

0
f(t)(x− t)α−1 dt, x ≥ 0,

(Iα
b−f)(x) =

1

Γ(α)

∫ b

x
f(t)(t− x)α−1 dt, x ≤ b,
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where α > 0 and I0 = Id.

For any α ≥ 0, any f ∈ Lp([0, T ]) and g ∈ Lq([0, T ]) where p−1 + q−1 ≤ α, we have:∫ T

0
f(s)(Iα

0+g)(s) ds =
∫ T

0
(Iα

T−f)(s)g(s) ds. (37)

The Besov space Iα
0+(Lp)

not
= Iα,p is usually equipped with the norm:

‖f‖Iα,p= ‖I−α
0+ f‖Lp .

In particular Iα,2 is a (separable) Hilbert space and we have the following continuity
results (see [22,23]):

Proposition 15 • If α− 1/p < 0, then Iα,p is isomorphic to Iα
T−(Lp).

• If 0 < α < 1, 1 < p < 1/α, then Iα
0+ is a bounded operator from Lp([0, T ]) into

Lq([0, T ]) with q = p(1− αp)−1.
• For any 0 < α < 1 and any p ≥ 1, Iα,p is continuously embedded in Hol(α −

1/p) provided that α − 1/p > 0. For 0 < ν ≤ 1, Hol(ν) denotes the space of
Hölder–continuous functions, null at time 0, equipped with the norm:

||f ||Hol(ν) = sup
t6=s

|f(t)− f(s)|
|t− s|ν

.
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submitted (2002).
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