Stochastic Integration with respect to \Volterra
processes

L. Decreusefond

Abstract

We construct the basis of a stochastic calculus for so-called Volterra pro-
cesses, i.e., processes which are defined as the stochastic integral of a time-
dependent kernel with respect to a standard Brownian motion. For these
processes which are natural generalization of fractional Brownian motion,
we construct a stochastic integral and show some of its main properties: reg-
ularity with respect to time and kernel, transformation under an absolutely
continuous change of probability, possible approximation schemes and It6
formula.

1 Introduction

In the past few years, more than twenty papers have been devoted to the defini-
tion of a stochastic integral with respect to fractional Brownian motion or other
“related” processes, see for instance [Dec02a] and references therein. Remind that
fractional Brownian process of Hurst indeixe (0,1), denoted by8", is the unique
centered Gaussian process whose covariance kernel is given by

Ru(st) = E BB 0 (4 2 o g)

where
def I'(2—2H)cogTH)

T (1-2H)

Among other properties, this process hdbl finite variation and a finite general-
ized covariation of order 4 fdd > 1/4, (see [GRV] for the definition), has Holder
continuous trajectories of any order less thhand has the following representa-
tion property:

A\

BH(t) = /O "Kn(t,s) dBq, L)



whereB is a one dimensional standard Brownian motion &nis deterministic
kernel with an intricate expression (see [DU99]). Therefore, a “related” process
means altogether a process with finfievariation, called a process with rough
paths in [CQO0O0, Lyo98], or a process with Holder continuous sample-paths as
in [FALP99, 28] and also a process of the form (1) with a general kernel as in
[AMNO1, CCMO02, Dec02b].

This is the last track that we will follow here. Our present work, which is the ex-
panded version of [Dec02b], differs from the other two papers [AMNO1, CCM02]
in two ways. First, the method to define the stochastic integral is different. In these
two papers, the kernel is regularized, if needed, to obtain a semi-martingale. The
second step is then to use the classical theory of stochastic integration and then
pass to the limit after a stochastic integration by parts in the sense of the Malli-
avin Calculus. We here use an approach based on convergence of discrete sums. It
should be already noted that for smooth integrands, their notion of integral and ours
coincide. The other difference is to be found in the kind of hypothesis pKt &m
[AMNO1, CCMO02], hypothesis are made on the regularity of the funck¢ns)
itself. We here work with assumptions on the linear nfap> [K(t,s)f(s) ds.
Properties oK (t,s) andKf are, of course, intimately related but we think that
working with the latter gives more insight on the underlying problems.

In Section 2, we recall basic definitions and properties of deterministic frac-
tional calculus. In Section 3, we introduce the class of processes, named Volterrra
processes, that we will study. We then give a few properties of their sample-paths.
In Section 4, we deal with a Stratonovitch-like definition of the stochastic integral
with respect to Volterra processes. Section 5 is devoted to the time regularity of the
previously constructed integral and in Section 6, we establish an 1t6 formula. In
the last section, we show how the Stratonovith integral is related to a Skorohod-like
integral and how a It6-like process constructed from such an integral is modified
through an absolutely continuous change of probability.

2 Preliminaries

This section is only devoted to the presentation of the tools of deterministic frac-
tional calculus we shall use in the sequel. Faz £1(]0,1]; dt), (denoted byL?!
for short) the left and right fractional integrals bfare defined by :

def 1 /X _
= — [ f{t)(x—t)V"tdt, x>0,
F o FOO= >
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wherey > 0 andI. =19 =Id. For anyy > 0, any f € LP andg € L9 where
pr+gt<y we have

1
/ f(9)1.9)(5) ds= [ (- 1)(s)g(s) ds @
The Besov-Liouville spackg Lp = I+ is usually equipped with the norm :
g Fll s, = 11l 0. ®3)

Analogously, the Besov-Liouville spacté Lp I p Is usually equipped with
the norm :

I fll g, = N e
We then have the following continuity results (see [FALP99, SKM93]) :

Proposition2.1. i. f 0<y< 1 1< p<1/y, then [\)ﬁ is a bounded operator
from LP into £9 with q= p(1—yp)~*

. ForanyO<y<1landany p>1, I yp is continuously embedded kol (y —
1/ p) provided thay—1/p > 0. Hol(v) denotes the space of Holder-continuous
functions, null at timé, equipped with the usual norm.

jii. Forany0<y< <1, Hol(B)is compactly embedded .

iv. By |,.Y, respectively ¥, we mean the inverse map ¢f I respectively) . The
relation IY, 15, f = IV+Bf holds whenevep > 0, y+ B > 0and fe 1.

v. Foryp > 1, the spaces[+ and I, are canonically isomorphic. We will thus
use the notatiordy , to denote any of this spaces. This property isn’'t any more
true foryp > 1, see Lemma 2.3 and text below Definition 4.1.

We now define the Besov-Liouville spaces of negative order and show that
they are in duality with Besov-Liouville of positive order (it is likely that this ex-
ists elsewhere in the literature but we have not found any reference so far). Denote
by D, the space of™ functions defined of0, 1] and such thap/¥)(0) = 0. Analo-
gously, setD_ the space of ™ functions defined of0, 1] and such thap®) (1) = 0.

They are both equipped with the projective topology induced by the semi-norms
(@) = 3 j<k/| 0V |- Let D, resp. D', be their strong topological dual. It is
straightforward thafD, is stable by(‘)’+ and?D_ is stablell’,, for anyy € R. Hence,



guided by (2), we can define the fractional integral of any distribution (i.e., an
element ofD” or D',):

ForTe D ; 15T oe D_—><T, 1 @>p o ,
ForTe D 11 T: e Dy »<T,15,0>0, o, -
We introduce now our Besov spaces of negative order by

Definition 2.1. Fory>0andr> 1, I, vr (resp. 17, .) is the space of distributions
such thatg T (resp. Y T ) belongs taL". The norm of an element T in this space
is the norm of §, T in L (resp. of { T).

Theorem 2.1. Fory> 0 and r > 1, the dual space oﬁ (resp. I;;) is canonically
isometrically isomorphic to,lY(£") (resp. |Y(£"),) where F=r(r—1)-1
Proof. LetT be in?_, we have:

sup |<T,@>|= sup |<T, I LO> |
@l =1 el o =1

= sup |<l.T,0>|
Wil r=1

hence by the Hahn-Banach theorem,

Te(L,) < sup |[<T,@>|<o=1]TeL",
@10l =1

and||T|| .y = HTH@(U*)- The same reasoning also holds fay; ). O

Theorem 2.2. ForB>y>0andr>1,1; 1B is continuous fromi v into I B vr

Proof. SinceT belongs tol", , = (Iy+)’, we have:

| <IPT, 0> =< T, 150> | <clIg. ¢l 1, =cl1§ o] ..

