
MANAGEMENT OF LARGE MOVING OBJECTS DATA SETS:
INDEXING, BENCHMARKING AND UNCERTAINTY IN
MOVEMENT REPRESENTATION

Talel Abdessalem, E.N.S.T., Paris, Talel.Abdessalem@enst.fr
Cédric du Mouza, eq. VERTIGO, lab. CEDRIC, C.N.A.M. Paris, dumouza@cnam.fr
José Moreira, E.N.S.T., Paris, jmoreira@uportu.pt
Philippe Rigaux, L.R.I., Univ. Paris-Sud, Orsay, rigaux@lri.fr

Abstract
This chapter deals with several important issues pertaining to the management of
moving objects datasets in databases. The design of representative benchmarks is
closely related to the formal characterization of the properties (that is, distribution,
speed, nature of movement) of these datasets; uncertainty is another important aspect
that conditions the accuracy of the representation and therefore the confidence in query
results; finally, efficient index structures, along with their compatibility with existing
softwares, is a crucial requirement for spatio-temporal databases, as it is for any other
kind of data.

INTRODUCTION
A lot of emerging applications (traffic control, mobile computing, vehicles tracking) rely on large
datasets of dynamic objects. This proliferation is encouraged by mature technologies (for example,
the Global Positioning System, or GPS) that provide online information on mobile devices and
enable communication between a centralized system and mobile users. Most of the services that
can be provided by the system to a user are based on the location of the latter at a given instant (for
instance, the case of company searching for the taxi nearest to a customer calling on his mobile
phone, or a tourist in his car looking for his next hotel). But, apart from these so-called location-
based services that deal with the present or future (expected) positions of objects, we can also
envisage applications that study the past movements within large moving objects datasets (for data-
mining purposes, for instance).
These examples illustrate some new requirements that address the core functionalities of Database
Management Systems (DBMS). Indeed, we must consider new data models (as any previously
proposed model falls short in representing continuous movements), new query languages and new
system-level support. In this chapter we focus on the latter aspect. More specifically, we propose a
survey of the following issues: benchmarking of operations on large moving objects datasets,
uncertainty in trajectories representation and database indexing. Let us be more specific by shortly
developing each topic.

Benchmarking
In computing, a benchmark is the result of running a set of standard tests on one component or
system to compare its performance and capacity to that of other components or systems. They are
designed to simulate a particular type of workload, running actual real-world programs on the

system “application benchmarks,” or using specially created programs that impose the workload on
the component “synthetic benchmarks.” Application benchmarks are meant to be representative of
real-world applications and potentially give a better measure of real-world performance. On the
other hand, synthetic benchmarks offer a sizeable workload of data sets and operations, allowing
testing individual components (such as indexing methods or hard disks) and stressing the strengths
and weaknesses of each one individually. In the spatio-temporal database context, benchmarks help
to experiment with new approaches (for example, new languages or new indexing structures); they
can be used to assess the effectiveness of a new system; and finally, they contribute to
characterizing the properties of datasets.

Uncertainty
The representation of objects’ movement is inherently imprecise (Pfoser & Jensen 1999;
Trajcevski, Wolfson, Zhang & Chamberlain, 2002). Imprecision is introduced by the measurement
process in the sampling of positions and by the sampling approach itself. The accuracy of
measurements depends largely on the instruments and the techniques used (consider the example of
the GPS). These devices are only able to capture the movement of an object by sampling its
position at discrete time points and, consequently, the exact position of an object between
measurements is unknown. This feature, commonly referred to as uncertainty, gives rise to several
problems regarding the representation and querying of moving objects. We shall discuss in
thischapter the factors that determine the imprecision, and then study (in a database perspective)
ways to handle this imprecision.

Indexing
The existence of efficient access methods is one of the most important features of modern database
systems. Given the huge amount of data stored in such systems, there is indeed a crucial need for
structures that allow filtering of irrelevant data during query processing. B+-tree and hash-based
techniques are used quite intensively in the traditional relational DBMS context. It is a well-known
fact for database practitioners that a query execution plan, which relies on an index, is several
orders of magnitude faster than a plan that merely scans the database. It turns out, however, that
these structures fall short in supporting queries over spatial or spatio-temporal data. We shall
examine in this chapter the difficult challenges raised by indexing objects whose location changes
continuously, describe some representative attempts to solve the problem and discuss research
perspectives in this area.

The main objectives of this chapter are to provide an up-to-date panorama of the ongoing research
devoted to moving objects management systems, with a strong emphasis on the aspects that
determine the efficiency and reliability of such systems. We will successively investigate
benchmarking, uncertainty and indexing, giving for each topic some concrete examples, a
discussion on the raised problems, some general design guidelines commonly adopted to solve the
problem and finally, a presentation of future trends together with the most recent references.

BENCHMARKING

We begin with a short introduction on the general issue of database benchmarking, and then study
some representative benchmarks for spatio-temporal databases.

Background
The two major components of a benchmark are workload specification and measurement
specification.
In database or transaction processing environments, the workload specifies the data and query sets.
The data sets are used to populate the database. They can be composed of real-world data or
produced by a data sets generator according to specific statistical models. The query sets simulate
the activity occurring in the database, such as operational and decision support transactions, or
batch jobs. A transaction set driver may be used to simulate environments, where a number of users
input and manage queries or transactions via a terminal or desktop computer connected to a
database, with “thinking” and “keying” times interleaved.
A measurement environment must specify a metric and a reporter. By definition, a metric for a
feature is an association of numeric values to feature values in such a way that the general
properties of distances are verified. In a benchmarking environment, a metric is required to confer
significance to the performance evaluation results. An example of a metric is the number of
transactions per second (TPS). The reporter specifies how to collect all relevant traces and logs and
computes indices pertinent to the specific metrics. It must provide the detailed information required
to make accurate decisions on the performance capability of a system under test.

