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Abstract

We construct the basis of a stochastic calculus for so-called Volterra pro-
cesses, i.e., processes which are defined as the stochastic integral of a time-
dependent kernel with respect to a standard Brownian motion. For these
processes which are natural generalization of fractional Brownian motion,
we construct a stochastic integral and show some of its main properties: reg-
ularity with respect to time and kernel, transformation under an absolutely
continuous change of probability, possible approximation schemes and Itô
formula.

1 Introduction

In the past few years, more than twenty papers have been devoted to the defini-
tion of a stochastic integral with respect to fractional Brownian motion or other
“related” processes, see for instance [Dec02a] and references therein. Remind that
fractional Brownian process of Hurst indexH ∈ (0,1), denoted byBH , is the unique
centered Gaussian process whose covariance kernel is given by

RH(s, t) = E
[
BH

s BH
t

] de f
=

VH

2

(
s2H + t2H −|t−s|2H

)
where

VH
de f
=

Γ(2−2H)cos(πH)
πH(1−2H)

.

Among other properties, this process has 1/H-finite variation and a finite general-
ized covariation of order 4 forH > 1/4, (see [GRV] for the definition), has Hölder
continuous trajectories of any order less thanH and has the following representa-
tion property:

BH(t) =
Z t

0
KH(t,s) dBs, (1)
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whereB is a one dimensional standard Brownian motion andK is deterministic
kernel with an intricate expression (see [DÜ99]). Therefore, a “related” process
means altogether a process with finitep-variation, called a process with rough
paths in [CQ00, Lyo98], or a process with Hölder continuous sample-paths as
in [FdLP99, Z̈98] and also a process of the form (1) with a general kernel as in
[AMN01, CCM02, Dec02b].

This is the last track that we will follow here. Our present work, which is the ex-
panded version of [Dec02b], differs from the other two papers [AMN01, CCM02]
in two ways. First, the method to define the stochastic integral is different. In these
two papers, the kernel is regularized, if needed, to obtain a semi-martingale. The
second step is then to use the classical theory of stochastic integration and then
pass to the limit after a stochastic integration by parts in the sense of the Malli-
avin Calculus. We here use an approach based on convergence of discrete sums. It
should be already noted that for smooth integrands, their notion of integral and ours
coincide. The other difference is to be found in the kind of hypothesis put onK. In
[AMN01, CCM02], hypothesis are made on the regularity of the functionK(t,s)
itself. We here work with assumptions on the linear mapf 7→

R
K(t,s) f (s) ds.

Properties ofK(t,s) andK f are, of course, intimately related but we think that
working with the latter gives more insight on the underlying problems.

In Section 2, we recall basic definitions and properties of deterministic frac-
tional calculus. In Section 3, we introduce the class of processes, named Volterrra
processes, that we will study. We then give a few properties of their sample-paths.
In Section 4, we deal with a Stratonovitch-like definition of the stochastic integral
with respect to Volterra processes. Section 5 is devoted to the time regularity of the
previously constructed integral and in Section 6, we establish an Itô formula. In
the last section, we show how the Stratonovith integral is related to a Skorohod-like
integral and how a Itô-like process constructed from such an integral is modified
through an absolutely continuous change of probability.

2 Preliminaries

This section is only devoted to the presentation of the tools of deterministic frac-
tional calculus we shall use in the sequel. Forf ∈ L1([0,1]; dt), (denoted byL1

for short) the left and right fractional integrals off are defined by :

(I γ
0+ f )(x)

de f
=

1
Γ(γ)

Z x

0
f (t)(x− t)γ−1dt , x≥ 0,

(I γ
1− f )(x)

de f
=

1
Γ(γ)

Z 1

x
f (t)(t−x)γ−1dt , x≤ 1,
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whereγ > 0 andI0
0+ = I0

1− = Id . For anyγ ≥ 0, any f ∈ L p andg ∈ Lq where
p−1 +q−1 ≤ γ, we have :Z 1

0
f (s)(I γ

0+g)(s) ds=
Z 1

0
(I γ

1− f )(s)g(s) ds. (2)

The Besov-Liouville spaceI γ
0+(L p) not= I +

γ,p is usually equipped with the norm :

‖I γ
0+ f‖I +

γ,p
= ‖ f‖L p. (3)

Analogously, the Besov-Liouville spaceI γ
1−(L p) not= I−γ,p is usually equipped with

the norm :
‖I−γ

1− f‖I−γ,p = ‖ f‖L p.