Thus,lf_T is a continuous linear form Ow—ﬁr* and thus belongs to the dual of
this space which, according to the previous theorem, is exégjw. O

Forn > 0 andp € [1,+), the Slobodetzki spac; p is the closure ofc?
functions with respect to the semi-norm:

00— f)I°
1915, = ], ey dxa

Forn = 0, we simply haveso p = LP([0,1]). We then have the following continuity
results (see [FALP99,98]) :



Proposition 2.2. i. For any0 <y < 1and any p> 1, 5, is continuously em-
bedded inHol(y— 1/p) provided thaty—1/p > 0. Hol(v) denotes the space
of Holder-continuous functions, null at tinkeequipped with the usual norm.

For 0 <y<1/p, Sy, is compactly embedded irfP&-Y?) ([0, 1]). Moreover,
if p =2, the embedding a, , into L?([0, 1]) is Hilbert-Schmidit.

ii. Itis proved in [FALP99] that forl > a > b > ¢ > 0 that we the following
embeddings are continuous (even compact)

Sap C Iy p C Sep- 4

iii. Forany0<y< B <1, Hol(B)is compactly embedded & .

iv. Leta>0,1< p<qg< . Suppose b=a—1/p+1/q>0. Thens,, is con-
tinuously embedded i, 4, see [Ada75].

One of the key property we shall use, is this result due to Tambaca [TamO01].

Lemma 2.1. Letr,se€ [0,1/2) and lett=r+s—1/2> 0. For f € 82, g € S 2,
the product fg belongs t& > and we have:

1fglls. < cllfllsll9llse-
From this Lemma and the embeddings of Eqn. (4), we have:

Corollary 2.1. Letr,se [—c,1/2) and lett<r+s—1/2. For f € Is2, g € L2,
the product fg belongs tg » and we have:

1f9ll, <cllfllrllgll,-

We will need a similar result in the simpler situation wheris greater than
1/2.

Lemma 2.2. Letr> 1/2, for f and g in; 2, we have
”ng.Sr,Z S C”fHSrzHgH.Sr,Z' (5)

Proof. Sincer >1/2, f andg are continuous andif || < c|| f||s,,. The same holds
for g. Thus,

2 o 2 2 B >
HfgugrzS//[Ol]z(\f(X)nx(?(;) 9¥)* | lgWIP(FX) — f(y)) )dxdy

1+2r ‘X _ y’1+2r

<c(IIfIZ 003, + 21 I3, ).

and the result follows. O



One could probably work with only one family of spaces (i.e., eithgg or
Sa,p) but depending on the properties, some are easier to verify in the setting of
Riemann-Liouville spaces and some in the setting of Slobodetzki spaces, see for
instance the property below.

Lemma 2.3. Lety >y > 1/2and fe S then(f — f(t))1,y belongs tasy.

Proof. First note thatf is (y— 1/2)-Hdlder continuous thus thdt— f(t) is well
defined. Moreover,

1., (109~ FO) Loy — (1)~ FO)Logl®
0,2]2

|X y| 1+-2y

[f(x) = f(y) [f(x) —f(H)
= dxdy+2 / 7 7 dxd
//0t12 X~ YI”ZV Y ogx[01]  [X— Yy Y

X — |21
<2142 /

2 dxdy) < c[[f]|Z,.
o4]x[t,1] [X— Y12 Y <clfl§2

O

3 \olterra processes
Consider that we are given a deterministic Hilbert-Schmidt linear idapatisfy-
ing:

Hypothesis I. There existsa > 0 such thatK is continuous, one-to-one, from
£3([0,1]) into I;1/2,. Moreover,K is triangular, i.e., for any € [0,1], the set
Ay ={f: f(t)=0fort <A} isinvariant byK.

Remark3.1 SinceK is Hilbert-Schmidt from£2([0, 1]) into itself, there exists a
measurable kern&(.,.) such that

t):/olK(t,s)f(s) ds

The triangularity oK is equivalent ta&{(t,s) =0 fors>t, i.e.,

:/OtK(t,s)f(s) ds.

Consider now the kerné(t,s) defined by

tAS
R(t,s) := K(t,r)K(s,r) dr.
0



The map associated ®, i.e., Rf(t) = fol R(t,s)f(s) ds, is equal toKK* and for
anyfs,...,Bn anyty,...,ty, we have

5 BBR( ) = [ K'(3 Bie)(92ds >0,

1]
sothatR(t, s) is a positive kernel and we can speak of the centered Gaussian process
of covariance kerndR. Let X be this process and be the subject of our study.

Lemma 3.1. The process X has a modification with a.s. continuous sample-paths.

Proof. We have

E[(% — Xo)?] :/OtK(t,r)z dr+/OSK(s,r)2 dr—Z/OtASK(t,r)K(s,r) dr
— K(K(t,.) —K(s,))(t) — K(K(t,.) —K(s,.))(9)
< c\t—s|°‘(/ol(K(t,r) —K(s,r))? dr)l/2

Expanding the square in the last integral, we get the right hand side of the first

equation, thus
1/2

E[(%—Xs)?] " <ct—s|*
Kolmogorov Lemma entails that has a modification with Hélder continuous sam-
ple paths of any order less than O

We thus now work on the Wiener spa@e= (5([0, 1}; R), the Cameron-Martin
space iH = K(£2([0,1])) andP, the probability onQ under which the canonical
process, denoted by, is a centered Gaussian process of covariance k&rigie
norm ofh = K(g) in H is the norm ofg in £2([0,1)).

A mapping® from Q into some separable Hilbert spa¥es called cylindri-
cal if it is of the form(w) = S ; fi((Vi1,W), -, (Vi n,W))x; where for each,
fie (¢ (R",R) and(vij, j=1...n) is a sequence &* such tha(V ;, j=1...n)
(whereVi | is the image ofs j under the injectio®* — £2([0,1]) ) is an orthonor-
mal system of£?([0, 1]). For such a function we defiriép as

Op(w) = zlaj fi (Vi1 W), -+ (Vin, W) )V j @ .
INES

From the quasi-invariance of the Wiener measure [U95], it follows thas a
closable operator obP(Q; X), p > 1, and we will denote its closure with the same
notation. The powers df are defined by iterating this procedure. par 1, ke N,



we denote byD, k(X) the completion oX-valued cylindrical functions under the
following norm

k .
[9llpk = _Z}H Dl(p||Lp(Q;X®L2([O,l])®i) .
=

Remark3.2 Note that the Sobolev spacgg , enjoy the useful property op-
admissibility (after [FALP91]) and thus for anyk0Qy < 1 and anyp > 1, the spaces
Dpk(Sa,p) andSq,p(Dpk) are isomorphic.