All testing processes require a well-designed execution plan. Execution plans ensure real-world
environments duplication during a benchmark. The results should not depend on foreign
factors(such as the hardware and software configurations) that are not related with the components
in evaluation. These configurations would be barely reproducible in other environments; therefore,
the results obtained would be hardly or not even comparable with the results of a similar test in
different settings.

Another important feature of a benchmark is to provide a model that is representative of real-world
applications with an extensible workload, made of sizeable data sets and sets of queries with
varying complexities. This ensures that the model is useful and yet verifiable. Portability (it should
be easy to implement on a broad range of DBMS) and simplicity (it must be understandable), also
are important qualities of a benchmark.

Benchmarks for moving objects databases
Benchmarking spatio-temporal systems is a novel issue; so far, emphasis has been on the
development of spatio-temporal data sets generators. There are now data sets generators for
simulating objects moving freely, with no or few restrictions in the movement of the objects, and
generators for simulating the movement of objects for which the movement is constrained by a
defined network, such as a road network.

Non-network-based generators
The first spatio-temporal data sets generator for moving objects has been the so-called Generator of
SpatioTemporal Data (GSTD) (Theodoridis, Silva & Nascimento, 1999a) and later, a new version
was proposed introducing some important new features (Theodoridis et al., 1999b). In its current
version, GSTD is a Web-based application and there also are data sets, in XML format, that can be
downloaded from the Web.

The GSTD allows the generation of data about points and MBRs to be moving on a rectangular
space. The space can be populated by static spatial objects that obstruct the movement of the
objects. The objects, points or rectangles, are initially distributed in space according to Uniform,
Gaussian or Skewed distributions. The evolution of spatial objects is directed through the definition

of a set of parameters that control the duration of an object instance (which involves changes of
timestamps between consecutive instances), the shift of an object (which involves changes of
spatial location in terms of shift/translation of center point) and, when generating MBRs, the
resizing of an object (changes in object size).

The combination of possible different distributions for these parameters allows simulating different
scenarios, such as objects moving equally slow or fast and uniformly on the map, having a
relatively large number of slow objects moving randomly, or having a set of objects that converge
to some area of the workspace or moving to some direction (east, for example). The cardinality of
the data sets is assumed to be constant during the generation process. The generated data sets are
memory-less, that is, future events do not depend on past states. This framework also defines how
to handle objects that fall outside the map. Three alternatives are proposed: the adjustment
approach, where coordinates are adjusted to fit the workspace; the toroid approach, where the
objects that traverse one edge of the workspace enter back in the opposite edge; and the radar
approach, where coordinates remain unchanged, although fall beyond the workspace.

The main goal of previous approaches was to produce data sets that are rich from the statistical
point of view, but a question arises of how to generate datasets representative of the behavior of
real-world objects.

The Oporto framework (Saglio & Moreira, 2001) presents the specification of a realistic spatio-
temporal datasets generator. The motivation for this proposal is that real-world entities do not have
a chaotic behavior. They are guided by goals and they do not ignore the environment around them;
that is, they are sensitive to agents favoring certain kinds of behavior and to agents inducing them
to avoid other kinds of behavior. So, the generator exploits a scenario with harbors (static points),
spots (regions with fixed center and changing shape, representing plankton areas or storm areas),
fishing ships (moving points) and shoals of fish (fully moving regions). The fishing ships move in
the direction of the most attractive shoals of fish while trying to avoid storm areas. The shoals of
fish are attracted by plankton areas.

The default generation model parameters are based on information obtained from a real application
for monitoring fishing activities. These parameters are organized in three classes: sizing
parameters, responsible for the size of the data sets; distribution parameters, responsible for the
variations in temporal and spatial distribution of moving points; and miscellaneous parameters,
responsible for a few realistic features. It is proposed to use a logarithmic scale for sizing the data
sets, simulating 1, 10 and 1000 weeks of fishing activities, and two different scenarios – inshore
and open-sea fishing – for the spatio-temporal distribution of data sets.

Network-based generators
Previous approaches do not consider applications where moving objects follow a given network.
This issue has been covered by Brinkhoff (2000, 2002). This generator combines real data (the
network) with user-defined properties for controlling the functionality of selected object classes.
Important aspects are the maximum speed of connections, the influence of other moving objects or
external impacts (for example, weather conditions) on the speed, the adequate determination of
origination and destination of an object and time-scheduled traffic.

The generation of datasets requires three steps: the preparation of the network, which eventually
involves the conversion of files describing the nodes and the edges of the network into the file
formats supported by the generator; the definition of functions and parameters according to the

environment of the system under test; and the visualization of the generated datasets (they are
stored in a text file) using a tool that allows visualizing the motion of the objects.

As it is argued that it would be difficult to establish an environment where all these aspects could
be defined by simple user interaction or by predefined parameters, the framework only supports a
few standard parameters, and the specification of elaborate behavior for moving objects requires
user-defined functions and parameter settings. The implementation of the generator is based on the
Java programming language. The classes are predefined; only their functionality must be adapted.

Future trends
Research on benchmarking moving objects databases systems is a recent issue and, so far, the focus
has been on the generation of synthetic data sets. There are now several applications available on
the Web that allow generating free (Theodoridis et al., 1999b; Saglio et al., 2001) and network-
based (Brinkhoff, 2002) movements, according to a diversity of rules and control parameters. The
generated movement data sets are basically sequences of temporally ordered observations, each one
representing the location of a moving object at a certain instant. These data sets can be used to
populate a database storing the past movement of objects, or to simulate transactions for updating
the last-known location on systems concerned with present and near-future positions of moving
objects.

