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Abstract

This chapter deals with several important issuesajpgng to the management of
moving objects datasets in databases. The desigreprésentativebenchmarksis
closely related to the formal characterization lné properties (that is, distribution,
speed, nature of movement) of these datasetertaintyis another important aspect
that conditions the accuracy of the representaimhtherefore the confidence in query
results; finally, efficientindex structuresalong with their compatibility with existing
softwares, is a crucial requirement for spatio-terapdatabases, as it is for any other
kind of data.

INTRODUCTION

A lot of emerging applications (traffic control, e computing, vehicles tracking) rely on large
datasets of dynamic objects. This proliferatioensouraged by mature technologies (for example,
the Global Positioning System, or GPS) that prowdéne information on mobile devices and
enable communication between a centralized systan@obile users. Most of the services that
can be provided by the system to a user are basétedocation of the latter at a given instant (fo
instance, the case of company searching for theneerest to a customer calling on his mobile
phone, or a tourist in his car looking for his néxtel). But, apart from these so-called location-
based services that deal with the present or futexeected) positions of objects, we can also
envisage applications that study the past movenveiiten large moving objects datasets (for data-
mining purposes, for instance).

These examples illustrate some new requirementsatdiess the core functionalities of Database
Management Systems (DBMS). Indeed, we must consider data models (as any previously
proposed model falls short in representing contuisumovements), new query languages and new
system-level support. In this chapter we focustanlatter aspect. More specifically, we propose a
survey of the following issues: benchmarking of ragiens on large moving objects datasets,
uncertainty in trajectories representation andlzeda indexing. Let us be more specific by shortly
developing each topic.

Benchmarking

In computing, a benchmark is the result of runrenget of standard tests on one component or
system to compare its performance and capacitigabdf other components or systems. They are
designed to simulate a particular type of workloathning actual real-world programs on the



system “application benchmarks,” or using speciatiated programs that impose the workload on
the component “synthetic benchmarks.” Applicati@m@hmarks are meant to be representative of
real-world applications and potentially give a bettneasure of real-world performance. On the
other hand, synthetic benchmarks offer a sizealolkload of data sets and operations, allowing
testing individual components (such as indexinghoes$ or hard disks) and stressing the strengths
and weaknesses of each one individually. In théspamporal database context, benchmarks help
to experiment with new approaches (for example, lagguages or new indexing structures); they
can be used to assess the effectiveness of a nstensyand finally, they contribute to
characterizing the properties of datasets.

Uncertainty

The representation of objects’ movement is inhdéyemhprecise (Pfoser & Jensen 1999;
Trajcevski, Wolfson, Zhang & Chamberlain, 2002) phecision is introduced by the measurement
process in the sampling of positions and by the psamg approach itself. The accuracy of
measurements depends largely on the instrumentthartdchniques used (consider the example of
the GPS). These devices are only able to captwentbvement of an object by sampling its
position at discrete time points and, consequeritig, exact position of an object between
measurements is unknown. This feature, commonbrmed to as uncertainty, gives rise to several
problems regarding the representation and quergihgnoving objects. We shall discuss in
thischapter the factors that determine the impiatjsand then study (in a database perspective)
ways to handle this imprecision.

Indexing

The existence of efficient access methods is otbeomost important features of modern database
systems. Given the huge amount of data storeddh systems, there is indeed a crucial need for
structures that allow filtering of irrelevant dadaring query processing. B+-tree and hash-based
techniques are used quite intensively in the ti@uid relational DBMS context. It is a well-known
fact for database practitioners that a query exacytlan, which relies on an index, is several
orders of magnitude faster than a plan that meseans the database. It turns out, however, that
these structures fall short in supporting queriesr cspatial or spatio-temporal data. We shall
examine in this chapter the difficult challengesed by indexing objects whose location changes
continuously, describe some representative attengptsolve the problem and discuss research
perspectives in this area.

The main objectives of this chapter are to proadaup-to-date panorama of the ongoing research
devoted to moving objects management systems, aigtrong emphasis on the aspects that
determine the efficiency and reliability of suchssgms. We will successively investigate
benchmarking, uncertainty and indexing, giving feach topic some concrete examples, a
discussion on the raised problems, some genergjrdgaidelines commonly adopted to solve the
problem and finally, a presentation of future tremolyether with the most recent references.

BENCHMARKING

We begin with a short introduction on the genesatie of database benchmarking, and then study
some representative benchmarks for spatio-temgatabases.



Background

The two major components of a benchmark are wodklspecification and measurement
specification.

In database or transaction processing environm#rasyorkload specifies the data and query sets.
The data sets are used to populate the databasg.CHm be composed of real-world data or
produced by a data sets generator according tafispgtatistical models. The query sets simulate
the activity occurring in the database, such agsajp®al and decision support transactions, or
batch jobs. A transaction set driver may be usesinhwilate environments, where a number of users
input and manage queries or transactions via ainainor desktop computer connected to a
database, with “thinking” and “keying” times inteaved.

A measurement environment must specify a metric amdporter. By definition, a metric for a
feature is an association of numeric values toufeavalues in such a way that the general
properties of distances are verified. In a benckingrenvironment, a metric is required to confer
significance to the performance evaluation resulis. example of a metric is the number of
transactions per second (TPS). The reporter spsdifow to collect all relevant traces and logs and
computes indices pertinent to the specific metiiaswst provide the detailed information required
to make accurate decisions on the performance dapalb a system under test.