The divergence, denotdilis the adjoint of_l: v belongs to Dorpd whenever
for any cylindricale,

1
| [ wospas] 1< cls

and for such a process
1
E [/ usls® ds] = E[pdu].
0

It is easy to show (see [DU99]) théB; := d(Lpy)), t > O} is a standard Brownian
motion such thadu = [ us dBs for any square integrable adapted processasd
which satisfies

t
X = /o K(t,s) dBs.

Moreover,B andX have the same filtration. In view of the last identity and because

K is lower triangular, we decided to name such a process, a Gaussian \olterra
process. The analysis of processes of the same kind viieneeplaced by a jump
processes is the subject of our current investigations with N. Savy.

Examplel. The first example is the so-called Lévy fractional Brownian motion of
Hurst indexH, defined as

1 t -
i [,

This amounts to say th#t = I('ffl/z, thus that hypothesis | and Il are immediately
satisfied, witho = H, in view of the semi-group properties of fractional integration.

Example 2. The other classical example is the fractional Brownian motion with
stationary increments of Hurst indék for which

(t—r)H-2_1 1 1

t
K(t,s) =Kn(t,r) := WF(E —H,H - Q’H + 571— F)l[Qt)(r)- (6)
7



The Gauss hyper-geometric functibiia, 3, y,z) (see [NU88]) is the analytic con-
tinuation onC x C x C\{—1,-2,...} x {ze€ C,Arg|1—2z| < 1} of the power series

< (@)k(B)x
k;) (Y)kk! Zk,
(8)o = 1 and(a) <" F(ra(;r)k)

We know from [SKM93] thaKy is an isomorphism fron.?([0, 1]) onto IH++1/2_2
and ’

and

=ala+1)...(a+k-1).

K f = 120X/2H /2 H-12¢ for g <172,

Kif = 13 xH Y2 012020 forH > 1/2

It follows easily that Hypothesis | and Il are satisfied with= H.

Example 3. Beyond these two well known cases, we can investigate the case
of K(t,s) = Ky (t,s) for a deterministic functiorH. This is the process stud-

ied in [BBCI99]. It seems interesting to analyze since statistical investigations
via wavelets have shown that the local Holder exponent of some real signals (in
telecommunications) is varying with time and this situation can't be reflected with

a model based on fBm since its Holder regularity is everywhere equal to its Hurst
index.

Lemma3.2 For f € £2, for Hy > Hy, >y > 0, we have

K, f(8) = Ki, F ()] < cft — Y| F| 2, ()
[Khy £(8) = K, F(9)] < cfH1 = Hal[[ f] 2, (8)

where c is a constant independent af H, and f.

Proof. SinceH; is greater thaw, Ky, f belongs tol,., 1/, >, and (7) follows directly
from the embedding of,, > > into Hol(y).
Another expression of the hypergeometric function is given by:

1
F(a,b,c,2) = I'(b)rr<(f:)—b)/o o 11— )P 11— zt) 2 k.

Classical and tedious computations show thatfat [hy +¢€,hy — €],

d
K9] <ce sup [Ku(t,9)|
HE(Hl,Hz)

9



wherecg = sup¢(o q [t°Int]. It thus entails that

|Kn, (t,8) — Kny (t,8)| < e sup  [Ku(t,s)|[Hz —Hyl.
He(Hl,Hz)

Cauchy-Schwarz inequality yields to (8). O

Theorem3.1 Let H belong t0S;/5,4 and be such thainfiH(t) > 1/2, then
K(t,s) = Knp(t,s) satisfies | for anyx <infiH(t) —1/2.

Proof. Let f belong to£?, sety = infyH(t) and leta < y— 1/2. According to the
previous lemma, we have

LT ( ) —Kug F ()2
HK ||51/2+a2 = /[01 ’2+2(‘1 dt ds
IKnt) F(t) —Kng) ( s)|2
<2 /[01 t— S]2+20‘ dt ds

LOT )f(s)fz
Jr2//01 |t—s|2+20‘ dt ds

— g% 2 [H(t) —H(s)|?
<c|]fHL2//01 R gt dtds+c]fHL2//[o7l]2 gz s

The right-hand-side is finite by hypothesis and tKuis continuous from.2 into
S1/2+a,2- O

4 Stratonovitch integral

Starting from scratch and trying to define a stochastic integral with respeéct to
by a limit of a sequence of finite sums, we have two main choices: Either we
discretizeX (or more probablydX) or we discretizeB (likely dB) and then derive

a discretization ofl X. The first approach yields two possibilities: for a partition
whose points are denoted by=0y < t; < ... <ty =T, we can consider

RSy(u) = > u(t)AX; or 9)
temn
1 ti+1
S$iw) =3 51 | uts) o) o, (10)

whered; = ti 1 —t andAX = X(ti11) — X(t). They are both reminiscences of
respectively Riemann and Skorohod-Stratonovitch sums as defined in [Nua95].

10



In the other approach, we first lineariBeand then look at the approximation
of X it yields to. Let

B™(t) = B(t) + 1ABi (t—t) fort € [ti,tiy1),

Oi
and
1
=5 g/ K(t,s)dsAB;
temn
1
= Z g Lt tr,.1)) () AB;.

It follows that it is reasonable to consider

1 T d
T . - e .
R =5 o [ u0gK e a f o,
under the additional hypothesis that for any 0, the functionK (1) is differ-
entiable with a square integrable derivative. Eaufficiently smooth in the sense
of the calculus of variations, we have

i
RIW =5(F 5 [ ult) §K (T )Odty )

tiE'r[ai 0
ti1
6/ /Dr K (1 4,4])(t) dt dr.
t,er[ (AT

Using X7, the formal adjoint ofX := |0_+1 oK on £2(]0,T]), we have

1 i+
R = 8(3 5 [ &u o / % (D) (t) dt dr. (1)

ti €T S ti tien 6'

I [ti i 412
We now recognize the Skorohod-Stratonovitch sum associated to the standard Brow-
nian motionB and to the integrandd u. For the sequel to be meaningful, we need
to assume that the mafg exists. This is guaranteed for> 1/2, sinceI(Hl/22
is embedded in the set of absolutely continuous functions with square integrable

derivative, but fox < 1/2, we need to introduce an additional hypothesis.

Hypothesis Il. We assume that for arly € [0, 1], the mapX = | ~loKisadensely
defined, closable operator froi?([0, T]) into itself and that |ts domain contains
a dense subsef), stable by the mappr, for anyT € [0,1], wherepr f = fl[OT)
We denote by%; its adjoint in £2([0,T]). We assume furthermore tha(;" is
continuous fromij, , ;into L%([0,T]), for anyp > 2.

11



Remarkd.1 In the preceding example$) may be taken td(; /> q)+ 2.

Remark4.2 For the sake of simplicity, we will speak of the domains%ifand
%3 independently of the position of with respect to 12. It must be plain that for
a >1/2 Dom% = £2([0,1]) and Dom&; = L£2([0, T]).