Works on the specification of query sets is quite limited and deserves attention in the future. Apart
from the benchmark database queries for location-based services (Theodoridis, 2003), there is no
other systematic approach in this area. The metric that has been used in the experiments published
so far was the number of disk blocks read for the evaluation of some operation. Notice that, as
moving objects database systems are not commercially available yet, the experiments performed
have focused exclusively on evaluation of the performance of specific access methods and
algorithms for spatio-temporal operations, usually a spatio-temporal windowing or clipping.
Authors use their own data and query sets and execution plans; hence, it is very difficult or even
impossible to compare the performance of the different methods and techniques that have been
proposed. This important issue should be considered in the near future by researchers in this area.

UNCERTAINTY
Let us now turn our attention to the uncertainty of moving objects trajectories. As mentioned in the
introduction of this chapter, the history of the objects’ movement is inherently imprecise (Pfoser et
al., 1999; Trajcevski et al., 2002). Imprecision is introduced by the measurement process in the
sampling of positions and by the sampling approach itself. We begin with a short introductory part
that illustrates the issue with an example and discusses the factors that determine the imprecision.
We then study, in a database perspective, how to handle this imprecision.

The uncertainty of moving objects trajectories Consider the concrete case of a port
authority dealing with a spread of toxic waste in the sea and querying a nautical surveillance system
to know which ships have crossed the polluted zone for a specified time interval. Imagine that the
ship responsible for the waste has actually followed the trajectory represented in Figure 1. The dots
represent observations made during the specified time period, the shaded region represents the
polluted area and the hatched line a trajectory that might have been inferred from the observations.

Figure 1. Indeterminacy of the behavior of an object between consecutive observations

The hatched line does not cross the shaded region and, thus, an answer to the query based on this
estimation of the trajectory would not include the guilty ship. On the contrary, an answer may
include false candidates whose inferred trajectory crosses the area even though they have not
actually been there.

Uncertainty of past, present and future positions
The preceding example focuses on the history of objects’ movement. In general, the focus may be
put on the past movement or on the future movement of objects, depending on the considered
application. Different needs were identified, giving rise to two main approaches.

The first approach (Pfoser et al., 1999), focusing on past movements, addresses the needs of mining
applications of spatio-temporal data: traffic mining, environment monitoring, and so forth. In this
case, uncertainty is determined using the observed successive positions of objects and some known
constraints on their velocity.

In the second approach (Sistla, Wolfson, Chamberlain & Dao, 1998; Wolfson, Sistla, Xu, Zhou,
Chamberlain, Yesha & Rishe 1999c; Trajcevski et al., 2002), the focus is put on the uncertainty
about the future movement of objects. This approach addresses the needs of real-time applications
and location-based services. Uncertainty, fixed in advance, here is used to avoid frequent updates to
the database when the actual object’s trajectory deviates from its representation in the database.
The database is not updated as long as the object’s movement deviation is less than the permitted
uncertainty.

Bounding uncertainty
There are physical constraints on the movement of objects, allowing limiting uncertainty of their
position. Particularly, the uncertainty interval for an object moving on a road is a section of the
road, whereas it is an area in the considered space for an object moving freely. When it comes to
future movements in a two-dimensional space, the uncertainty area is a circle centered on the
expected location of the object. Each circle bounds for a given instant the permitted deviation of an
object. Objects are committed to send a location update when the deviation reaches the bound.

For past movements, since the positions between two consecutive samples are not measured, the
best possibility is to limit the possibilities of where the moving object could have been (Pfoser &
Tryfona, 2001; Pfoser et al., 1999; Moreira, Saglio & Ribeiro, 1999).

p1 p2

r2r1

L

Figure 2. An lens area for a time instant

Let us consider a moving object m, a time instant t in an interval (t1,t2) between two consecutive
observations (p1,t1) and (p2,t2) (ee Figure 2). We denote by p1 and the positions of the moving
object at the observation time instants t1 and t2, respectively. At time t, the distance between m and
p1 is inferior to r1 =vvmax × (t- t1) where vvmax is a user-defined value standing for the maximum
velocity of moving object m. Distance between between m and p2 is inferior to r2 =vvmax × (t2- t).
So, at t, the moving object might be at any location within the area defined by the intersection of
the two circles of radius r1 and r2. This is a so-called lens area (Pfoser et al., 1999) representing the
set of all possible locations for a moving object at a certain time instant.

Figure 3. Coverage of all possible trajectories between two consecutive observations

The set of all locations where a moving object might be between two consecutive observations
corresponds to an ellipsis (Figure 3). This ellipsis covers all the possible lens areas between the two
consecutive observations. Its parameters a and b may be computed as follows: a= vvmax × (t2- t1)/2,
c=(p2 -p1)/2 and b2=a2-c2.

Dealing with uncertainty in ST databases Data collected by sensor systems allow
estimating the location of observed objects at any time instant between observations, assuming, for
example, that the movement is linear and uniform between two consecutive observations. This
semantics is not satisfactory to answer queries where uncertainty is significant. Hence, considering
the uncertainty areas as described in the previous section, we propose to combine basic operations
on moving objects with different semantics to provide meaningful operations in this context
(Moreira et al., 2000).

Possibly Semantics
When considering the Possibly semantics, we look for the set of all possible candidates matching a
query. This may be indicated to the query evaluator by adding a prefix “Possibly” to the chosen
operation. Answers to such queries are supersets of the ideal results obtainable in an infinite
precision representation. The answer to a query such as “Which are the objects that have been in
Area C” includes all the objects that actually have been in that area, and it may also include some
objects that have not. Similarly, is the answer to a query like “Give me the movement of object O

within Area C” includes all the parts of the movement of object O for which it actually was within
Area C, and it may also include some parts of the movement for which the object was not there.
The set complement of this result consists in the values that definitely do not match the query
predicate.