We then have the following continuity results (see [FdLP99, SKM93]) :

Proposition 2.1. i. If 0 < γ < 1, 1 < p < 1/γ, then Iγ0+ is a bounded operator
from L p into Lq with q= p(1− γp)−1.

ii. For any 0 < γ < 1 and any p≥ 1, I +
γ,p is continuously embedded inHol(γ−

1/p) provided thatγ−1/p> 0. Hol(ν) denotes the space of Hölder-continuous
functions, null at time0, equipped with the usual norm.

iii. For any 0 < γ < β < 1, Hol(β) is compactly embedded inIγ,∞.

iv. By I−γ
0+ , respectively I−γ

1− , we mean the inverse map of Iγ
0+ , respectively Iγ1− . The

relation Iγ0+ Iβ
0+ f = I γ+β

0+ f holds wheneverβ > 0, γ+β > 0 and f∈ L1.

v. For γp > 1, the spacesI +
γ,p andI−γ,p are canonically isomorphic. We will thus

use the notationIγ,p to denote any of this spaces. This property isn’t any more
true for γp > 1, see Lemma 2.3 and text below Definition 4.1.

We now define the Besov-Liouville spaces of negative order and show that
they are in duality with Besov-Liouville of positive order (it is likely that this ex-
ists elsewhere in the literature but we have not found any reference so far). Denote
by D+ the space ofC ∞ functions defined on[0,1] and such thatφ(k)(0) = 0. Analo-
gously, setD− the space ofC ∞ functions defined on[0,1] and such thatφ(k)(1) = 0.
They are both equipped with the projective topology induced by the semi-norms
pk(φ) = ∑ j≤k‖φ( j)‖∞. Let D ′

+, resp. D ′
−, be their strong topological dual. It is

straightforward thatD+ is stable byI γ
0+ andD− is stableI γ

1− , for anyγ ∈R. Hence,
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guided by (2), we can define the fractional integral of any distribution (i.e., an
element ofD ′

− or D ′
+):

For T ∈D ′
−; I γ

0+T : φ ∈D− 7→< T, I γ
1−φ >D ′

−,D− ,

For T ∈D ′
+; I γ

1−T : φ ∈D+ 7→< T, I γ
0+φ >D ′

+,D+ .

We introduce now our Besov spaces of negative order by

Definition 2.1. For γ > 0 and r> 1, I +
−γ,r (resp.I−−γ,r ) is the space of distributions

such that Iγ0+T (resp. Iγ1−T ) belongs toL r . The norm of an element T in this space
is the norm of Iγ0+T in L r (resp. of Iγ1−T).

Theorem 2.1. For γ > 0 and r> 1, the dual space ofI +
γ,r (resp.I−γ,r ) is canonically

isometrically isomorphic to I−γ
1− (L r∗) (resp. I−γ

0+ (L r∗),) where r∗ = r(r−1)−1.

Proof. Let T be inD ′
+, we have:

sup
φ:‖φ‖I+

γ,r
=1
|< T, φ > |= sup

ψ:‖ψ‖Lr =1
|< T, I γ

0+φ > |

= sup
ψ:‖ψ‖Lr =1

|< I γ
1−T, φ > |

hence by the Hahn-Banach theorem,

T ∈ (I +
γ,r)

′⇐⇒ sup
φ:‖φ‖I+

γ,r
=1
|< T, φ > |< ∞⇐⇒ I γ

1−T ∈ L r∗ ,

and‖T‖(I +
γ,r )′ = ‖T‖I−γ

1− (L r∗ ). The same reasoning also holds for(I−γ,r)′.