All testing processes require a well-designed etxasuplan. Execution plans ensure real-world
environments duplication during a benchmark. Theulte should not depend on foreign

factors(such as the hardware and software contigmis) that are not related with the components
in evaluation. These configurations would be barefyroducible in other environments; therefore,
the results obtained would be hardly or not evemparable with the results of a similar test in

different settings.

Another important feature of a benchmark is to meva model that is representative of real-world
applications with an extensible workload, made iakable data sets and sets of queries with
varying complexities. This ensures that the moslelseful and yet verifiable. Portability (it should
be easy to implement on a broad range of DBMS)samglicity (it must be understandable), also
are important qualities of a benchmark.

Benchmarks for moving objects databases

Benchmarking spatio-temporal systems is a novaleisso far, emphasis has been on the
development of spatio-temporal data sets generaldrere are now data sets generators for
simulating objects moving freely, with no or fewstéctions in the movement of the objects, and
generators for simulating the movement of objeotswhich the movement is constrained by a
defined network, such as a road network.

Non-network-based generators

The first spatio-temporal data sets generator foving objects has been the so-called Generator of
SpatioTemporal Data (GSTD) (Theodoridis, Silva &shkianento, 1999a) and later, a new version
was proposed introducing some important new feat(ifbeodoridis et al., 1999b). In its current
version, GSTD is a Web-based application and thks@ are data sets, in XML format, that can be
downloaded from the Web.

The GSTD allows the generation of data about pantd MBRs to be moving on a rectangular
space. The space can be populated by static spdjetts that obstruct the movement of the
objects. The objects, points or rectangles, arlilyi distributed in space according to Uniform,
Gaussian or Skewed distributions. The evolutiogpattial objects is directed through the definition



of a set of parameters that control the duratiomrofobject instance (which involves changes of
timestamps between consecutive instances), thé shin object (which involves changes of
spatial location in terms of shift/translation aénter point) and, when generating MBRs, the
resizing of an object (changes in object size).

The combination of possible different distributidns these parameters allows simulating different
scenarios, such as objects moving equally slowast &nd uniformly on the map, having a
relatively large number of slow objects moving ramdly, or having a set of objects that converge
to some area of the workspace or moving to sonetitin (east, for example). The cardinality of
the data sets is assumed to be constant duringetheration process. The generated data sets are
memory-less, that is, future events do not depengast states. This framework also defines how
to handle objects that fall outside the map. Tha#fernatives are proposed: the adjustment
approach, where coordinates are adjusted to fitwtbekspace; the toroid approach, where the
objects that traverse one edge of the workspacer éxaick in the opposite edge; and the radar
approach, where coordinates remain unchanged ugithiall beyond the workspace.

The main goal of previous approaches was to prodate sets that are rich from the statistical
point of view, but a question arises of how to gate datasets representative of the behavior of
real-world objects.

The Oporto framework (Saglio & Moreira, 2001) prasethe specification of a realistic spatio-
temporal datasets generator. The motivation far pnoposal is that real-world entities do not have
a chaotic behavior. They are guided by goals aag ¢tlo not ignore the environment around them;
that is, they are sensitive to agents favoringagerkinds of behavior and to agents inducing them
to avoid other kinds of behavior. So, the generaignoits a scenario with harbors (static points),
spots (regions with fixed center and changing shegi@esenting plankton areas or storm areas),
fishing ships (moving points) and shoals of fishllgf moving regions). The fishing ships move in
the direction of the most attractive shoals of fighile trying to avoid storm areas. The shoals of
fish are attracted by plankton areas.

The default generation model parameters are bas@dfarmation obtained from a real application

for monitoring fishing activities. These parametease organized in three classes: sizing
parameters, responsible for the size of the daktg destribution parameters, responsible for the
variations in temporal and spatial distributionbving points; and miscellaneous parameters,
responsible for a few realistic features. It isgmeed to use a logarithmic scale for sizing the dat
sets, simulating 1, 10 and 1000 weeks of fishiniyiéies, and two different scenarios — inshore

and open-sea fishing — for the spatio-temporatidistion of data sets.

Network-based generators

Previous approaches do not consider applicatiorereavimoving objects follow a given network.
This issue has been covered by Brinkhoff (2000,220This generator combines real data (the
network) with user-defined properties for contmjjithe functionality of selected object classes.
Important aspects are the maximum speed of commsgtihe influence of other moving objects or
external impacts (for example, weather conditioms)the speed, the adequate determination of
origination and destination of an object and tirakesluled traffic.

The generation of datasets requires three stepspréparation of the network, which eventually
involves the conversion of files describing the e®@nd the edges of the network into the file
formats supported by the generator; the definibbrfunctions and parameters according to the



environment of the system under test; and the {imien of the generated datasets (they are
stored in a text file) using a tool that allowsuatzing the motion of the objects.

As it is argued that it would be difficult to eslish an environment where all these aspects could
be defined by simple user interaction or by predsfi parameters, the framework only supports a
few standard parameters, and the specificatiorlaiifoeate behavior for moving objects requires
user-defined functions and parameter settings.ifipéementation of the generator is based on the
Java programming language. The classes are predgbnly their functionality must be adapted.

Future trends

Research on benchmarking moving objects databgsesnss is a recent issue and, so far, the focus
has been on the generation of synthetic data Fke&se are now several applications available on
the Web that allow generating free (Theodoridislet 1999b; Saglio et al., 2001) and network-
based (Brinkhoff, 2002) movements, according tavardity of rules and control parameters. The
generated movement data sets are basically sequehtemporally ordered observations, each one
representing the location of a moving object aedain instant. These data sets can be used to
populate a database storing the past movementjeftebor to simulate transactions for updating
the last-known location on systems concerned witsgnt and near-future positions of moving
objects.