Remark4.3. Sinceli (&) = 1y, we have

K (L) = K* (&) = K(t,.).
This means thaf;* is identical to the operator denoted W in [CCMO02].

Notation 1. For anyp > 1, we denote byp* the conjugate op. For any linear
mapA, we denote byA: | its adjoint in £2([0, T]). We denote byc any irrelevant
constant appearing in the computationsjay vary from one line to another.

Definition 4.1. Assume that Hypothesis | holds far> 1/2. We say that u is
Stratonovitch integrable of®, T] whenever the family}Ru), defined in (11), con-
verges in probability agr goes to0. In this case the limit will be denoted by

f(;r Us ¢} d)(s

This definition could be theoretically extendedote< 1/2 but would be prac-
tically unusable. Indeed, as we shall see below, when1/2, the convergence
of the second sum dRf(u) requires thau belongs tol1n_q,2 for somen > 0
and X7 to be continuous from this space to a space of Holderian functions. Since
14+n—0a—1/2> 0, the two spacety. "% (£2([0,T])) and 137" *(L?([0,T]))
are not canonically isomorphic (ifbelongs to the first one thari0) = 0 whereas
whenu belongs to the latter)(T) = 0). We thus have to specify to which one
u belongs exactly. In view of the example of the Lévy fractional Brownian where
X = I;'fl/z, it is more convenient to assume thetelongs td%f”*H (£3([0,T]))
and thus thati(T) is equal to O That raises a problem because the restriction of
an element ofo”*H (£2([0,T])) to a shorter interval, say, S, does not belong

1577(£2(]0,9)) so that, we can't sefu(r) o dX as fy u(r)log(r)o dX.
On the other hand, singe— u(S))1o g belongs tdéf”*H (£2([0,9))) as soon
asu belongs td%f”*H (£2([0,T])), it is reasonable to consid&F (u—u(T)). For

the limit to stay the same, we have to add the tex)X(T). Indeed, the well
known relationship (see [Nua95, U95))

1
5(af) — ad¢ — / Oa&(r) d, (12)
0
forac D21 andg € £2(Q x [0,1]), entails that
RT(u) = Rf(u—u(T)) 4+ u(T)X™(T). (13)

As a conclusion, foo < 1/2, the definitive definition is

12



Definition 4.2 (Definition for a < 1/2). Assume that Hypothesis | and Il hold for
a < 1/2. We say that u is Stratonovitch integrable [@T], whenever the family
RF(u—u(T)) converges in probability ast goes ta. In this case, we set

/T Uso dXs— lim RE(U—u(T)) +u(T)X(T). (14)
0 m—0

In view of the preceding discussion, the following lemma will play a key role
in the sequel.

Lemma 4.1. For T € (0,1], let pr f denote the restriction of f t{0, T). For any
f € DomX%y, f belongs tdDom &7, pr f belongs tdbom %] and we have

pr&y(prf) =% (f). (15)

Proof. SinceK is triangular, forg € D, prg belongs to DonK and prKg =
prK(prg) = Kprg. By derivation, it follows thatpr Xg = pr Xprg = Xpr0,
so that, forf € Dom%y',

[ rexas asi=| [ (prf)(9%o(s) b
IRCCEICE

1
—| [ 19%x(pro)s) ¢s
< cl[prdll 2(o.1) = cll9ll 2(o,m))-

By density, this identity remains true fgre Dom X, thus this means thdtbelongs

to Dom%7 and thatpy f belongs to Don¥kj' .
Forge L2([0,T])NnDom %, we denote by its extension ta.?([0, T]) defined
by §(s) = 0 wheneves > T. We have

T 1
| praipri(sae) ds= [ & pri(9prd(s) os
0 0
1
= [ pri(ex(pro)s) os
= [" 19 %(s) ds

= [" % t(90(9) s

where the last equality follows by the first part of the proof and the definition of the
adjoint of a linear map. Sinagcan be arbitrary, (15) follows by identification ]

13



Theorem 4.1. Leta < 1/2 and p> 2. Assume that Hypothesis | and Il hold. As-
sume furthermore that there exists> 1/p andn > 0, such thatXy" is continuous
from 11 into Hol(n). If u belongs toDp 1 (15 ¢ p), for somee > 0, then for any
Te [0 1] there exists a measurable and integrable process, denotég bysuch
that, for any sany0<a<b< 1,

e[ /7196 (O u-um))(s) - Bruc o
1
chUO s—r[MCeul®, dr|. (16)

Moreover,

B P | < p
£ [u [ Bru dr||,fp} <ol a7

Proof. Sinceo > 1/p, uis continuous and we can speak unambiguousky(®f).
The assumed continuity &f;* entails thatXy (u—u(T)) belongs taD, 1(Hol(n))
and that

b
e[ /10 - um(e - O (- ump P er|
<o | [Mls-tcul, o] a9

Consider(pn, n > 1) a one-dimensional positive mollifier, we can define Rir
a.s.,Dru(s) by

Dru(r) = Ilm/ Pn(T) &7 (Oru)(T—r) dt.

n—oo

Hence Dru(r) is measurable with respect t@,r) and according to (18), we have
(16). Substituting 0 t@ (18), we get

;
o ;
E[/O Bru(r)| ds} <clull .

This means thaf; Dru(s) dsbelongs toIlep and that (17) holds. O

Example 1 cont'd Inthis caseX;* —IH Y/2is continuous fI’OI’T‘Il into 177 1/2,p°
This latter space is embedded in a space of Hdolderian functlons provided that

o>1/2—a+1/p. 3
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Example 2 cont'd According to [SKM93], %} = xl/z‘*'lrfl/zx*"l/2 and since
since 21+ H —1/2) =2H +1> 1, we infer from [SKM93, Lemma 10.1] thak;*

is continuous frorﬂ(}fp into I;Mfl/z o foranyo > 0. O

Theorem 4.2. Leta < 1/2 and p> 2. Assume that Hypothesis | and Il hold.
Assume furthermore that there exists- 1/p andn > 0, such that%;" is contin-
uous froml(}fp into Hol(n). If u belongs thp’l(I(};&p), for somee > 0O, then u is
Stratonovitch integrable of®, T] for any T € [0, 1], and

T T .
/0 u(s) o dXs = S( )+ /O Bru(s) ds+u(T)X(T). (19)

Proof. For the latest sum d®f'(u—u(T)), we have according to Theorem 4.1,
P

<cE L tiﬂ\ *(Or (u—u(T))(s) — Dru(r)|P dsdr
<CE|Y 5[ 1% Erlu—um)e - Bru

i+1 i+1 T
ti;;/tit /tit YGDr(u—u(T))(s)dsdr—/cJ Bru(r) dr

1 rlivr plive
<cE Z*/ / Is—r[P|OeullP,. dsdr
tieh 6i t; ti I(H—E,p

1
<c|mPul® .
<c|m™| \\Dp_l(1§+s_p)

Therefore, the latest sum & (u—u(T)) converges irLP(Q) (and thus in prob-
ability) to foT Dru(s) ds. In order to conclude, note that in virtue of the continuity
of the divergence, the first term & (u—u(T)) tends tod( 45 (u—u(T))), see
[Nua9s]. O

Lemma 4.2. Under the assumptions of Theorem 4.2, forGryS<T <1, ulg
is Stratonovitch integrable of®, T| and we have

T s
/ (U(r) — u(S)) 1 (r) o dX% :/ u(r)o dx, (20)
0 0
forany0<S<T <1
Proof. According to Egn. (12) and to Lemma 4.1, we have
RT (ps(u—u(S))) = Rg(u—u(s)) + u(SX™(S).

