
Representing 2D Cartoons using SVG

Cyril Concolato Jean-Claude Moissinac Jean-Claude Dufourd
Ecole Nationale Supérieure des Télécommunications

46 rue Barrault 75013 Paris
cyril.concolato@enst.fr, dufourd@enst.fr, moissinac@enst.fr

Abstract
Our work focuses on the encoding of 2D
graphics animated cartoons with SVG. We
expected this could be an efficient and useful
coding with good versatility for various types of
terminals.

First, we present some technical specification
for such cartoons. Next, we give an overview of
SVG support for cartoons and present methods
best suited for a such task; some of our
proposals could be useful for other 2D graphics
application than animated cartoon. We also give
some considerations on the compression and
streaming of such cartoons.

Keywords
SVG, SMIL Animation, 2D Vector Graphics,
cartoon

1 Introduction
With the emergence of powerful mobile
devices, there is a need for low bitrate and high
quality animations to be streamed over the
Internet or LANs (W-Lan, GPRS…). In
particular, the need for efficient coding and
streaming solutions for high quality cartoons is
real. As a response for this demand, a lot of
proprietary solutions and a lot of standards are
being developed. Of course it is possible to
code a cartoon or an animation as a video. But
this solution lacks flexibility and presents some
poor performances in the trade-off between
quality and bit rate. On the opposite, 2D vector
graphics encoding brings a lot of flexibility
because an animation can be easily resized and
adapted to the capabilities of the terminal. A 2D
vector graphics animation can even be
customized for the user. We will see in this

paper that vector coding is adapted to the coding
of cartoons and graphics animation.

One of the candidate for the encoding of
cartoons is the SVG-SMIL couple. SVG [1] is
the candidate for the encoding of the graphics
while SMIL [2] is the candidate for encoding
the synchronization of the graphics and the
audio. We will show in this paper that SVG
presents some good possibilities for the
encoding of cartoons, but need to be finely used.
Moreover, SVG is an international standard and
so this solution offers the benefits of
interoperability. We also present some
preliminary results about bit rate.

The rest of this paper is organized as follows.
Section 2 gives an overview of the cartoon
design techniques. Section 3 describes the
techniques used to represent such cartoons using
SVG. Section 4 explains the research
environment and raises some remaining
problems. Section 5 suggests some solutions to
solve the compression and streaming problems
Finally, Section 6 concludes this paper.

2 The Design of Cartoons
In this section, we describe the hypotheses made
on some features which are relevant for efficient
encoding of cartoons of a rather classic kind.

Classic cartoons like the ones produced by
Hanna and Barbera, are generally made of a
background on which some characters move.
The traditional manner to compose the pictures
of such a cartoon consists in drawing the
background and the characters on different
transparent celluloid sheets. Some sheets are
then put on top of each other and filmed.

mailto:cyril.concolato@enst.fr
mailto:dufourd@enst.fr
mailto:moissinac@enst.fr

The drawings representing the characters are
generally made of zones of uniform colors and
surrounded with a border line of a different
color. Sometimes, a zone is defined by a color
and a transparency. The characters are drawn
separately and their compositing is specified by
the exposure sheet.

From a technical perspective, this means that
the exposure sheet consists in a list of actions to
perform for each frame:

- addition of a new element to be
displayed,

- removal of an element of the previous
frame, The exposure sheet describes, for each frame,

the way to compose the final picture. It tells
which background to use and what are the
celluloid sheets to be stacked on top of the
background. A short note indicates if an element
of the previous frame is to be reused in the next
one.

- application of a parametric
transformation to an element of the
previous frame;

In the cartoons we are dealing with, all the
graphical elements are either polygons filled
with a uniform color and surrounded with an
other color or polylines drawn with a uniform
color. More elaborate cartoons may use
gradients or textures to fill the polygons. Hence,
the major part of the description of these
elements is a list of 2D coordinates.

In classic cartoons, most of the animations are
non parametric. The animation is the result of
the replacement of the elements of the previous
frame by new graphical elements drawn on
different celluloid sheets. This is illustrated in

. Figure 1

Figure 1 - Consecutive frames showing a non-
parametric animation of a character

3 Representing Cartoons in SVG

The previous section gave an overview of the
generic principles used in the cartoon design.
This section shows how these principles can be
mapped on SVG and SMIL concepts.
As described previously, there are two
important parts in a cartoon: the characters and
their behavior. The SVG representation of these
two parts is described hereafter.