Theorem 2.2. For β≥ γ≥ 0 and r> 1, Iβ
1− is continuous fromI−−γ,r into I−β−γ,r .

Proof. SinceT belongs toI−−γ,r = (Iγ,r∗)′, we have:

|< Iβ
1−T, φ > |= |< T, Iβ

0+φ > | ≤ c‖Iβ
0+φ‖Iγ,r∗ = c‖Iβ−γ

0+ φ‖L r∗ .

Thus,Iβ
1−T is a continuous linear form onI +

γ−β,r∗ and thus belongs to the dual of

this space which, according to the previous theorem, is exactlyI−β−γ,r .

For η > 0 and p ∈ [1,+∞), the Slobodetzki spaceSη,p is the closure ofC 1

functions with respect to the semi-norm:

‖ f‖p
Sη,p

=
ZZ

[0,1]2

| f (x)− f (y)|p

|x−y|1+pη dxdy,

Forη = 0, we simply haveS0,p = Lp([0,1]). We then have the following continuity
results (see [FdLP99, Z̈98]) :
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Proposition 2.2. i. For any 0 < γ < 1 and any p≥ 1, Sγ,p is continuously em-
bedded inHol(γ−1/p) provided thatγ−1/p > 0. Hol(ν) denotes the space
of Hölder-continuous functions, null at time0, equipped with the usual norm.

For 0 < γ < 1/p, Sγ,p is compactly embedded in Lp(1−γp)−1
([0,1]). Moreover,

if p = 2, the embedding ofSγ,p into L2([0,1]) is Hilbert-Schmidt.

ii. It is proved in [FdLP99] that for1 ≥ a > b > c > 0 that we the following
embeddings are continuous (even compact)

Sa,p ⊂ I +
b,p ⊂ Sc,p. (4)

iii. For any 0 < γ < β < 1, Hol(β) is compactly embedded inSγ,∞.

iv. Let a> 0, 1 < p≤ q < ∞. Suppose b= a−1/p+1/q > 0. ThenSa,p is con-
tinuously embedded inSb,q, see [Ada75].

One of the key property we shall use, is this result due to Tambaca [Tam01].

Lemma 2.1. Let r,s∈ [0,1/2) and let t= r + s−1/2≥ 0. For f ∈ Ss,2, g∈ Sr,2,
the product f g belongs toSt,2 and we have:

‖ f g‖St,2 ≤ c‖ f‖Sr,2‖g‖Ss,2.

From this Lemma and the embeddings of Eqn. (4), we have:

Corollary 2.1. Let r,s∈ [−∞,1/2) and let t< r + s−1/2. For f ∈ Is,2, g∈ Ir,2,
the product f g belongs toIt,2 and we have:

‖ f g‖It,2 ≤ c‖ f‖Ir,2‖g‖Is,2.

We will need a similar result in the simpler situation wherer is greater than
1/2.

Lemma 2.2. Let r > 1/2, for f and g inIr,2, we have

‖ f g‖Sr,2 ≤ c‖ f‖Sr,2‖g‖Sr,2. (5)

Proof. Sincer > 1/2, f andg are continuous and‖ f‖∞ ≤ c‖ f‖Sr,2. The same holds
for g. Thus,

‖ f g‖2
Sr,2
≤

ZZ
[0,1]2

( | f (x)|2(g(x)−g(y))2

|x−y|1+2r +
|g(y)|2( f (x)− f (y))2

|x−y|1+2r

)
dx dy

≤ c
(
‖ f‖2

∞‖g‖2
Sr,2

+‖g‖2
∞‖ f‖2

Sr,2

)
,

and the result follows.
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One could probably work with only one family of spaces (i.e., eitherIα,p or
Sα,p) but depending on the properties, some are easier to verify in the setting of
Riemann-Liouville spaces and some in the setting of Slobodetzki spaces, see for
instance the property below.