Works on the specification of query sets is quitated and deserves attention in the future. Apart
from the benchmark database queries for locatiGedbaervices (Theodoridis, 2003), there is no
other systematic approach in this area. The m#tathas been used in the experiments published
so far was the number of disk blocks read for tha&luation of some operation. Notice that, as
moving objects database systems are not commegreaedlilable yet, the experiments performed
have focused exclusively on evaluation of the pernce of specific access methods and
algorithms for spatio-temporal operations, usuallyspatio-temporal windowing or clipping.
Authors use their own data and query sets and éracplans; hence, it is very difficult or even
impossible to compare the performance of the differmethods and techniques that have been
proposed. This important issue should be considerdte near future by researchers in this area.

UNCERTAINTY

Let us now turn our attention to the uncertaintyrmving objects trajectories. As mentioned in the
introduction of this chapter, the history of thgeats’ movement is inherently imprecise (Pfoser et
al., 1999; Trajcevski et al., 2002). Imprecisioningoduced by the measurement process in the
sampling of positions and by the sampling appratsdif. We begin with a short introductory part
that illustrates the issue with an example andudises the factors that determine the imprecision.
We then study, in a database perspective, howrtdl@ahis imprecision.

The uncertainty of noving objects trajectories Consider the concrete case of a port
authority dealing with a spread of toxic wastehia sea and querying a nautical surveillance system
to know which ships have crossed the polluted Zona specified time interval. Imagine that the
ship responsible for the waste has actually folkbwee trajectory represented in Figure 1. The dots
represent observations made during the specifree@ period, the shaded region represents the
polluted area and the hatched line a trajectoryrthght have been inferred from the observations.



Figure 1. Indeterminacy of the behavior of an objecbetween consecutive observations

The hatched line does not cross the shaded regidntlaus, an answer to the query based on this
estimation of the trajectory would not include tipailty ship. On the contrary, an answer may
include false candidates whose inferred trajectomysses the area even though they have not
actually been there.

Uncertainty of past, present and future positions

The preceding example focuses on the history adat®j movement. In general, the focus may be
put on the past movement or on the future moverémbjects, depending on the considered
application. Different needs were identified, gtyirse to two main approaches.

The first approach (Pfoser et al., 1999), focusingpast movements, addresses the needs of mining
applications of spatio-temporal data: traffic mmyirenvironment monitoring, and so forth. In this
case, uncertainty is determined using the obsesuedessive positions of objects and some known
constraints on their velocity.

In the second approach (Sistla, Wolfson, ChambedaDao, 1998; Wolfson, Sistla, Xu, Zhou,
Chamberlain, Yesha & Rishe 1999c; Trajcevski et 2002), the focus is put on the uncertainty
about the future movement of objects. This appraaidresses the needs of real-time applications
and location-based services. Uncertainty, fixeddwance, here is used to avoid frequent updates to
the database when the actual object’s trajectowatks from its representation in the database.
The database is not updated as long as the objaotement deviation is less than the permitted
uncertainty.

Bounding uncertainty

There are physical constraints on the movementbgdcts, allowing limiting uncertainty of their
position. Particularly, the uncertainty interval fan object moving on a road is a section of the
road, whereas it is an area in the considered dpa@n object moving freely. When it comes to
future movements in a two-dimensional space, theetainty area is a circle centered on the
expected location of the object. Each circle bounds given instant the permitted deviation of an
object. Objects are committed to send a locatiatatgowhen the deviation reaches the bound.

For past movements, since the positions betweenctmsecutive samples are not measured, the
best possibility is to limit the possibilities offvere the moving object could have been (Pfoser &
Tryfona, 2001; Pfoser et al., 1999; Moreira, SadliRibeiro, 1999).
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Figure 2. An lens area for a time instant

Let us consider a moving objeat a time instant in an interval(ty,t;) between two consecutive
observationgp;,t1) and (p2,t2) (ee Figure 2). We denote Ipy and the positions of the moving
object at the observation time instafitsandt,, respectively. At tim¢, the distance betweenand

p1 is inferior tor; =vvmax ¥ (t- ) wherevvnax is a user-defined value standing for the maximum
velocity of moving objecin. Distance between betweanandp; is inferior tora =Vmax x (t>- t).

So, att, the moving object might be at any location wittiie area defined by the intersection of
the two circles of radius, andr,. This is a so-called lens area (Pfoser et al.918presenting the
set of all possible locations for a moving objdch @ertain time instant.

Figure 3. Coverage of all possible trajectories beteen two consecutive observations

The set of all locations where a moving object rhigh between two consecutive observations
corresponds to an ellipsis (Figure 3). This elspsdvers all the possible lens areas between the tw
consecutive observations. Its parameteasidb may be computed as follows= Vnax ¥ (t2- 11)/2,

c=( p2 -p.)/2 andb’=a’*-c.

Dealing with uncertainty in ST databases Data collected by sensor systems allow
estimating the location of observed objects attang instant between observations, assuming, for
example, that the movement is linear and unifortween two consecutive observations. This
semantics is not satisfactory to answer queriegevaecertainty is significant. Hence, considering
the uncertainty areas as described in the preseason, we propose to combine basic operations
on moving objects with different semantics to pdavimeaningful operations in this context
(Moreira et al., 2000).

Possibly Semantics

When considering the Possibly semantics, we lookhe set of all possible candidates matching a
qguery. This may be indicated to the query evalubtoadding a prefix “Possibly” to the chosen
operation. Answers to such queries are supersetbeoideal results obtainable in an infinite
precision representation. The answer to a querly asc'Which are the objects that have been in
Area C” includes all the objects that actually h&deen in that area, and it may also include some
objects that have not. Similarly, is the answea tguery like “Give me the movement of object O



within Area C” includes all the parts of the mowarhof object O for which it actually was within
Area C, and it may also include some parts of tbgament for which the object was not there.
The set complement of this result consists in thkies that definitely do not match the query
predicate.