According to Theorem 4.2, the right-hand-side sum converges saithgy is
Stratonovitch integrable 0@, T] and Eqgn. (20) follows by remarking thag(u —
u(9)(T)=0. O
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Remark4.4. For the hypothesis X" is continuous frorri(}:p into Hol(n)” to hold,

in view of the examples cited above, this requires th& be greater than/2 —
a+1/p+n.

Fora > 1/2, the mapX is still a regularizing operator so that the hypothesis are
much weaker. Following the very same lines, we can prove:

Theorem 4.3. Leta > 1/2. Assume that Hypothesis | holds. Assume furthermore

that &7 is continuous fronCPinto 7, 1/2,p for some p> (a —1/2). If u belongs

to Dp1(LP), then, for any Te [0,1], there exists a measurable and integrable
process, denoted lyru such that, for almost any r

* = 1 _1/2—
E [0 & u(s) — Bru(n)[P] P < cls—r|* Y2 VPOl oario ).

Moreover,
o p
€ {1 Bur) 6y | < U, o

Theorem 4.4. Assume that Hypothesis | holds for> 1/2. Assume furthermore
that %" is continuous fronCPinto I~ 1/2pforsome > (a—1/2)~1. If u belongs
to Dp1(LP), then for any Te [0, 1], u is Stratonovitch integrable 0j@, T] and

T T
/ Uso dXs:ES(iKT*u)Jr/ Dru(s) ds
0 0

Remark4.5. The difference in this case is thaP(]0,1]) is stable by the mapgr
so that we immediatly have:

T 1
/ u(s)o dXs= / u(s)jr(s)o dXs,
0 0

in both theorems 4.2 and 4.4.
Coming back to Sgu), we have:

SS <tl€n6| /tlt'ﬁs ds (K t.+1,.)—K(ti,-))>

L ko K(O d
+3 5 ) (KOw -KOWw) o
The trace-like term is similar to those we had to treat in the previous theorems. The
difference is that its limit is formallyf, (X 0)su(s) dsinstead of/, 0( &;'u)(s) ds
in Theorems 4.1 and 4.3. We thus need some regularity of thesmaplsu(r)
which is something less easy to verify than properties on thesnafl, u(s). This
restriction reduces the interest of this approach.
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Theorem 4.5. Assume that Hypothesis | holds f@r> 1/2. Assume furthermore
that K is continuous fromLP([0, 1]) into Io_1/2p for some p> (a —1/2)71. If u
belongs tdDp 1(LP([0,1])), then there exists a measurable and integrable process,

denoted bybu such that, for almost any r
E [|(XD)su(r) — Du(r)[] < c|s—r[MID.u(r)llp,(r(o.1))- (21)
Moreover,

E [”/O Du(r) dr||Eo|(11/p)] < C”u||]IFJ)>p_1(LP([0,1]))‘ (22)

Furthermore, X;'u belongs tdomd and the family S§u) converges in B(Q) to
3(%;u) + Jg Du(s) ds
Remarkd.6. Foru belonging tdD 1 (LP([0,1])) and cylindric, it is easy to see that

1, 1,
/ Du(r) dr :/ Dju(r) dr. (23)
0 0

According to (22) and (4.3), this remains true for any D 1 (LP([0,1])).

Remark4.7. Fora < 1/2, one could also state a similar theorem but it would be
practically of little use since it is rather hard to determine whether

1
E[ /0 10.U(S)]15,. oo ds] is finite.

5 Regularity

There are two kinds of regularity results which may be interesting : continuity with
respect to the time variable and continuity with respect to the kernel. Actually,
when one thinks to the generalized fBm (see Example 3), the complete identifi-
cation of the model requires the perfect knowledge of the fundtdosince that
seems out of reach, one can naturally ask how much an ertdnmii modify the
stochastic integral of a given integrand. The trace-like term can be controlled via
theorems 4.3 and 4.1. We are now interested in the divergence part. We denote by
| &K ||a,p, the norm of X} as a map fronfé_l/zap into LP.

Theorem 5.1.Leta € (0,1/2) and1 < p< (1/2—a)~%, assume that assumptions

I and Il hold. Assume furthermore that there exists (0,1/p—(1/2—a)) such

that u belongs tdp1(/1/2_g+e,p). Then, the proces§d(%;“u),t € [0,1]} admits

a modification withé-Holder continuous paths for ang < €, and we have the

maximal inequality :
18(Z W) llLp(o; 1

) < SN Uyt e
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Proof. Since 32— a + ¢ is strictly less than Ap, we know that for anyl’ € [0, 1],
pru belongs toly/,_q.¢ p, S€€ Proposition 2.1. In view of Lemma 4.1, we have
O( & u) = 8( Ky (ulpy)). Therefore, fog € C* andy a cylindric real-valued func-
tional,

e| [ % toa @] €[ [[ w0 0acwa a]
—| [ % (it g0 or| ~E B (w1} 9]

Thus, .
/O 8% u)g(t) ot = 8( % (w1l g)) P-a.s.. (24)

Sincep < (1/2—a)™%, 1/2—a < 1/p, we can then apply Corollary 2.1 with
t=1/2—a,r=1/p—£€ands=1/2—a+¢. Sinceg is deterministic, we have

18K (U1 1-9) o) < €l K NlepllUllmgs (s auep 1E-Olpep (25)

We then obtain that fop € LP' (Q), forg e (I, 1 ¢,)',

1
| [ 3% (utaa) aru|

< Cf| K" lapl

Wl e oll9ll 1

1/p—1-¢&p

)’Hu”DZ.l(Sl/Z—c.p)' (26)

It follows that {8( %;*u), t € [0,1]} belongs tqLP (Q; I"y,1/p ¢p)s Which s iso-
morphic toLP(Q; 1", . ), and that

18(K " U)[Lo(q: 1

i) S SN apl Uy o)

This induces that there exists a modification df 4;*u), t € [0,1]} with E&-Holder
continuous sample-paths. O

Remark5.1 Note that 1 belongs tdy/,_.» for anye > 0, thus we retrieve that
X = &( %3 pru) has a version wittia — €)-Holder continuous sample-paths.