Lemma 2.3. Let γ > γ̃ > 1/2 and f∈ Sγ,2 then( f − f (t))1[0,t] belongs toSγ̃,2.

Proof. First note thatf is (γ−1/2)-Hölder continuous thus thatf − f (t) is well
defined. Moreover,

ZZ
[0,1]2

|( f (x)− f (t))1[0,t]− ( f (y)− f (t))1[0,t]|2

|x−y|1+2γ̃ dxdy

=
ZZ

[0,t]2

| f (x)− f (y)|2

|x−y|1+2γ̃ dxdy+2
ZZ

[0,t]×[0,1]

| f (x)− f (t)|2

|x−y|1+2γ̃ dxdy

≤ ‖ f‖2
γ̃,2(1+2

ZZ
[0,t]×[t,1]

|x− t|2γ−1

|x−y|1+2γ̃ dxdy)≤ c‖ f‖2
γ̃,2.

3 Volterra processes

Consider that we are given a deterministic Hilbert-Schmidt linear map,K, satisfy-
ing:

Hypothesis I. There existsα > 0 such thatK is continuous, one-to-one, from
L2([0,1]) into Iα+1/2,2. Moreover,K is triangular, i.e., for anyλ ∈ [0,1], the set
Nλ = { f : f (t) = 0 for t ≤ λ} is invariant byK.

Remark3.1. SinceK is Hilbert-Schmidt fromL2([0,1]) into itself, there exists a
measurable kernelK(., .) such that

K f (t) =
Z 1

0
K(t,s) f (s) ds.

The triangularity ofK is equivalent toK(t,s) = 0 for s> t, i.e.,

K f (t) =
Z t

0
K(t,s) f (s) ds.

Consider now the kernelR(t,s) defined by

R(t,s) :=
Z t∧s

0
K(t, r)K(s, r) dr.
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The map associated toR, i.e., R f(t) =
R 1

0 R(t,s) f (s) ds, is equal toKK∗ and for
anyβ1, . . . ,βn anyt1, . . . , tn, we have

∑
i, j

βiβ jR(ti , t j) =
Z

K∗(∑β jεt j )(s)
2 ds≥ 0,

so thatR(t,s) is a positive kernel and we can speak of the centered Gaussian process
of covariance kernelR. Let X be this process and be the subject of our study.

Lemma 3.1. The process X has a modification with a.s. continuous sample-paths.

Proof. We have

E
[
(Xt −Xs)2] =

Z t

0
K(t, r)2 dr +

Z s

0
K(s, r)2 dr−2

Z t∧s

0
K(t, r)K(s, r) dr

= K(K(t, .)−K(s, .))(t)−K(K(t, .)−K(s, .))(s)

≤ c|t−s|α
(Z 1

0
(K(t, r)−K(s, r))2 dr

)1/2
.

Expanding the square in the last integral, we get the right hand side of the first
equation, thus

E
[
(Xt −Xs)2]1/2 ≤ c|t−s|α.

Kolmogorov Lemma entails thatX has a modification with Hölder continuous sam-
ple paths of any order less thanα.

We thus now work on the Wiener spaceΩ = C0([0,1];R), the Cameron-Martin
space isH = K(L2([0,1])) andP, the probability onΩ under which the canonical
process, denoted byX, is a centered Gaussian process of covariance kernelR. The
norm ofh = K(g) in H is the norm ofg in L2([0,1]).

A mappingφ from Ω into some separable Hilbert spaceX is called cylindri-
cal if it is of the form φ(w) = ∑d

i=1 fi(〈vi,1,w〉, · · · ,〈vi,n,w〉)xi where for eachi,
fi ∈ C ∞

0 (Rn,R) and(vi, j , j = 1. . .n) is a sequence ofΩ∗ such that(ṽi, j , j = 1. . .n)
(whereṽi, j is the image ofvi, j under the injectionΩ? ↪→ L2([0,1]) ) is an orthonor-
mal system ofL2([0,1]). For such a function we define∇φ as

∇φ(w) = ∑
i, j=1

∂ j fi(〈vi,1,w〉, · · · ,〈vi,n,w〉)ṽi, j ⊗xi .