Surely Semantics

When considering the Surely semantics, only vathas surely match the query are returned. In
that case, the prefix “Surely” is associated torgugperations, and the answers represent subsets of
the reality. The answer to a query such as “Whrehtlae objects that have been in Area C” would
be a subset of the objects that actually have beékrea C. This means that some objects that
actually have been in the area as well may be oedniy the answer. Similarly, the answer to a
guery like “Give me the movement of object O witiirea C” would include only some parts of
the movement of object O for which it was actualithin Area C. Some parts for which object O
also was within Area C may be ommited.

The set difference of the result of an operationgishe Possibly semantics with the result of the
same basic operation using the Surely semanticsngeta set of values for which it is neither
possible to assert that they do match the quedigate nor that they do not.

Using probabilistic methods

Consider now the use of methods that allow estimgdtie location for a moving object at any time
instant, specifically, a probabilistic distributiomethod over the uncertainty areas. Query
expressions evaluation can be augmented with aapiligiic estimation of the answer. The goal is
to be able to answer queries such as, “Which aeoljects that have a probability of 0.6 to be
inside Area C,” or “Which were the ships in a certarea during a given time interval, with a

probably of at least 30%.”

Figure 4 illustrates this query (Pfoser et al.,9)9%e consider the case of a future movement in a
two-dimensional space. As described in the unadgstaif moving objects trajectoriesection, the
lens area bounds the permitted deviation of theaib|f we suppose the probability distribution to
be uniform in this lens area, then the object id sdthin a given area (query window) with a
probability of 30%, if at least 30% of its lens @iie concentrated within that area.

Lens area Query win

Figure 4. Probability of intersection between a leg area and a query window

In the following query examples, prefix “Proba’used to return the measured probability for the
evaluated predicate. When a probabilistic methadHe measurement of uncertainty is used, the
Possibly and Surely semantics may be seen asydart@ases.

Query examples



We present here some query examples to illusthetes¢mantic variants proposed above. A more
detailed description of relevant query operatiory me found in Moreira et al. (2000).

We consider as a case study the MONICAP systermiaritoring and control of fishing activities
(CCMP, Inesc). The system has been used since h@p3Re Portuguese general authority for
fishing activities (IGP). It continuously monitotise position of the vessels and records the history
of their courses. Vessels are represented as maobjegts. Static objects represent fishing areas,
harbors, and so forth.

Consider the following relations:
FishingShips(reference:string, name:string, voyagesement)
ForbiddenAreas(name:string, geometry:polygon)

Notice that the entire movement of a vessel isasgmted as an attribute in the relation
FishingShips The queries correspond to the kinds of questibas IGP would like to be able to
answer based on their database system. They watkpreessed here using an SQL-like syntax.

Q1: Suppose the authorities want to investigate whe mesponsible for a spread of waste in the sea
and want to know the behavior of all vessels toald have been in the area.

SELECT x.name, Possiblyln(x.voyages, :PollutedArea)
FROM FishingShips x
WHERE notEmpty(PossiblyIln(x.voyages, :PollutedAjea)

The valuePollutedAreais a user-defined polygon representing the arezrevthe spread of waste
has occurred. The expresswnoyagesepresents the movement of each fishing shipperation
Possiblylnapplied to the couplé.voyages, :PollutedAreagturns, for each shig the part of its
movement thatpossibly occurs inside the given area (that is, where lareas intersect the
PollutedArea) The predicateotEmpty()determines whether this argument is empty. Heaibdtvs
selecting only the fishing ships that have a nortgmmpvement inside thollutedArea QueryQ;
returns pairs of values, where the first is a naha ship, and the second is the part of its
movement that possibly occurred in the considered.a

Q2: Authorities apply penalties when they are ablguarantee that a fishing ship has been in a
forbidden area. The following query returns the sashthe ships that have been in the Blue Coast
reservation.

SELECT x.name

FROM FishingShips x, ForbiddenAreas y
WHERE y.name = “Blue Coast reservation”

AND notEmpty(Surelyin(x.voyages, y.geometry));

OperationSurelylnreturns the parts of the movements for which ipassible to assure that a
fishing ship was inside the forbidden area. Apgiythe predicateotEmptyto the result of the
previous operation allows selecting the tuplesefrequired fishing ships.

In the following, we assume that a probabilistictimoeel for measuring uncertainty is implemented
on the MONICAP system. In that case, the previausdueries may be expressed as follows:

Qu: Q2:



SELECT x.name, In(x.voyages, :PollutedArea) SELEGdme

FROM FishingShips x FROM FishingShips x, Forbiddes& y

WHERE Probaln(x.voyages, :PollutedArea)>0 WHEREme = "Blue Coast reservation”
AND Probaln(x.voyages, y.geometry)=1

The Probaln operation, applied to its couple of argumentsurret a value between 0 and 1
corresponding to the measured probability that mmarmd x.voyagesmnay occur inside the given
area.

Qs: We search here for the fishing ships that wersezlthan 0.2 miles from vessel “P01” on May
28, 2000 with a probability greater than 0.6.