Surely Semantics
When considering the Surely semantics, only values that surely match the query are returned. In
that case, the prefix “Surely” is associated to query operations, and the answers represent subsets of
the reality. The answer to a query such as “Which are the objects that have been in Area C” would
be a subset of the objects that actually have been in Area C. This means that some objects that
actually have been in the area as well may be ommited by the answer. Similarly, the answer to a
query like “Give me the movement of object O within Area C” would include only some parts of
the movement of object O for which it was actually within Area C. Some parts for which object O
also was within Area C may be ommited.

The set difference of the result of an operation using the Possibly semantics with the result of the
same basic operation using the Surely semantics returns a set of values for which it is neither
possible to assert that they do match the query predicate nor that they do not.

Using probabilistic methods
Consider now the use of methods that allow estimating the location for a moving object at any time
instant, specifically, a probabilistic distribution method over the uncertainty areas. Query
expressions evaluation can be augmented with a probabilistic estimation of the answer. The goal is
to be able to answer queries such as, “Which are the objects that have a probability of 0.6 to be
inside Area C,” or “Which were the ships in a certain area during a given time interval, with a
probably of at least 30%.”

Figure 4 illustrates this query (Pfoser et al., 1999). We consider the case of a future movement in a
two-dimensional space. As described in the uncertainty of moving objects trajectories section, the
lens area bounds the permitted deviation of the object. If we suppose the probability distribution to
be uniform in this lens area, then the object is said within a given area (query window) with a
probability of 30%, if at least 30% of its lens area is concentrated within that area.

Lens area Query window

Figure 4. Probability of intersection between a lens area and a query window

In the following query examples, prefix “Proba” is used to return the measured probability for the
evaluated predicate. When a probabilistic method for the measurement of uncertainty is used, the
Possibly and Surely semantics may be seen as particular cases.

Query examples

We present here some query examples to illustrate the semantic variants proposed above. A more
detailed description of relevant query operations may be found in Moreira et al. (2000).

We consider as a case study the MONICAP system for monitoring and control of fishing activities
(CCMP, Inesc). The system has been used since 1992 by the Portuguese general authority for
fishing activities (IGP). It continuously monitors the position of the vessels and records the history
of their courses. Vessels are represented as moving objects. Static objects represent fishing areas,
harbors, and so forth.

Consider the following relations:
FishingShips(reference:string, name:string, voyages:movement)
ForbiddenAreas(name:string, geometry:polygon)

Notice that the entire movement of a vessel is represented as an attribute in the relation
FishingShips. The queries correspond to the kinds of questions that IGP would like to be able to
answer based on their database system. They will be expressed here using an SQL-like syntax.

Q1: Suppose the authorities want to investigate who was responsible for a spread of waste in the sea
and want to know the behavior of all vessels that could have been in the area.

SELECT x.name, PossiblyIn(x.voyages, :PollutedArea)
FROM FishingShips x
WHERE notEmpty(PossiblyIn(x.voyages, :PollutedArea));

The value PollutedArea is a user-defined polygon representing the area where the spread of waste
has occurred. The expression x.voyages represents the movement of each fishing ship x. Operation
PossiblyIn applied to the couple (x.voyages, :PollutedArea) returns, for each ship x, the part of its
movement that possibly occurs inside the given area (that is, where lens areas intersect the
PollutedArea). The predicate notEmpty() determines whether this argument is empty. Here it allows
selecting only the fishing ships that have a nonempty movement inside the PollutedArea. Query Q1
returns pairs of values, where the first is a name of a ship, and the second is the part of its
movement that possibly occurred in the considered area.

Q2: Authorities apply penalties when they are able to guarantee that a fishing ship has been in a
forbidden area. The following query returns the name of the ships that have been in the Blue Coast
reservation.

SELECT x.name
FROM FishingShips x, ForbiddenAreas y
WHERE y.name = “Blue Coast reservation”
AND notEmpty(SurelyIn(x.voyages, y.geometry));

Operation SurelyIn returns the parts of the movements for which it is possible to assure that a
fishing ship was inside the forbidden area. Applying the predicate notEmpty to the result of the
previous operation allows selecting the tuples of the required fishing ships.

In the following, we assume that a probabilistic method for measuring uncertainty is implemented
on the MONICAP system. In that case, the previous two queries may be expressed as follows:

Q1: Q2:

SELECT x.name, In(x.voyages, :PollutedArea) SELECT x.name
FROM FishingShips x FROM FishingShips x, ForbiddenAreas y
WHERE ProbaIn(x.voyages, :PollutedArea)>0 WHERE y.name = "Blue Coast reservation"
 AND ProbaIn(x.voyages, y.geometry)=1

The ProbaIn operation, applied to its couple of arguments, returns a value between 0 and 1
corresponding to the measured probability that movement x.voyages may occur inside the given
area.

Q3: We search here for the fishing ships that were closer than 0.2 miles from vessel “P01” on May
28, 2000 with a probability greater than 0.6.

SELECT x.name
FROM FishingShips x, FishingShips y
WHERE x.reference = “P01”
AND y.reference ≠ x.reference
AND 0.6 < ProbaWithinDistance(During(x.voyages,〈05/28/2000,05/29/2000〉),

 During(y.voyages,〈05/28/2000,05/29/2000〉),0.2));

The first condition allows selecting the fishing ship with reference “P01.” The second avoids
comparing the distance of “P01” with itself. Finally, the third condition restricts the selection to a
measured probability greater than 0.6 from all fishing ships that possibly were at a distance inferior
to 0.2 miles from “P01” during May 28, 2000.