From the quasi-invariance of the Wiener measure [Ü95], it follows that∇ is a
closable operator onLp(Ω;X), p≥ 1, and we will denote its closure with the same
notation. The powers of∇ are defined by iterating this procedure. Forp> 1,k∈N,
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we denote byDp,k(X) the completion ofX-valued cylindrical functions under the
following norm

‖φ‖p,k =
k

∑
i=0

‖∇iφ‖Lp(Ω;X⊗L2([0,1])⊗i) .

Remark3.2. Note that the Sobolev spacesSα,p enjoy the useful property ofp-
admissibility (after [FdLP91]) and thus for any 0< γ < 1 and anyp≥ 1, the spaces
Dp,k(Sα,p) andSα,p(Dp,k) are isomorphic.

The divergence, denotedδ is the adjoint of∇: v belongs to Domp δ whenever
for any cylindricalφ,

|E
[Z 1

0
us∇sφ ds

]
| ≤ c‖φ‖Lp

and for such a processv,

E

[Z 1

0
us∇sφ ds

]
= E[φδu] .

It is easy to show (see [DÜ99]) that{Bt := δ(1[0,t]), t ≥ 0} is a standard Brownian
motion such thatδu =

R
us dBs for any square integrable adapted processesu and

which satisfies

Xt =
Z t

0
K(t,s) dBs.

Moreover,B andX have the same filtration. In view of the last identity and because
K is lower triangular, we decided to name such a process, a Gaussian Volterra
process. The analysis of processes of the same kind whereB is replaced by a jump
processes is the subject of our current investigations with N. Savy.

Example1. The first example is the so-called Lévy fractional Brownian motion of
Hurst indexH, defined as

1
Γ(H +1/2)

Z t

0
(t−s)H−1/2 dBs.

This amounts to say thatK = IH+1/2
0+ , thus that hypothesis I and II are immediately

satisfied, withα = H, in view of the semi-group properties of fractional integration.

Example2. The other classical example is the fractional Brownian motion with
stationary increments of Hurst indexH, for which

K(t,s) = KH(t, r) :=
(t− r)H− 1

2

Γ(H + 1
2)

F(
1
2
−H,H− 1

2
,H +

1
2
,1− t

r
)1[0,t)(r). (6)
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The Gauss hyper-geometric functionF(α,β,γ,z) (see [NU88]) is the analytic con-
tinuation onC×C×C\{−1,−2, . . .}×{z∈C,Arg|1−z|< π} of the power series

+∞

∑
k=0

(α)k(β)k

(γ)kk!
zk,

and

(a)0 = 1 and(a)k
de f
=

Γ(a+k)
Γ(a)

= a(a+1) . . .(a+k−1).

We know from [SKM93] thatKH is an isomorphism fromL2([0,1]) ontoI +
H+1/2,2

and

KH f = I2H
0+ x1/2−H I1/2−H

0+ xH−1/2 f for H ≤ 1/2,

KH f = I1
0+xH−1/2IH−1/2

0+ x1/2−H f for H ≥ 1/2.

It follows easily that Hypothesis I and II are satisfied withα = H.

Example 3. Beyond these two well known cases, we can investigate the case
of K(t,s) = KH(t)(t,s) for a deterministic functionH. This is the process stud-
ied in [BBCI99]. It seems interesting to analyze since statistical investigations
via wavelets have shown that the local Hölder exponent of some real signals (in
telecommunications) is varying with time and this situation can’t be reflected with
a model based on fBm since its Hölder regularity is everywhere equal to its Hurst
index.

Lemma3.2. For f ∈ L2, for H1 > H2 ≥ γ > 0, we have

|KH2 f (s)−KH2 f (t)| ≤ c|t−s|γ‖ f‖L2, (7)

|KH1 f (s)−KH2 f (s)| ≤ c|H1−H2|‖ f‖L2, (8)

where c is a constant independent of H1, H2 and f.