SELECT x.name

FROM FishingShips x, FishingShips y

WHERE x.reference = “P01”

AND vy.reference x.reference

AND 0.6 < ProbaWithinDistance(During(x.voyag@%/28/2000,05/29/200%)
During(y.voyageg)5/28/2000,05/29/20010.2));

The first condition allows selecting the fishingipstwith reference “P01.” The second avoids
comparing the distance of “P0O1” with itself. Finalthe third condition restricts the selection to a
measured probability greater than 0.6 from allifighships that possibly were at a distance inferior
to 0.2 miles from “P01” during May 28, 2000.

Future trends

In recent years, uncertainty handling emerged asmgortant issue in moving object database
research. Several aspects were investigated. Twplementary models were given: Pfoser et al.
(1999) focused on past objects’ movement when Wolé&t al. (1999c¢) and Trajcevski et al. (2002)
treated future objects’ movement. Wolfson et a@9@b, 1999a) investigated the communication
cost of uncertainty in the case of a real-time @pfpibn. Pfoser et al. (2001) added fuzziness in
object location and considered the case of movbjgats that may change their geometry in time.
An important issue of the current research activityhis domain is the design of a probabilistic
model of uncertainty. The goal is to handle mosdisdéc (non-uniform) distributions of probability
on the location of moving objects, and to be ableneasure the validity of the query answers.
Recent results (Cheng, Prabhakar & Kalashnikov,32@) Cheng, Kalashnikov & Prabhakar,
2003a; Trajcevski et al., 2003) are going towaid foal, even if they just briefly touch upon the
possibility of a non-uniform distribution.

INDEXING

In this section we investigate the shortcomingdraditional structures with respect to spatio-
temporal databases indexing. We present some imgletdchniques that have been recently
proposed to overcome these limitations, and disthesperspective of ongoing research.

General issues — Background

Since traditional structures cannot be used fortidimensional data indexing, during the last two
decades there have been a lot of works to desiggieet and reasonably simple spatial indices,
like the R-tree, that can be used in existing DBM&Ssupport the optimization of spatial queries



(see the surveys in Gaede and Guenther, (1998Rayalix, Scholl and Voisard, (2001)). R-trees
rely on a balanced hierarchical structure in whegth tree node, whether internal or leaf, is
mapped onto a disk page. The R-tree (and its \ajiamganize rectangles (which constitute the
bounding boxes of the objects in the indexed dgtaseording to containment properties.
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Figure 5. R-tree indexing

An example of an R-tree is shown in Figure 5. Waua®e there that a disk page can store no more
than four entries (an entry is a pair composedpdiat and a bounding box, and is used to navigate
in the tree). Groups of four or less objects aentbreated and assigned to pages in the structure,
based on their proximity relationships. This leaas our example, to the groufis2,3}, {4,5,6,7},

and so on. Note that grouping objects close irsffaee aims at minimizing the overlapping of the
groups’ bounding boxes and helps reduce the disksaes during search operations. The same
grouping process is applied to the bounding boxegaups, recursively, until one obtains a single
disk page, theoot of the tree.

The R-tree properties are similar to that of thérd®; that is, the tree is balanced, its size is
logarithmic with the size of the indexed data set #s space complexity is linear. It supports poin
and window queries. A point query, for instancepesformed by a top-down traversal of the tree,
exploring at each level the sub-trees whose bogntox contains the argument point. R-trees
extend B-tree indexing to multi-dimensional dataelies, however, on the important assumption
that these data remain constant once stored idatadase, until explicitly updated. In the presence
of objects moving in the plane, this assumptiomas longer valid, as it would require very
continuous updates to the structure.

We chose to focus the rest of this section on eesgmtative proposal, the Time-Parameterized R-
tree (TPR-tree), and describe its design, its ptagseand the queries it supports. We use this firs
presentation as a basis for a more general disgsusigvoted to the challenges raised by moving
objects indexingand to the issues that remain teoheed by current and future research.

A Detailed Example: The TPR-tree

The TPR-tree (Saltenis, 2000) is an extension ®Rkree that aims at indexing current and future
positions (but not the past ones) of moving objellsre precisely, the index handles any object
whose position is a tuple of coordinates(t),...,%(t)). Each coordinatei(t) is itself a linear
function of time of the fornxi(t)=xi(to)+Vi(t-t), where the instarty defines the reference position
of the indexed object anglis the speed of the object along the axis

Note that using linear function means that we atersonly objects with constant speed, which is a
reasonable assumption. In the following we restiet discussion to objects moving in the 2D
plane (=2).

Building a TPR-tree

Given a dataset of objects whose trajectories cpmjih the above representation, the TPR-tree is
an R-tree-like index, built at timtg and valid for a time intervdl. The basic idea of the structure
is to construct an R-tree with time-evolving bourgdboxes. Similar to the classical R-tree, each



leaf corresponds to a bounding box that contaigsoap of objectqo;,...,q}. But unlike the R-
tree, the edges of a bounding box in the TPR-tme@/e” so as to enclose as accurately as possible
its associated group of objects during all theihfe of the index|to, tp+U] .
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Figure 6. Evolving bounding boxes in the TPR-tree

Figure 6, inspired from Saltenis, Jensen, Leuteaeggd Lopez, (2000), illustrates this intuition.
We consider six moving objects and assume thatalpacity of a disk page is two objects. The
upper part of the figure shows the positions atetifp and the lower one, the positions Tat
(T>T1). An arrow is associated with each object, showisglirection and speed. Each column
corresponds to a possible solution for indexingéh@ata with bounding boxes. The left side shows
the classical R-tree approach, with three fixednoling boxesrl ,r2 ,r3, determined at timé&;. It
appears clearly that this approach is not adapte @ bounding box &f; is obsolete aT, (for
instance,r; no longer includes any object &). This approach requires updating the bounding
boxes so frequently that the maintenance of thexrmkcomes impossible.