If e>1/p—1/2+a, we cannot apply Lemma 2.1 any more, sisce 1/2 —
o + € would be greater than/p. This is more than a technical problem: in this
situation, i.e.,u € I 1/2_q,p, U iS continuous angpru does not necesssary be-
longs to Iz, 1/2_q p, SO that the whole principle of the above proof fails. However,
as Lemma 2.3 shows, if we considef(u— u(T)) instead ofPru, this function
belongs tolg,1/>_q,p, for a smallere. Thus, we have:

18



Theorem 5.2. Leta € (0,1/2) and p> 1, assume that assumptions | and Il hold.
Assume furthermore that there exists ((1/p— 1/2+0()+, 1) such that u belongs
to Dp 1 (1, e11/2-a p)- Then, for anyE < g, the procesg{d( ;" (u—u(t))), t € [0, 1]}
admits a modification wit§-Holder continuous paths and we have the maximal
inequality :

1B(K (U=U)) ey,

1/p* +Ep

) < Cl[ K o pll (27)

uHDl)l E+1/2 a, p)

Proof. Note that we are allowed to consider u(t) since Yp—1/2+a < ¢
implies thate +1/2—a > 1/p and thus that/__ . 1/2-q,p IS €Mbedded in Hot +
1/2—a—1/p). The very same techniques as above show that

[ 85 - u))ott) & = 505 (i 91 (ug)), Pas.

A classical integration by parts and then a fractional integration by parts (see (2))
give that

1
/O 8(% (u—u(t)g(t) dt = —3(%; (11 (I,°ul5 @), Pas..
Now, we clearly have

(o ulE @)l 0p = 1o UIEl 1 4 o
Applying Corollary 2.1 with( =1/2—a+¢e—1/p+€,t=—(1/24+a),s+{ =
1/2—a+¢andr+s=t+1/p+¢ for somee’ > 0 sufficiently small, we get
26 (13 (15°uts ) l|eo < clig ul i, 115 gl 1,

= clull, llal;-,

HUHI;/Z ol
It follows as in the previous proof thé&d( %;*(u—u(t))), t > 0} belongs td_P(Q; If/p*+s p*)
(with € = € — €’) and that the maximal inequality (27) holds. O

Theorem 5.3. For anya € [1/2,1), assume that assumption | holds. Let u belong
to Dp1(LP) with ap > 1. The procesgd( % u),t € [0,1]} admits a modification
with (a —1/p)-Holder continuous paths and we have the maximal inequality :

18( K u) llLp(osHola—1/p) < AT lla2llUllDps -
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Proof. We begin as in Theorem 5.1 until Eqn. (24). Sirmce- 1/2, it is clear
that & is continuous from.2([0, 1]) into Iq_1/2 thus thatX* is continuous from

I 151N £2([0,1)). Sincely_1/22 is continuously embedded ia~®"", it fol-

lows that£¥® = (LY (-9 is continuously embedded i, ». Sinceu belongs
to Dp1(LP), the generalized Holder inequality implies that

lutz-gll e < llull e l13-9ll oy

It follows that {d(%;*u), t € [0,1]} belongs td_P(Q; [1+.(14+1/p)71> with

||5(17C*U)”LD(Q;I+

< * .
) < Ol N2l

The proof is completed remarking that-11/(1—a +1/p)~* = a — 1/p so that

11+,(17a+1/p)—1 is embedded in Hobt — 1/p). O

Remark5.2 These results extend similar results in [AMNO1] in the sense that the
assumptions on the kernel and on the integrand are here much weaker for the same
conclusion.

6 I1td Formula

We are now interested in non-linear transformations of Ité-like processes:
t
Z(t) = 2+ / u(s) o dxs, 28)
0

for a sufficiently regulan. The 1t6 formula for fBm-like processes has already a
long history. There are two technical barriers: it is relatively easy to prove Itd
formula fora > 1/2, since we then have a process more regular than the ordinary
Brownian motion and all the limiting procedures are straightforward (cf. [DH96,
DU95, DU99)) . Harder is the situation wheeebelongs to(0, 1/2], Alos et all.
[ALNO1] obtained a formula for the fBm of Hurst index greater thad. By a very
different procedure, Gradinaru et al. [GRV] were able to incluggit the domain
of validity of the formula. In another different approach, Feyel et al. [FdIP01]
also gave a formula for any Hurst index via analytic continuation of the formula
obtained fora > 1/2. Carmona et al. [CCMO02] obtained an Ité6 formula for-
1/6, for a class of processes similar to our so-called \Volterra processes.

The following results owes much to the paper [CCMO02] which shows that it
was possible to go beyond the barrigétlto the paper [AMNO1] which gives the
simplest expression of the 1td formula and to the work [GRV] which emphasizes
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the importance of symmetrization. Actually, the key remark is that there exists
integrandsau for which

() 1= [ (6 ()~ % () (2 Pnt(s) + % pu(s)) ds
:h{Alxjpu+mx$a@(gﬁ-g+mu@gds (29)
=t [ (97 - K u(s?) s

has a finite limit. Ifu= 1, sincelj) = 15 (&), it follows from the definition ofx
that &7 pr1 = K(t,.) and thusR,(1) = h"1}(R(t + h,t +-h) — R(t,t)), whereRis the
covariance kernel oK. For instance, iX is the fBm with stationary increments,
this expression is proportional ko ((t +h)?® —t2@). The different barriers can be
explained from the behavior of this last term, whose limit is cletfy . When
a > 1/2, this is a bounded function afso easily controllable in the limiting pro-
cedures. Foo € (1/4,1/2), it is no longer bounded but still irt?([0, 1]). When,
a < 1/4, we only have arcP integrable function for + p~! < 2a.

Hypothesis Ill. Let R the set of processes such tRatu), as defined in (29), has
a finite limit in L1(Q). We assume thagk; is such thatg_is non-empty.

Lemma 6.1. Leta € (0,1), be given and assume that hypothesis I, Il andlll hold.
Let u be a cylindric process, belonging®. Let

Ng :=inf{n: 2na > 1}.
Forany fe ¢, i.e., y-times differentiable with bounded derivatives, we have

%E [f(Zt)llJ} —E [f’(Zt)(?CD)t(U(t)UJ)]

+3E| 2o [ (rus? as -
+E[uQ @0 | (0 ar)|

e [u(t)f”(zoa((f/cm)t(v@*ptu))w} .

Proof. Introduce the functiog as

atb -3y,

904 = f( :
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This function is even, satisfies

gV (0) = 2f@+Y((a+b)/2) andg(b % =tb) - (a).