3.1 Representing the Cartoon Characters
In order to understand how the cartoon
characters are represented in SVG, two aspects
need to be described. This section will first
describe how a single character could be
efficiently represented in SVG and in a second
part how the dictionary of characters is handled.

3.1.1 A Character: a list of shapes
A cartoon character is usually composed of
several shapes. The set of shapes that compose
the character may change over time. Each shape
is described by an outline. The outline is a
sequence of edges of the following types:
straight lines, cubic or quadratic Bézier curves.
Using the outline, a shape may be filled using a
solid color, a gradient color, a texture, or not
filled. It may also have holes in its filling. The

holes are themselves specified by a sequence of
edges. The outline may be drawn with different
width. Finally, some of the shapes may be used
to clip other shapes.
The composition of a cartoon character is
illustrated by Figure 2 and Figure 3 below.

Figure 2 - A cartoon character

Figure 3 - Split elements composing a cartoon

character

All the requirements of the representation of
cartoon shapes are fulfilled by SVG. Indeed, the
path element allows to draw all the types of
edges described above. A path element may be
filled or not. The filling can be of the types
described also above. Holes can be achieved
using move commands in the path data and the
fill-rule property. Paths can be reused to do
some clipping.

3.1.2 Managing the dictionary of characters
Hence, a cartoon character is a list of path
elements with different filling, stroking,
clipping properties. In order to reuse and/or

move this character during the cartoon, all the
path elements forming a character need to be
grouped in a g element. This element is given an
identifier that uniquely identifies this state of
the character in the cartoon. It may also have
spatial transformations such as rotation,
translation and color transformations such as
transparency, color shifting.

3.2 Representing the animations
The animation is what gives life to the cartoon
characters. During the cartoon play-out, a
character will move, change color, appear or
disappear. Moreover, the set of shapes that
represent this character may be replaced by a
new set of shapes. This reflects the non-
parametric feature of classic cartoons. This
section explains how to represent all these
changes in SVG.

3.2.1 To script or not to script
SVG offers a lot of scripting possibilities thanks
to the Document Object Model. It is therefore
possible to use a scripting language like
JavaScript to perform the animation of the
object. This approach has been chosen in [3].
However, scripts require the terminal to have a
scripting engine implemented as well as an
implementation of the Document Object Model.
This increases the memory footprint of the
player and therefore limits the number of
devices that can play such cartoons.
Our approach is to represent the cartoons in
SVG without using any script. Hence, they
could be played on limited devices like cell
phones. Our approach uses the animation
capabilities of SVG, which is inherited from the
SMIL Animation module.

3.2.2 Representing the timeline
In a cartoon, several character properties like the
position, the color, the appearance or the set of
shapes that represent this character can be
changed at some precise point in time and for a
certain duration. Two ways have been studied to
represent the animation of the character
properties. The first one was dropped because it
suffered some limitations but we believe it is

useful to present it in order to understand the
second one.

3.2.2.1 A timeline per cartoon character
The first approach consisted in inserting the
SMIL animation elements such as set, animate,
animateMotion within the g element that defines
the graphical properties of the character. This
approach is illustrated in the SVG code below.

<g id="Character1" visible="hidden">
 <path stroke="none" fill="red" d="…">
 <path stroke="4" fill="black" d="…">
 <set attributeName="visibility" to="visible" begin="1s"
end="2s"/>
 <animateTransform attributeName="transform"
type="rotate" from="0" to="90" dur="5s"
additive="replace" fill="freeze"/>
</g>

The visibility of a character is controlled using
the visibility attribute. This means that a
character can appear or disappear throughout the
cartoon.