Consider now evolving bounding boxes, that is,aegles whose edges move along the two axes
according to a linear function of time. The choioe clustering objects in a box should now take
into account not only their spatial proximity ang T, but also their future positions. For instance,
the central column of Figure 6 shows that groughpects by merely considering their closeness at
time T, gives a good result farl, but not forr2 andr'3. The index greatly suffers from the
increased overlapping.

The rightmost column illustrates a satisfactoryugiag of our six objects, which takes in account
their proximity along the whole validity intervalf éhe index. This leads to grouping together
objects that share more or less the same direainththe same speed. The comparison of the
evolving boxes”1, r’2, r’3 atT; andT, shows the superiority of this approach over trevious
one.
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Figure 7. Managing the evolution of a bounding box



Figure 7 gives an example of the evolution of teergding box betweety and somé>t,. The
position and speed of each object are known do find the growing speed & we determine the
minimal and maximal speeds on both thendy axes. For instancem the right border of the
bounding box moves with a speed that correspontisetmaximal values of the projection on e
axis of all the objects inside the bounding boxieh&X(to), and the speed of the left border
corresponds to the minimal speed, heyit,). The bounding bo® of a TPRtree is minimal at
time to. Each edge oB moves along each axx with a speeds, which is equal to the maximal
speed along; of the objects contained B It follows that the minimality of the boundingb@s
not preserved.

In a classical R-tree, the insertion, update andtida strategies aim at minimizing the bounding
box area, the overlapping of the bounding boxes tardperimeters. The TPR-tree maintenance
uses a similar approach, using the integral versfahese parameters. Intuitively, the minimization
always considers the (continuous) sum of the patensievalues over the validity interval of the
tree. Refer to Saltenis et al. (2000) for details.

Queries supported by the TPR-tree

The index supports three kinds of queries:

» spatial window queries at a given instant \Delta

» spatial window queries for a time interf&eg,tend

* moving window queries, with valué®egattyeg andRend attend

Figure 8 presents examples for these three kindm@ifies in a 1D-space. Consequently, a spatial
window query is here at a given instant a segmsma(eRyeg andReng). In this exampleo, denotes
a moving object and we assume tbatl , that is, a new index is built every time unit.

; L ;
1 2 ] +4 5 time

Figure 8. Examples of queries in a 1D-space

1) Qo=([-5,5],0.5) andQ,=([15,25],1.5) are queries of the first kind; however, two caggsear:
a) either the query is formulated befdgge.g.Qo), that is, before the update, and the result is
consequentlyo,}, whose future trajectory is forecasted,;
b) or the answer is the empty set since the new pasénd speed aj; are now considered
(for example Q).
2) Q-=([10,30],3.75,5.5)is a query of the second category. If the quesx@essed at a tintg1,
the result is the empty set, since the expectgdctay foro; does not go through the query
window, and objecb; is unknown. IfQ- is expressed at tinfe<t<2, the answer is, since after



the update the planed trajectory intersects theyquadow. Objecto, is still ignored. Finally,
if Q. is expressed at a tinte2, the query result is the Set;, 0,}.
3) Qs belongs to the third category and its result ésdhjecto, at any time.

If we consider the query of the first category, search with the TP®Ree is close to that of the R-
tree: We select a bounding b&xif the query windowR overlapsmbh For the queries of the

second and third categories, defined on a timevaltgt,eytend , We have to select the bounding
boxes that intersect the query window betwgggyandten¢ The algorithms rely on the observation
that two moving rectangles intersect if there isrestantt/ftpeq tend Such that their projections on
each dimension intersect.

In summary, the index is valid only for a peridd and its performances deterioriate with time
because the bounding boxes grow. A new index meistreated whenever the validity period is
over. In other words, it is not a fully dynamicusiture that can be created once and adapts to the
evolutions of the database.

Discussion and future trends

Let us now study the characteristics of the TPR-maed evaluate to what extent it meets the
general needs of spatio-temporal indexing. Throughbe discussion we will mention other
techniques and recent proposals that apply to attes, or provide an alternative approach.

Indexing past, current and future positions

The TPR-tree indexes the current and the futuretipps of moving objects, and is therefore
relevant for the applications that track, in raale, objects equipped with a positioning system.
This structure is the state-of-the-art solutiontfos particular situation. Its performances hagerb
analyzed recently in Tao, Papadias and Sun, (2008¢h also describes important improvements
to the construction algorithms. Among the otherppsals that address the same problem, but are
somewhat less satisfactory, we can mention Taylsay and Wolfson, (1998), which uses PMR-
quadtrees to index one-dimensional moving pointus( two indices are needed for 2D points),
and several theoretical studies, such as Kolliasmydpolos and Tsotras (1999) and Agarwal, Arg
and Erickson (2000), which, unfortunately, do nawvide a practical solution.

Another quite relevant area of research conceresntiexing of past locations, which can be of
interest to data-mining applications (for exampale,application that analyzes the movements of a
given population in a given area and for a givenga®. If we keep the assumption that movements
can be decomposed in a finite number of consectitive intervals, and that for each interval the
speed of an object is constant, then the probleimiisdex a polyline in a 3D space, with “time” as
a third dimension.