Applying the Taylor formula t@ between the points 0 arid — a) /2, we get

o 272 2j+1¢(2j+1),2FD
i P ()
_a\2n p1
+ (b(Z:)‘)! /O A 19 (Aa+ (1—A)b) dA.
We thus have
Mt 27 2+1¢(2j+1)@FD
EI(1Gn) @)W = 3 7€ | (b-a ) o)

1
+21|E[(Zt+h—zt)(2”“) / r2a—1g(2%) (r7, 4 (1—1)Zp) dr lIJ} (31)
Ny! 0

We need to prove that, when divided hythe latter quantity has a limit when

h goes to 01t turns out that the sole contributing term is the first one. We first
show thatn, is chosen sufficiently large so that the last term vanish. Sihce
belongsL?(Q; Hol(a — €)) for any & > 0, and sincegl®) is bounded, the last
term is bounded by a constant time&s(@~¢) Hence, this last term divided by
h vanishes whein goes to 0 We next deal with the first order term. Sinaas
cylindric,

=505 p0) + | %6 (D)9 o (32)

Substitute Eqgn. (32) into the first order term and use integration by parts formula,

22



this yields to:

e[ @20t Ay
—| [ (e @ 0T ) 05

+E| 1Ty [ (i) |

—E |:f/<Zt +22t+h)/i7(1*(pt,t+hu) (S) Dsq—' dS:|

Zi 4+ Ziin

[T [ (e 92

2

) ds

+E[ 1A [ (e o8| = 5

We can writeA; as

fa=F [/t s (KD ds (2 +Z”h>‘“] ’

2
by dominated convergence, it is then easily shown that
rllimoh’lAl =E [u(t) f'(z)(KD)y] . (33)

By direct calculations, sinceis cylindric, we have
1 t+h
/o K7 (Pt t+hOsu)(s) ds= /t (KO)su(s) ds, thus,

lim h~'Ag = E['(Z)w(XD)u(t)] (34)

h—0
Expandingds(Z; + Zi ), we obtain

220 = |2 [ (e 9 (P ) (5) |

+E[ 1 EE 2 [ (e (935 (o)) o]

€| [ (et [ (ot pon) (KDyu(r) o o) s

Zi +Zyyn

x f( > )m]:i;Bi.
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According to Hypothesis lll,
limh™B; =E d/l % (pru)(s)? dsf”(Z)y (35)
h—0 . dt Jo sagh
It is rather clear that
t
fm -85 — 2 [u(txf/cm)t( [0 dr>f"<a>w] . @)

To deal withBy, we need to apply once more the integration by parts formula. This
gives,

1 ,r1
B2—E| [ [} K (P05 (Bt ponulr) dser
0 Jo

% f//(Zt +22t+h)[p:|
+E [/01 Ky (Prt+nu)(S) /01 K (Pt + pr+n)Osu)(r)
(L) o .

It follows from this expression that
1
M\oh_le =2E [/0 (KD (K peu) (r)Or (u(t) £7(Zo)w) dr]
= 2E[u(t) " (Z)W3((XD) %G ) (37)

The remaining terms are of the form

e[ ezt At e

vl
1 . .
~E[ [ % (om0 (Zn- 2 1 AT ) o
. . 1
+E[(a+h—zt)21f<2l+l>(a4f2?w\)¢/(J K (PresnOsu)(s) ds} =C+Co.

By dominated convergence, it is clear thatC, vanishes ah goes to 0As toCy,
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it can be splitted into three parts

Zy +Ziyn
2 M

Cl _ 21 E |:(Zt+h _Zt)ijlf(ZH{L)(

1
6 () (S e~ 2) 0
0

1
/ % (praent) (905 2 +22t+h) q ]
ve| iz ALl

1 3
< [ % (P ds] -0

By dominated convergench; D3 vanishes a goes to 0 Expanding the Gross-
Sobolev derivativd,, we get

Zi +Zin

> )(Zein—Z0) %W

2D, =E [f(zi”)(

] (Rt (S5 P+ penu)s) o

Zi +Ztin

) (Zn =202y

+E[f(21+2)(

1
) P 95K (PO + pranCi)) o

Zi+2Ziin
2

< ) P 6I0s( [ (P p (KDt o ) .

L e

Following the reasoning applied &, we see that all the terms in the integrals are
converging a.s. (when divided by to a finite limit, since there still is a factor
(Ziyn—Z)?, with j > 0, the product converges to By dominated convergence,
the convergence can be seen to hold’itQ), thush~'D, goes to 0 at goes to 0
The really difficult term idD1. For the sake of clarity, we only treat the cgse 1.
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Forj=1,

D:=E I:(Zt-i-h —Z) f(s)(Zt +22t+h)LlJ

1
) () (S~ 20 0
0

1
—2E|@n- 2192 [ (pan(97 o

12E |:<Zt+h _ Zt)f(3)(Zt +22t+h)L|J

A (et (S8 (- Pran) )
Zi+Ziin

+2 E[(zt+h—zt)f<3>< I

2
<[ P [ O o o,

Dominated convergence implies that the last term, divided,byanishes ah

goes to 0 For the two other summands, the idea is always the same, each time
there is a divergence term, we apply integration by parts formula. Then, each new
term is treated by the previous methods. For instance, the most difficult term to
handle is one of the term which comes from derivative of the divergence in the first
summand:

e[ 1A [0 [ K (et 92 8K (rasnt) 1)

— | ARy

2
1,1 )
[ ] (Prasnt) (9% (PresnCrt) (9K (Presnt) (1) s
0 JO J

—E |:f(3)(zt +22t+h)LIJ

t+h 1
<[ UOK( [ Prenr) ()K (Prasn) 1) ) ) ]

Once again, in this form, it is clear that this term, dividedibgonverges to QAll
the remaining term are treated likewise and do not contribute. Thus from Eqn. (30)
follows from (33), (34), (35), (36) and (37). O
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Sinceu is cylindric, all the terms of (30) are integrable with respect,tave
thus have

Corollary 6.1. Under the assuptions of the previous lemma, we have,
E[f 0wl = E[f(9ui-+ £ | [ /(2 (KD)s(u(s) o5
#3E|v [ g [ K puny?aros
+Eu [ o)1) (KDs( [ (K0 ur) or) o
+E |0 [ u(o) (293 5 Po(K D)) ]

for any such thaty belongs tdbomX.

Since(X D) is a derivation operator, we obtain after a few manipulations: Since
K0 is a derivation operator, we have

E[f (200l = E[f 09Ul + £ | [ (KO)(F Zu(sw) o
3E|v [ g [ Kpun?ar os
~E[u [ w9 @)% () (9 .
This means that for arty we have a.e.,
(Z)= 0+ [ PEZus)o i
3 [l [ e o ds @®)

- /ot u(s) f"(Zs) KKy (psu)(s) ds.