Future trends
In recent years, uncertainty handling emerged as an important issue in moving object database
research. Several aspects were investigated. Two complementary models were given: Pfoser et al.
(1999) focused on past objects’ movement when Wolfson et al. (1999c) and Trajcevski et al. (2002)
treated future objects’ movement. Wolfson et al. (1999b, 1999a) investigated the communication
cost of uncertainty in the case of a real-time application. Pfoser et al. (2001) added fuzziness in
object location and considered the case of moving objects that may change their geometry in time.
An important issue of the current research activity in this domain is the design of a probabilistic
model of uncertainty. The goal is to handle more realistic (non-uniform) distributions of probability
on the location of moving objects, and to be able to measure the validity of the query answers.
Recent results (Cheng, Prabhakar & Kalashnikov, 2003; b, Cheng, Kalashnikov & Prabhakar,
2003a; Trajcevski et al., 2003) are going toward this goal, even if they just briefly touch upon the
possibility of a non-uniform distribution.

INDEXING
In this section we investigate the shortcomings of traditional structures with respect to spatio-
temporal databases indexing. We present some indexing techniques that have been recently
proposed to overcome these limitations, and discuss the perspective of ongoing research.

General issues – Background
Since traditional structures cannot be used for multidimensional data indexing, during the last two
decades there have been a lot of works to design efficient and reasonably simple spatial indices,
like the R-tree, that can be used in existing DBMSs to support the optimization of spatial queries

(see the surveys in Gaede and Guenther, (1998) and Rigaux, Scholl and Voisard, (2001)). R-trees
rely on a balanced hierarchical structure in which each tree node, whether internal or leaf, is
mapped onto a disk page. The R-tree (and its variants) organize rectangles (which constitute the
bounding boxes of the objects in the indexed dataset) according to containment properties.

P
4,5,6,7 12,13,14,15 16,17,188,9,10,11

1

2

3

4

5

6

7
8

9
10

11

1213

15 14
16

1817 1,2,3

Figure 5. R-tree indexing

An example of an R-tree is shown in Figure 5. We assume there that a disk page can store no more
than four entries (an entry is a pair composed of a point and a bounding box, and is used to navigate
in the tree). Groups of four or less objects are then created and assigned to pages in the structure,
based on their proximity relationships. This leads, on our example, to the groups {1,2,3}, {4,5,6,7},
and so on. Note that grouping objects close in the space aims at minimizing the overlapping of the
groups’ bounding boxes and helps reduce the disk accesses during search operations. The same
grouping process is applied to the bounding boxes of groups, recursively, until one obtains a single
disk page, the root of the tree.
The R-tree properties are similar to that of the B-tree; that is, the tree is balanced, its size is
logarithmic with the size of the indexed data set and its space complexity is linear. It supports point
and window queries. A point query, for instance, is performed by a top-down traversal of the tree,
exploring at each level the sub-trees whose bounding box contains the argument point. R-trees
extend B-tree indexing to multi-dimensional data. It relies, however, on the important assumption
that these data remain constant once stored in the database, until explicitly updated. In the presence
of objects moving in the plane, this assumption is no longer valid, as it would require very
continuous updates to the structure.
We chose to focus the rest of this section on a representative proposal, the Time-Parameterized R-
tree (TPR-tree), and describe its design, its properties and the queries it supports. We use this first
presentation as a basis for a more general discussion devoted to the challenges raised by moving
objects indexingand to the issues that remain to be solved by current and future research.

A Detailed Example: The TPR-tree
The TPR-tree (Saltenis, 2000) is an extension of the R-tree that aims at indexing current and future
positions (but not the past ones) of moving objects. More precisely, the index handles any object
whose position is a tuple of coordinates (x1(t),…,xd(t)). Each coordinate xi(t) is itself a linear
function of time of the form xi(t)=xi(t0)+vi(t-t0), where the instant t0 defines the reference position
of the indexed object and vi is the speed of the object along the axis i.
Note that using linear function means that we consider only objects with constant speed, which is a
reasonable assumption. In the following we restrict the discussion to objects moving in the 2D
plane (d=2).

Building a TPR-tree
Given a dataset of objects whose trajectories comply with the above representation, the TPR-tree is
an R-tree-like index, built at time t0 and valid for a time interval U. The basic idea of the structure
is to construct an R-tree with time-evolving bounding boxes. Similar to the classical R-tree, each

leaf corresponds to a bounding box that contains a group of objects {o1,…,on}. But unlike the R-
tree, the edges of a bounding box in the TPR-tree “move” so as to enclose as accurately as possible
its associated group of objects during all the lifetime of the index, [t 0, t0+U] .

1

2

3

4
5

6

2

3

6

1

5

4

1

2

3

4
5

6

4

5 6

3

2
1

1

2

54
6

3

6

3

2
1

5
4

Fixed bounding−boxes Evolving bounding boxes (1) Evolving bouding boxes (2)

T1

T2

r1

r2

r1

r2

r3

r3
r’1

r’2

r’3

r’1

r’2

r’3

r"1

r"3

r"2

r"2

r"3

r"1

Figure 6. Evolving bounding boxes in the TPR-tree

Figure 6, inspired from Saltenis, Jensen, Leutenegger and Lopez, (2000), illustrates this intuition.
We consider six moving objects and assume that the capacity of a disk page is two objects. The
upper part of the figure shows the positions at time T1, and the lower one, the positions at T2
(T2>T1). An arrow is associated with each object, showing its direction and speed. Each column
corresponds to a possible solution for indexing these data with bounding boxes. The left side shows
the classical R-tree approach, with three fixed bounding boxes, r1 ,r2 ,r3, determined at time T1. It
appears clearly that this approach is not adapted since a bounding box at T1 is obsolete at T2 (for
instance, r1 no longer includes any object at T2). This approach requires updating the bounding
boxes so frequently that the maintenance of the index becomes impossible.