A straightforward solution is to build a 3D R-tress proposed in Theodoridis et al. (1996). Note
that this assumes that the bounding boxes are ledutitat is, that each time interval associated to
the segments of the polyline are closed. Othervase, of the bounding boxes is of infinite size,
and this raises problems. This can be compared thghTPR-tree, which considers only one
segment, and bounds the time interval of intdtgsty+U] . Another possibility is to rely on a set of
R-trees, each covering a time interval. The apgroadirst proposed in Nascimento et al.(1998;
1999), with a structure called the HR-tree thatntaans an R-tree for each timestamp. The trees of
the previous timestamps are never modified. In otdesave space, the common branches of
consecutive trees are stored only once. The HRipedorms well for moving objects that
frequently update their motion, but the performanae poor in range queries.



Several other proposals are worth mentioning — 8taal. (2001); Pfoser et al. (2000); Porkaew,
Lasaridis and Mehrotta, (2001); Hadjieleftheriowlli®s, Tsotras and Gunopoulos (2002); and
Saltenis et al. (2002), whose common approach extend Rtrees to handle a polyline in a 3D
space, with frequent updates that affect the kegient. In Tao et al. (2001), the authors propose
an index, the MV3R-tree, which basically uses batmulti-version R-tree (Becker, Gschwind,
Ohler, Seeger & Widmayer, 1996) similar to the H&tand a 3D R-tree built on the leaf nodes.
The multi-version R-tree is expected to perforntdyeior timeslice or short interval queries, while
the 3D R-tree is more adapted for long intervalrigge Another interesting structure for indexing
the past trajectories of moving objects is describe Pfoser et al. (2000). It still exploits the
structure of the R-tree, but tries to group togetihe segments from the same polyline, which
allows to support new types of queries, including $o-called “trajectory queries,” with predicates
such “enters,” “leaves,” “crosses,” and so forth.
Future trends

As discussed above, so far the proposed indextgtascfall in one of two categories: either they
index the past position, up to the current timethay index the present and future positions, but
their relevancy degrades with time. There is nacstre that supports simultaneously both
situations, and no fully dynamic index (that is, malex providing an automatic maintenance
policy, avoiding periodic, costly re-creation).dpite of the difficulty of the problem, new resdarc
efforts are required to address these limitations.

Recently, some specific applications, with constisathat can help to reduce the complexity of the
indexing problem, have attracted the attentionrestarchers. Among them is worth mentioning the
common situation of objects moving on a constrainetivork such as in Pfoser et al. (2003). For
instance, the authors propose to index 3D trajmgowrith two 2D indices, one that contains the
network (in the 2D space), and one that contaiegrdmsformed trajectories (in 1D for space and
1D for time). Another emerging area of researcthésmain-memory indexing of moving objects,
particularly in the context of moving objects sesvproviding notification services to customer. In
Kalashnikov, Prabhakar, Aref and Hambrusch, (20@2)mple partition of space in cells is used to
index the sef of moving objects and determine, at each instard, for each querg submitted by

a user, the subset &fthat constitutes the answerdolt is argued that the capacity of computers
permits to keep all the structure in main memonyg #&herefore avoids to design complicated
mappings of these structures on disks. More gdgerthis suggests that emerging Web
applications providing services on moving objeeaise particular challenges that do not necessarily
require the traditional database design approaches.

CONCLUSION

We investigated in this chapter several importastiés pertaining to the management of moving
objects datasets in databases. The design of espatise benchmarks is closely related to the
formal characterization of the properties (thatdistribution, speed, nature of movement) of these
datasets; uncertainty is another important aspettdonditions the accuracy of the representation
and therefore the confidence in query results. Ifinafficient index structures, along with their
compatibility with existing software, is a cruci@quirement for spatio-temporal databases, as it is
for any other kind of data.

The common properties of all the issues considardtlis chapter are their strong impact on the
representation of data and the way they deterniea@mplementation of both the operations and
the data structures that support the evaluatioguefries. Indeed, as suggested by the previous



discussion, one can envisage many possible apphsatvith quite different features. It is more
than likely that the techniques used to managdabdae of mobile phone users, a database of cars
moving on a road network or a database of airplamegng freely in a 3D space will strongly or
partly differ because of the differents speeds, enwent constraints (netwoetlased or not) and
behavior. All the aspects (benchmark, uncertaiimigexing) covered, as well as some others
(implementation and semantics of database operaforsinstance), are affected by these
specificities.

We therefore expect in the forthcoming years mahgmonew results, and many improvements to
the state-of-the-art solutions that have been kshel so far.

References

Agarwal, P.K., Arge, L., & Erickson, J. (2000). kxdng Moving PointsProceedings of the ACM
Symposium on Principles of Database Systdms-186.

Becker, B., Gschwind, S., Ohler, T., Seeger, B.\\W&dmayer, P. (1996). An Asymptotically
Optimal Multiversion B-TreeVLDB Journa) 5(4), 264-275.

Brinkhoff, T. (2000). Generating network-based nmgvobjectsProceedings of the International
Conference on Scientific and Statistical DatabdS&DBM) 253-255.

Brinkhoff, T. (2002).A framework for generating network-based movingdigj Geolnformatica,
6(2), 153-180.

Cheng, R., Kalashnikov, D.V., & Prabhakar, S. (200Fvaluating probabilistic queries over
imprecise dataProceedings of ACM SIGMOD International Conferelmce Management of
Data, 551-562.

Cheng, R., Prabhakar, S., & Kalashnikov, D.V. (2003Querying Imprecise Data in Moving
Object EnvironmentsProceedings of the 19th IEEE International Confeeeron Data
Engineering723-725.

Gaede, V., & Guenther, O. (1998). MultidimensioAatess MethodsACM Computing Surveys
30(2), 170-231.

Hadjieleftheriou, M., Kollios, G., Tsotras, V.S., &unopoulos, D. (2002). Efficient Indexing of
Spatio-temporal Object®roceedings of the International Conference on ktitey Data Base
Technology251-268.