Remark6.1 It has to be noted that in [Dec02b], we announced an It6 formula for
generabiand anya € (0,1). This is unfortunately wrong fam € (0,1/2). Actually,
starting from (38), the problem is now to pass to the limit. For the very first term of
the righthandside of (38), we need to find a class of procesfgsvhich f o Z.uis
Stratonovich integrable. The most restrictive part is to find conditions under which
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this process has a “trace” in the sense of Theorem 4.1. It is important to note that

2= 5 P (U U0) (1) + 505 BOr (- u(®)) + 01 [ (KD)olu-u(t))(9) ds
+ X(t)Dru(t) + u(t)K(t,r)
and thus, we have

K(0.20)(1) = KK p(u—u(t))) (1) + K(B( K PO (u—u(t)))) (1)
t
+5(0. [ (KD)s(u—u(t))(s) d5)(r) + K(X () Lu(®) (1)

+ K(Ut)K(t,.))().
Itis possible to impose hypothesis nsuch that the first four terms of the previous

equations have a signification wheg- t. Unfortunately, for the very last term, we
have

KUOK(E,))(1) = Ult) SR Soet

In the case of the fBm with stationary increments, this is equal, up to a constant, to
u(t) (91 — (t — s)2~1)s. Since this quantity is infinite fom < 1/2, we haven’t

been able to go below/2.

Remark6.2 If we don't have a trace term we can state the following result.

Theoren6.1 Leta € (0,1), be given and assume that hypothesis I, Il andlll hold.
Let u be a cylindric process, belonging®. Let

Ng :=inf{n: 2na > 1}.
Let
Z = 0( K pru).
Forany fe CQ", i.e., ny-times differentiable with bounded derivatives, we have

f(z) = f(x)+5(9q*(u.f'02))
1
+;/Otf”(zs):s/o K psu(r)? dr ds

t
n /O u(s)f”(Zs)é(?(l*ps(KD)su) ds
foranyt a.s..

Proof. The proof is exactly the same as the previous one. O

If u= 1, we get the same result as in [AMNO1, CCM02, DU99, FdIP01] valid
foranya € (0,1). If £ =1d, i.e., X is an ordinary Brownian motion, andis not
necessarily adapted, this formula coincides with that given in [U88].
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7 Skorohod integral

Since the terrr]foT Dru(s) dsis a trace-like term, it is reasonable to introduce the
following definitions. We now introduce a stochastic integral defined

Definition 7.1. We denote bypomdy-, the set of processes u belonging a.s. to
DomXK* and such thatX*u belongs tabomd. We denote bypomdy, the set of
processes u iDomdy- such that X *u is P-a.s. a trace class operator.

Definition 7.2. For u € Domdy, we define the stochastic integral of u with respect
to X by

/Olus* dx, 2 Ol(K*u)(s)éBertrace{D(?(*u))

To define the integral af between time 0 and we use Lemma 4.1:

Definition 7.3. For u € Domdy, we define the stochastic integral of u with respect
to X betweer® and t by

t 1
/us* dXS:/ (pru)(s) * dXs
0 0
t
= [ (% 0)(5)3Bs+ tracepO( % v),
where the second equality follows by (15).

Egn. (23) has its equivalent in this setting :

Lemma 7.1. Assume that | andll hold. Let&Dom X* belong toDy1(£2([0,1]))
and be such thatlu belong (a.s.) tdomX. Thentracd(X*u)) is finite iff
trace (X 0)u) is finite and they are equal.

Proof. Since DomX*NDomX is a dense subset @f, one can findh;,i > 1} an
ONB of £2 where for anyi, hj belongs to Don%* N"DomX. Setr, the orthogo-
nal projection in£? onto the vector space spannedhy.. ., h,. LetVk = a{8h;,i =
1,...,k} and consideuy , = THE [Pl/ku |Vk] wherePR, denote the Ornstein-Uhlenbeck
semi-group of the Wiener proceXs It is known, see [UZ00, Lemma B.6.1], that
Uk can be written as

n
Ukn = Zlfi”(éhl,...,éhk)hi wheref; € C* for anyi,
i=

29



and thatu , converges tai in D5 1. Furthermore, it is clear that we have

trac (X 0)ugn) = trace}y 9; f(dhy,...,0h)h ® Kh;
]
1
X fi”(6h17...,6hk)/o hi(s)(%h;)(s) ds
1)

1
-3 0, fi”(6h1,...,6hk)/o (%h)(9h; (s) ds
1]
= tracg (X Ukn))- (39)
Moreover, if tracé( X [0)u) exists a.s., then the series

Z < (KDO)u, hy@hi > ;2,2 is convergent.
|
Thus, by Cauchy-Schwarz inequality,

‘trace{(?(D)ukﬁ) — trace((?(D)u)‘
< z < (KD)uen— (KO)u,hy@hp > 2 2 + Z | < (KO, hi@hi > 20,2 |

i<n i>n

<N [(KO)(U=tken)ll 2oz + Y | < (KO, @0 > r2g 2 |.

i>n

As n goes to infinity, the rightmost term converges a.s. ,tbéhce fore > 0, one
can findn such that

P(Z | < (KO)u, hi@hi > 202> €/2) <g/2.

i>n
SinceX is a closed map, for this value of one can find, such that
P(I(KD) (U—Un) || 252 > €/20) < /2.

For suchn andk,, we have
P(|trace (K O)uk, n) — trac&(KO)u)| > ) <e.

Hence there exists a subsequeficgn;j) such that tracg X0)u, n;) converges
P-almost surely, thus that traéé& K *u)) is finite and that the two expressions are

equal. tracé]( X *u)) = trace (XO)u).
The very same reasoning holds true when tfa¢&*u)) is finite. O
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Following [Nua95], we know that when belongs to the domain of the two
integrals (that of definition 4.1 and that of the last definition), these two integrals
coincide.

A nice feature of this version of the stochastic integral is that we can compute
its transformation under absolutely continuous change of probability.

Theorem 7.1. Let T(w) = w+ Kv(w) be such that v belongs Ty, ; (£2) for some
p>1and T'P < P. Let u be such that u andol' belong taDomd4+ and JX *u
andd(XK*uoT) are a.s. trace class operators. Then,
1 1 1
(/ u(s)+ d¥g) o T :/ (UoT)(s) * dXS+/ K (UoT)(s)V(s) ds

0 0 0

Proof. Theorem B.6.12 of [UZ00] stands that
8(KU) o T = 6(?(*(uOT))+/?(*(uOT)(s)v(s)ds+trace{(Di7(*u)oT.Dv).

Proposition B.6.8 of [UZ00] implies that

tracd (0K u) o T.0Ov) = tracd (K uoT)) —tracd 0K u) o T.
The proof is completed by substituting the latter equation into the former. [

Forudeterministic ana adapted, this means that the law of the proég%ssdxs—
J5 Ku(s)v(s)dst > 0}, underT*P, is identical to theé>-law of the process [ usdXs,t >
0}.
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