Consider now evolving bounding boxes, that is, rectangles whose edges move along the two axes
according to a linear function of time. The choice for clustering objects in a box should now take
into account not only their spatial proximity at time T1 but also their future positions. For instance,
the central column of Figure 6 shows that grouping objects by merely considering their closeness at
time T1 gives a good result for r’1 , but not for r’2 and r’3 . The index greatly suffers from the
increased overlapping.

The rightmost column illustrates a satisfactory grouping of our six objects, which takes in account
their proximity along the whole validity interval of the index. This leads to grouping together
objects that share more or less the same direction and the same speed. The comparison of the
evolving boxes r’’1, r’’2, r’’3 at T1 and T2 shows the superiority of this approach over the previous
one.

y

x

a

b

c d

e

g
f va

vf

vb

v
d

x

y

a
b

c
d

e
f

g
t
0

t > t0

t0B

B

Figure 7. Managing the evolution of a bounding box

Figure 7 gives an example of the evolution of the bounding box between t0 and some t>t0. The
position and speed of each object are known at t0. To find the growing speed of B we determine the
minimal and maximal speeds on both the x and y axes. For instancem the right border of the
bounding box moves with a speed that corresponds to the maximal values of the projection on the x
axis of all the objects inside the bounding box, here va

x(t0), and the speed of the left border
corresponds to the minimal speed, here vb

x(t0). The bounding box B of a TPR-tree is minimal at
time t0. Each edge of B moves along each axis xi with a speed vi, which is equal to the maximal
speed along xi of the objects contained in B. It follows that the minimality of the bounding box is
not preserved.
In a classical R-tree, the insertion, update and deletion strategies aim at minimizing the bounding
box area, the overlapping of the bounding boxes and the perimeters. The TPR-tree maintenance
uses a similar approach, using the integral version of these parameters. Intuitively, the minimization
always considers the (continuous) sum of the parameters’ values over the validity interval of the
tree. Refer to Saltenis et al. (2000) for details.

Queries supported by the TPR-tree
The index supports three kinds of queries:
• spatial window queries at a given instant \Delta
• spatial window queries for a time interval [t beg ,tend]
• moving window queries, with values Rbeg at tbeg, and Rend at tend

Figure 8 presents examples for these three kinds of queries in a 1D-space. Consequently, a spatial
window query is here at a given instant a segment (so are Rbeg and Rend). In this example, ox denotes
a moving object and we assume that U=1 , that is, a new index is built every time unit.

Figure 8. Examples of queries in a 1D-space

1) Q0=([-5,5],0.5) and Q1=([15,25],1.5) are queries of the first kind; however, two cases appear:

a) either the query is formulated before t0 (e.g. Q0), that is, before the update, and the result is
consequently {o1}, whose future trajectory is forecasted;

b) or the answer is the empty set since the new position and speed of o1 are now considered
(for example, Q1).

2) Q2=([10,30],3.75,5.5) is a query of the second category. If the query is expressed at a time t<1,
the result is the empty set, since the expected trajectory for o1 does not go through the query
window, and object o2 is unknown. If Q2 is expressed at time 1<t<2, the answer is o2 since after

the update the planed trajectory intersects the query window. Object o2 is still ignored. Finally,
if Q2 is expressed at a time t>2, the query result is the set {o1, o2}.

3) Q3 belongs to the third category and its result is the object o4 at any time.

If we consider the query of the first category, the search with the TPR-tree is close to that of the R-
tree: We select a bounding box B if the query window R overlaps mbb. For the queries of the
second and third categories, defined on a time interval [t beg,tend] , we have to select the bounding
boxes that intersect the query window between tbeg and tend. The algorithms rely on the observation
that two moving rectangles intersect if there is an instant t∈[t beg, tend] such that their projections on
each dimension intersect.

In summary, the index is valid only for a period U, and its performances deterioriate with time
because the bounding boxes grow. A new index must be created whenever the validity period is
over. In other words, it is not a fully dynamic structure that can be created once and adapts to the
evolutions of the database.

Discussion and future trends
Let us now study the characteristics of the TPR-tree and evaluate to what extent it meets the
general needs of spatio-temporal indexing. Throughout the discussion we will mention other
techniques and recent proposals that apply to other areas, or provide an alternative approach.

Indexing past, current and future positions
The TPR-tree indexes the current and the future positions of moving objects, and is therefore
relevant for the applications that track, in real time, objects equipped with a positioning system.
This structure is the state-of-the-art solution for this particular situation. Its performances have been
analyzed recently in Tao, Papadias and Sun, (2003), which also describes important improvements
to the construction algorithms. Among the other proposals that address the same problem, but are
somewhat less satisfactory, we can mention Tayeb, Ulusoy and Wolfson, (1998), which uses PMR-
quadtrees to index one-dimensional moving points –(thus, two indices are needed for 2D points),
and several theoretical studies, such as Kollios, Gunopolos and Tsotras (1999) and Agarwal, Arg
and Erickson (2000), which, unfortunately, do not provide a practical solution.

Another quite relevant area of research concerns the indexing of past locations, which can be of
interest to data-mining applications (for example, an application that analyzes the movements of a
given population in a given area and for a given period). If we keep the assumption that movements
can be decomposed in a finite number of consecutive time intervals, and that for each interval the
speed of an object is constant, then the problem is to index a polyline in a 3D space, with “time” as
a third dimension.