Kalashnikov, D.V., Prabhakar, S., Aref, W., & Hamfch, S. (2002). Efficient Evaluation of
Continuous Range Queries on Moving ObjePraceedings of the International Conference on
Databases and Expert System Applications (DEX2);740.

Kollios, G., Gunopolos, D., & Tsotras, V.J. (1999n Indexing Mobile Object?roceedings of
the ACM Symposium on Principles of Database Syst$is272.

Moreira, J., Ribeiro, C., & Abdessalem, T. (200Query Operations for Moving Objects Database
Systems. Proceedings of the 8th International Symposium ailvafices in Geographic
Information Systems (ACMGIS-0Qp8-114.



Moreira, J., Saglio, J.M., & Ribeiro, C. (1999).dResentation and manipulation of moving points:
An extended data model for location estimatidournal of Cartography and Geographic
Information System&6(2), 109123.

Nascimento, M.A., & Silva, J.R.O. (1998). Towardsttrical r-treesProceedings of the ACM
International Symposium on Applied Computi2g5-240.

Nascimento, M.A., Silva, J.R.O., & Theodoridis, (£999). Evaluation for Access Structures for
Discretely Moving Pointsinternational Workshop on Spatio-Temporal Datab&Beagement
(STDBM'99) LNCS 1678, 171-181.

Pfoser, D., & Jensen, C.S. (1999). Capturing theetninty of moving object representations.
Computer Sciengd 651, 111-132.

Pfoser, D., & Jensen, C.S. (2003). Indexing of NekaConstrained Moving ObjectBroceedings
of the International Symposium on Geographic Infation System<5-32.

Pfoser, D., Jensen, C.S, & Theodoridis, Y. (2000vel Approaches in Query Processing for
Moving Objects.Proceedings of the International Conference on Veayge Data Bases
(VLDB), 395-406

Pfoser, D., & Tryfona, N. (2001). Capturing fuzzaseand uncertainty of spatiotemporal objects.
Computer Scien¢g@151, 112.

Porkaew, K., Lasaridis, |., & Mehrotta, S. (200Querying Mobile Objects in SpatioTemporal
Databases. Proceedings of the International Symposin Spatial and Temporal Databases
(SSTD), 59-78.

Rigaux, P., Scholl, M., & Voisard, A. (2008patial Databasesvlorgan Kaufmann.

Saglio, J.M., & Moreira, J. (2001). Oporto: a refai scenario generator for moving objects.
Geolnformatica5(1), 71-93.

Saltenis, S., Jensen, C.S., Leutenegger, S.T., get,oM.A. (2000). Indexing the Positions of
Continuously Moving ObjectsProceedings of the ACM SIGMOD Symposium on the
Management of Daté831-342

Saltenis, S., & Jensen, C.S. (2002). Indexing ofviMig Objects for Location-Based Services.
Proceedings of the IEEE International Conferenceébaa Engineering (ICDEW63-472

Sistla, P., Wolfson, O., Chamberlain, & Dao, S.98P Querying the uncertain position of moving
objects.Computer Scien¢d 399 310.

Tao, Y., & Papadias, D. (2001). The MV3R-Tree: aatgpTemporal Access Method for
Timestamp and Interval QuerieBroceedings of the International Conference on Maagge
Data Bases (VLDB}#31-440



Tao, Y., Papadias, D., & Sun, J. (2003). The THIR¢e: An Optimized Spatio-Temporal Access
Method for Predictive Querie®roceedings of the International Conference on Meayge
Data Bases (VLDB){90-801.

Tayeb, J., Ulusoy, O., & Wolfson, O. (1998). A Qtrad Based Dynamic Attribute Indexing
Method.Computer Journald1, 185-200.

Theodoridis, T., Silva, J.R.O., & Nascimento, M(A999a). On the Generation of Spatiotemporal
DatasetsComputer Sciencd 651, 147-164.

Theodoridis, T., Silva, J.R.0O., & Nascimento, M(A999b). On the Generation of Spatiotemporal
DatasetsProceedings of the International Conference on ka8patial Databases (SSD'99),
147-164.

Theodoridis, Y. (2003). Ten Benchmark Database @sdor Location-based ServicgSomputer
Journal 46(6), 713-725.

Theodoridis, Y., Vazirgiannis, M, & Sellis, T. (18P Spatio-temporal Indexing for Large
Multimedia Applications.Proceedings of the IEEE International ConferenceMumltimedia
Computing and System$}1-448.

Trajcevski, G. (2003). Probabilistic range quern@snoving objects databases with uncertainty.
Proceedings of the 3rd ACM International Workshaop@ata Engineering for Wireless and
Mobile Access39-45.

Trajcevski, G., Wolfson, O., Zhang, F., & Chamber|s&. (2002). The geometry of uncertainty in
moving objects databaseBroceedings of the 8th International Conference Extending
Database TechnologyNCS, vol. 2287, 233-250.

Wolfson, O., Jiang, L., Sistla, A.P., Chamberl&@n, Rishe, N., & Deng, M. (1999a). Databases for
tracking mobile units in real tim€omputer Scien¢d54Q 169-186.

Wolfson, O., Sistla, A.P., Chamberlain, S., & Yestia(1999b). Updating and querying databases
that track mobile unitdDistributed and Parallel Databasg®(3), 257-387.

Wolfson, O., Sistla, A.P., Xu, B., Zhou, J., Chamdie, S., Yesha, Y., & Rishe, N. (1999c).
Tracking moving objects using database technolody®@MINO. Next Generation Information
Technologies and Systemd42-119.