Finally, the whole cartoon is described by an
SVG document of the following form:

<?xml version="1.0" encoding="UTF-8"?>
<svg width="384" height="288" viewBox="0 0 384 288"
>
<g id="Character2" visible="hidden">
 <path stroke="none" fill="yellow" d="…"/>
 <path stroke-width="1" fill="green" d="…"/>
 <set attributeName="visibility" to="visible" begin="1s"
end="2s"/>
 <animateTransform attributeName="transform"
type="rotate" from="0" to="90" dur="5s"
additive="replace" fill="freeze"/>
</g>
<g id="Character1" visible="hidden">
 <path stroke="none" fill="red" d="…"/>
 <path stroke-width="4" stroke="blue" d="…"/>
 <set attributeName="visibility" to="visible" begin="1s"
end="2s"/>
</g>
<g id="Character3" visible="hidden">
…
</g>
…
</svg>

The characters are laid out in the document
according to their initial depth in the exposure
sheet. The problem with this approach arises
when the depth of a character changes during
the cartoon. According to the SVG
specification, the elements are rendered on top
of each other in the order they appear in the
document. Take the following cartoon scenario:

• at time T, Character A is displayed on
top of Character B

• at time T+dt, Character B is displayed
on top of Character A

The current approach cannot handle that
scenario. That is one of the reason why we
moved to the second approach.

3.2.2.2 A frame-based document
This approach solves the problem stated in the
previous section and also offers a document
structure which is closer to the exposure sheet.
The notion of frame is introduced. A frame is a
composed of graphical objects that should be
displayed at some point in time and for a certain
duration. It contains all the graphical objects
that need to be displayed during this time
interval. A frame can be represented in SVG as
follows:

<g id="frame_N" display="none" >
 <set attributeName="display" to="inline"
begin="N/FrameRate" end=" (N+1)/FrameRate"/>
 <defs>
 <g id="Character1">
 <path stroke="none" fill="yellow" d="…"/>
 <path stroke="green" fill="none" d="…"/>
 </g>
 <g id="Character2">
 <path stroke="none" fill="red" d="…"/>
 <path stroke-width="2" stroke="green" d="…"/>
 <path stroke="none" fill="yellow" d="…"/>
 </g>
 </defs>
</g>

Several points have to be noted in the above
code. First, a frame is by default not displayed.
The visibility attribute has been replaced by the
display attribute for performance issues in the
rendering. Then, all the characters are grouped
within a defs element and their animation
elements have been removed.

A consequence of using the defs element is that
the characters are not displayed but instead
defined and ready for being used via a use
element. A character can even be reused outside
the current frame. This is illustrated in the SVG
code below.

<g id="frame_5" display="none" >
<set attributeName="display" to="inline"
begin="0.3846154" end="0.46153846"/>

<use xlink:href="#Character4"
transform="translate(0.0 288.0) scale(0.5 0.5) " />
<use xlink:href="#Character5"
transform="translate(0.0 288.0) scale(0.5 0.5) " />
<use xlink:href="#Character6"
transform="translate(32.0 215.0) scale(0.5 0.5) " />
</g>

4 Tests and Results

4.1 Environment of the experiment
We have worked on two different set of
cartoons. The first one provided as a set of
XML files produced by the Pegs software, from
the company MediaPegs [5]. The second one
gathered as a set of Flash files from various
cartoon Web sites such as [4].

We have developed a Java program to translate
the Flash files into SVG as well as into MPEG-4
BIFS.

The results of the conversion of either the XML
files or the Flash files into SVG files were
played in the Adobe SVG Viewer 3.0 running
on Windows 2000. The conversion of the SWF
file into SVG for the Butch Cassidy sequence
which is 200 seconds long takes approximately
30 seconds on a Pentium IV 2.0GHz PC.

4.2 Results
In previous works [6] [7], we have shown that it
is possible to use MPEG-4 BIFS [9] to represent
classical cartoons. We also shown that the
resulting BIFS file size is similar to the original
Flash file size.

Using the techniques exposed in this paper, and
adding a ZLIB compression using the gzip
software, the results we have show that the
gzipped SVG is usually less than twice the size
of the SWF. In that case, the gzipped SVG files
can still be played by the Adobe viewer. Some
results are given in Table 1.
We have to explore some simple ways to reduce
the size, mainly using less digit for each 2D
coordinate and id name.