A straightforward solution is to build a 3D R-tree, as proposed in Theodoridis et al. (1996). Note
that this assumes that the bounding boxes are bounded; that is, that each time interval associated to
the segments of the polyline are closed. Otherwise, one of the bounding boxes is of infinite size,
and this raises problems. This can be compared with the TPR-tree, which considers only one
segment, and bounds the time interval of interest [t 0, t0+U] . Another possibility is to rely on a set of
R-trees, each covering a time interval. The approach is first proposed in Nascimento et al.(1998;
1999), with a structure called the HR-tree that maintains an R-tree for each timestamp. The trees of
the previous timestamps are never modified. In order to save space, the common branches of
consecutive trees are stored only once. The HR-tree performs well for moving objects that
frequently update their motion, but the performances are poor in range queries.

Several other proposals are worth mentioning – Tao et al. (2001); Pfoser et al. (2000); Porkaew,
Lasaridis and Mehrotta, (2001); Hadjieleftheriou, Kollios, Tsotras and Gunopoulos (2002); and
Saltenis et al. (2002), whose common approach is to extend R-trees to handle a polyline in a 3D
space, with frequent updates that affect the last segment. In Tao et al. (2001), the authors propose
an index, the MV3R-tree, which basically uses both a multi-version R-tree (Becker, Gschwind,
Ohler, Seeger & Widmayer, 1996) similar to the HR-tree and a 3D R-tree built on the leaf nodes.
The multi-version R-tree is expected to perform better for timeslice or short interval queries, while
the 3D R-tree is more adapted for long interval queries. Another interesting structure for indexing
the past trajectories of moving objects is described in Pfoser et al. (2000). It still exploits the
structure of the R-tree, but tries to group together the segments from the same polyline, which
allows to support new types of queries, including the so-called “trajectory queries,” with predicates
such “enters,” “leaves,” “crosses,” and so forth.

Future trends
As discussed above, so far the proposed index structures fall in one of two categories: either they
index the past position, up to the current time; or they index the present and future positions, but
their relevancy degrades with time. There is no structure that supports simultaneously both
situations, and no fully dynamic index (that is, no index providing an automatic maintenance
policy, avoiding periodic, costly re-creation). In spite of the difficulty of the problem, new research
efforts are required to address these limitations.

Recently, some specific applications, with constraints that can help to reduce the complexity of the
indexing problem, have attracted the attention of researchers. Among them is worth mentioning the
common situation of objects moving on a constrained network such as in Pfoser et al. (2003). For
instance, the authors propose to index 3D trajectories with two 2D indices, one that contains the
network (in the 2D space), and one that contains the transformed trajectories (in 1D for space and
1D for time). Another emerging area of research is the main-memory indexing of moving objects,
particularly in the context of moving objects servers providing notification services to customer. In
Kalashnikov, Prabhakar, Aref and Hambrusch, (2002), a simple partition of space in cells is used to
index the set S of moving objects and determine, at each instant, and for each query q submitted by
a user, the subset of S that constitutes the answer to q. It is argued that the capacity of computers
permits to keep all the structure in main memory, and therefore avoids to design complicated
mappings of these structures on disks. More generally, this suggests that emerging Web
applications providing services on moving objects raise particular challenges that do not necessarily
require the traditional database design approaches.

CONCLUSION
We investigated in this chapter several important issues pertaining to the management of moving
objects datasets in databases. The design of representative benchmarks is closely related to the
formal characterization of the properties (that is, distribution, speed, nature of movement) of these
datasets; uncertainty is another important aspect that conditions the accuracy of the representation
and therefore the confidence in query results. Finally, efficient index structures, along with their
compatibility with existing software, is a crucial requirement for spatio-temporal databases, as it is
for any other kind of data.

The common properties of all the issues considered in this chapter are their strong impact on the
representation of data and the way they determine the implementation of both the operations and
the data structures that support the evaluation of queries. Indeed, as suggested by the previous

discussion, one can envisage many possible applications with quite different features. It is more
than likely that the techniques used to manage a database of mobile phone users, a database of cars
moving on a road network or a database of airplanes moving freely in a 3D space will strongly or
partly differ because of the differents speeds, movement constraints (network-based or not) and
behavior. All the aspects (benchmark, uncertainty, indexing) covered, as well as some others
(implementation and semantics of database operators, for instance), are affected by these
specificities.

We therefore expect in the forthcoming years many other new results, and many improvements to
the state-of-the-art solutions that have been established so far.

References

Agarwal, P.K., Arge, L., & Erickson, J. (2000). Indexing Moving Points. Proceedings of the ACM

Symposium on Principles of Database Systems, 175-186.

Becker, B., Gschwind, S., Ohler, T., Seeger, B., & Widmayer, P. (1996). An Asymptotically

Optimal Multiversion B-Tree. VLDB Journal, 5(4), 264-275.

Brinkhoff, T. (2000). Generating network-based moving objects. Proceedings of the International

Conference on Scientific and Statistical Databases (SSDBM), 253-255.

Brinkhoff, T. (2002). A framework for generating network-based moving objects. GeoInformatica,

6(2), 153-180.

Cheng, R., Kalashnikov, D.V., & Prabhakar, S. (2003a). Evaluating probabilistic queries over

imprecise data. Proceedings of ACM SIGMOD International Conference on Management of
Data, 551-562.

Cheng, R., Prabhakar, S., & Kalashnikov, D.V. (2003b). Querying Imprecise Data in Moving

Object Environments. Proceedings of the 19th IEEE International Conference on Data
Engineering,723-725.

Gaede, V., & Guenther, O. (1998). Multidimensional Access Methods. ACM Computing Surveys,

30(2), 170-231.

Hadjieleftheriou, M., Kollios, G., Tsotras, V.S., & Gunopoulos, D. (2002). Efficient Indexing of

Spatio-temporal Objects. Proceedings of the International Conference on Extending Data Base
Technology, 251-268.