Sequence SWF SVGZ SVG

Kangourou 78 137 770
Karate 91 208 819
Butch
Cassidy

851 1863 10 902

Captain
Distraction

753 1436 9 246

Pitch 558 1342 20025

Table 1 - File size in KB of different cartoons in
different formats

However, even if the file sizes are similar
between the three technologies, the
performances of the playing process are quite
different. Since Flash and MPEG-4 BIFS allow
for progressive loading of local files and
different levels of streaming, the playing starts
as soon as the first frame is loaded. But, since
SVG uses XML, the whole SVG cartoon has to
be loaded before the rendering of the first frame.
An immediate consequence of that statement is
that SVG seems suitable for the representation
of short cartoons. Possible solutions to solve
this problem may be found with the help of
XML fragments [8] or in the next section.

5 Considerations about Streaming and
Compression

We have seen in the previous section that
progressive loading of SVG documents is a
challenge for long cartoons. In this section we
propose two approaches to solve this problem.
The first one suggests to use the MPEG-7
standard while the other suggests to define an
update mechanism within SVG.

5.1 MPEG-7 Approach
MPEG-7 [10] has developed a technology to
binarize and stream XML descriptions for
which an XML schema exists. Within this
technology called BiM, streamability of XML
documents is achieved through a set of
commands (insert, delete, replace or modify)
that closely fit the actions to perform on each
frame of the cartoon. Using BiM within SVG
would achieve a triple benefit:

- Compression: the compression ratio
achieved by BiM is generally better than
ZLIB.

- Streamability: the XML document is
split into semantically meaningful pieces
of descriptions

- Memory foot print reduction: the whole
document does not need to be loaded
into memory.

These three advantages are very important for
mobile devices which are very memory-bound.

5.2 Adding updates to SVG
This second approach does not deal with the
compression problem but rather suggests to add
some mechanism to SMIL and/or SVG in order
to solve the streamability problem. This
mechanism is a document update mechanism
similar to the one found in BIFS. BIFS defines
an update mechanism whereby any element in
the scene can be added, deleted, replaced or
have any property changed at any time. The
timing of the update commands is expressed
within the MPEG-4 Systems framework. Such a
mechanism could be achieved in SMIL/SVG
using par elements for the timing, set for the
type of updates and SVG elements for the
payload. This is illustrated in the code below:

<par begin="N/FrameRate" end="
(N+1)/FrameRate">
 <set target="Character1" fill="replace">
 <g>
 <path stroke="none" fill="yellow" d="…"/>
 <path stroke="green" fill="none" d="…"/>
 </g>
 </set>
 <set target="Character2" fill="remove"/>
</par>

6 Conclusion

In this paper, we have shown how to represent
some classic cartoons using SVG and one of the
problems we faced when producing such
cartoons. We have also raised some problems
related to compression and streaming and
suggested some possible solutions that need to
be further studied.

Bibliography

[1] Scalable Vector Graphics 1.1,
http://www.w3.org/TR/SVG11/
[2] Synchronized Multimedia Integration Language,
http://www.w3.org/TR/smil20/
[3] Flash and SVG,
http://www.eprg.org/projects/SVG/flash2svg
[4] Cartoon Network,
http://www.cartoonnetwork.com/watch/web_shows/
[5] http://www.mediapegs.com/
[6] Codage MPEG-4 de dessins animés, CORESA’01
[7] Encoding of Cartoons Using MPEG-4 BIFS: Methods
and Results, IEEE T-CSVT
[8] XML Fragment Interchange,
http://www.w3.org/TR/xml-fragment
[9] Coding of audio-visual objects – Part 1: Systems,
ISO/IEC 14496-1:2000
[10] MPEG-7 Overview, http://mpeg-
industry.com/mp7a/w4980_mp7_Overview1.html

http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/smil20/
http://www.eprg.org/projects/SVG/flash2svg
http://www.w3.org/TR/xml-fragment
http://mpeg-industry.com/mp7a/w4980_mp7_Overview1.html
http://mpeg-industry.com/mp7a/w4980_mp7_Overview1.html

	Abstract
	Keywords
	Introduction
	The Design of Cartoons
	 Representing Cartoons in SVG
	Representing the Cartoon Characters
	A Character: a list of shapes
	Managing the dictionary of characters

	Representing the animations
	To script or not to script
	Representing the timeline
	A timeline per cartoon character
	A frame-based document

	Tests and Results
	Environment of the experiment
	Results

	Considerations about Streaming and Compression
	MPEG-7 Approach
	Adding updates to SVG

	Conclusion
	Bibliography