Kalashnikov, D.V., Prabhakar, S., Aref, W., & Hambrusch, S. (2002). Efficient Evaluation of

Continuous Range Queries on Moving Objects. Proceedings of the International Conference on
Databases and Expert System Applications (DEXA), 731-740.

Kollios, G., Gunopolos, D., & Tsotras, V.J. (1999). On Indexing Mobile Objects. Proceedings of

the ACM Symposium on Principles of Database Systems, 261-272.

Moreira, J., Ribeiro, C., & Abdessalem, T. (2000). Query Operations for Moving Objects Database

Systems. Proceedings of the 8th International Symposium on Advances in Geographic
Information Systems (ACMGIS-00), 108-114.

Moreira, J., Saglio, J.M., & Ribeiro, C. (1999). Representation and manipulation of moving points:

An extended data model for location estimation. Journal of Cartography and Geographic
Information Systems, 26(2), 109-123.

Nascimento, M.A., & Silva, J.R.O. (1998). Towards historical r-trees. Proceedings of the ACM

International Symposium on Applied Computing, 235-240.

Nascimento, M.A., Silva, J.R.O., & Theodoridis, Y. (1999). Evaluation for Access Structures for

Discretely Moving Points. International Workshop on Spatio-Temporal Database Management
(STDBM'99), LNCS 1678, 171-181.

Pfoser, D., & Jensen, C.S. (1999). Capturing the uncertainty of moving object representations.

Computer Science, 1651, 111-132.

Pfoser, D., & Jensen, C.S. (2003). Indexing of Network-Constrained Moving Objects. Proceedings

of the International Symposium on Geographic Information Systems, 25-32.

Pfoser, D., Jensen, C.S, & Theodoridis, Y. (2000). Novel Approaches in Query Processing for

Moving Objects. Proceedings of the International Conference on Very Large Data Bases
(VLDB), 395-406.

Pfoser, D., & Tryfona, N. (2001). Capturing fuzziness and uncertainty of spatiotemporal objects.

Computer Science, 2151, 112.

Porkaew, K., Lasaridis, I., & Mehrotta, S. (2001). Querying Mobile Objects in SpatioTemporal

Databases. Proceedings of the International Symposium on Spatial and Temporal Databases
(SSTD), 59-78.

Rigaux, P., Scholl, M., & Voisard, A. (2001). Spatial Databases. Morgan Kaufmann.

Saglio, J.M., & Moreira, J. (2001). Oporto: a realistic scenario generator for moving objects.

GeoInformatica, 5(1), 71-93.

Saltenis, S., Jensen, C.S., Leutenegger, S.T., & Lopez, M.A. (2000). Indexing the Positions of

Continuously Moving Objects. Proceedings of the ACM SIGMOD Symposium on the
Management of Data, 331-342.

Saltenis, S., & Jensen, C.S. (2002). Indexing of Moving Objects for Location-Based Services.

Proceedings of the IEEE International Conference on Data Engineering (ICDE), 463-472.

Sistla, P., Wolfson, O., Chamberlain, & Dao, S. (1998). Querying the uncertain position of moving

objects. Computer Science, 1399, 310.

Tao, Y., & Papadias, D. (2001). The MV3R-Tree: a Spatial-Temporal Access Method for

Timestamp and Interval Queries. Proceedings of the International Conference on Very Large
Data Bases (VLDB), 431-440.

Tao, Y., Papadias, D., & Sun, J. (2003). The TPR*-Tree: An Optimized Spatio-Temporal Access
Method for Predictive Queries. Proceedings of the International Conference on Very Large
Data Bases (VLDB), 790-801.

Tayeb, J., Ulusoy, O., & Wolfson, O. (1998). A Quadtree Based Dynamic Attribute Indexing

Method. Computer Journal, 41, 185-200.

Theodoridis, T., Silva, J.R.O., & Nascimento, M.A. (1999a). On the Generation of Spatiotemporal

Datasets. Computer Science, 1651, 147-164.

Theodoridis, T., Silva, J.R.O., & Nascimento, M.A. (1999b). On the Generation of Spatiotemporal

Datasets. Proceedings of the International Conference on Large Spatial Databases (SSD'99),
147-164.

Theodoridis, Y. (2003). Ten Benchmark Database Queries for Location-based Services. Computer

Journal, 46(6), 713-725.

Theodoridis, Y., Vazirgiannis, M, & Sellis, T. (1996). Spatio-temporal Indexing for Large

Multimedia Applications. Proceedings of the IEEE International Conference on Multimedia
Computing and Systems, 441-448.

Trajcevski, G. (2003). Probabilistic range queries in moving objects databases with uncertainty.

Proceedings of the 3rd ACM International Workshop on Data Engineering for Wireless and
Mobile Access, 39-45.

Trajcevski, G., Wolfson, O., Zhang, F., & Chamberlain, S. (2002). The geometry of uncertainty in

moving objects databases. Proceedings of the 8th International Conference on Extending
Database Technology, LNCS, vol. 2287, 233-250.

Wolfson, O., Jiang, L., Sistla, A.P., Chamberlain, S., Rishe, N., & Deng, M. (1999a). Databases for

tracking mobile units in real time. Computer Science, 1540, 169-186.

Wolfson, O., Sistla, A.P., Chamberlain, S., & Yesha, Y. (1999b). Updating and querying databases

that track mobile units. Distributed and Parallel Databases, 7(3), 257-387.

Wolfson, O., Sistla, A.P., Xu, B., Zhou, J., Chamberlain, S., Yesha, Y., & Rishe, N. (1999c).

Tracking moving objects using database technology in DOMINO. Next Generation Information
Technologies and Systems, 112-119.