Proof. SinceH2 is greater thanγ, KH2 f belongs toIγ+1/2,2, and (7) follows directly
from the embedding ofIγ+1/2,2 into Hol(γ).

Another expression of the hypergeometric function is given by:

F(a,b,c,z) =
Γ(c)

Γ(b)Γ(c−b)

Z 1

0
tc−1(1− t)c−b−1(1−zt)−a dt.

Classical and tedious computations show that forH ∈ [h1 + ε,h2− ε],

| d
dH

KH(t,s)| ≤ cε sup
H∈(H1,H2)

|KH(t,s)|,
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wherecε = supt∈[0,1] |tε ln t|. It thus entails that

|KH2(t,s)−KH1(t,s)| ≤ cε sup
H∈(H1,H2)

|KH(t,s)||H2−H1|.

Cauchy-Schwarz inequality yields to (8).

Theorem3.1. Let H belong toS1/2+α,2 and be such thatinft H(t) > 1/2, then
K(t,s) = KH(t)(t,s) satisfies I for anyα < inft H(t)−1/2.

Proof. Let f belong toL2, setγ = inft H(t) and letα < γ−1/2. According to the
previous lemma, we have

‖K f‖2
S1/2+α,2

=
ZZ

[0,1]2

|KH(t) f (t)−KH(s) f (s)|2

|t−s|2+2α dt ds

≤ 2
ZZ

[0,1]2

|KH(t) f (t)−KH(t) f (s)|2

|t−s|2+2α dt ds

+2
ZZ

[0,1]2

|KH(t) f (s)−KH(s) f (s)|2

|t−s|2+2α dt ds

≤ c‖ f‖2
L2

ZZ
[0,1]2

|t−s|2γ

|t−s|1+2α dt ds+c‖ f‖2
L2

ZZ
[0,1]2

|H(t)−H(s)|2

|t−s|2+2α dt ds.

The right-hand-side is finite by hypothesis and thusK is continuous fromL2 into
S1/2+α,2.

4 Stratonovitch integral

Starting from scratch and trying to define a stochastic integral with respect toX
by a limit of a sequence of finite sums, we have two main choices: Either we
discretizeX (or more probablydX) or we discretizeB (likely dB) and then derive
a discretization ofdX. The first approach yields two possibilities: for a partitionπ
whose points are denoted by 0= t0 < t1 < .. . < tn = T, we can consider

RSπ(u) = ∑
ti∈π

u(ti)∆Xi or (9)

SSπ(u) = ∑
ti∈π

1
δi

(
Z ti+1

ti
u(s) ds) ∆Xi , (10)

whereδi = ti+1− ti and ∆Xi = X(ti+1)−X(ti). They are both reminiscences of
respectively Riemann and Skorohod-Stratonovitch sums as defined in [Nua95].
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In the other approach, we first linearizeB and then look at the approximation
of X it yields to. Let

Bπ(t) = B(ti)+
1
δi

∆Bi(t− ti) for t ∈ [ti , ti+1),

and

Xπ(t) = ∑
ti∈π

1
δi

Z ti+1

ti
K(t,s)ds∆Bi

= ∑
ti∈π

1
δi

K(1[ti ,ti+1])(t)∆Bi .

It follows that it is reasonable to consider

Rπ
T(u) := ∑

ti∈π

1
δi

{Z T

0
u(t)

d
dt

K(1[ti ,ti+1])(t) dt

}
∆Bi ,

under the additional hypothesis that for anyb > 0, the functionK(1[0,b]) is differ-
entiable with a square integrable derivative. Foru sufficiently smooth in the sense
of the calculus of variations, we have

Rπ
T(u) = δ

(
∑
ti∈π

1
δi

Z T

0
u(t)

d
dt

K(1[ti ,ti+1])(t)dt1[ti ,ti+1]

)
+ ∑

ti∈π

1
δi

Z ti+1

ti

Z T

0
∇ru(t)

d
dt

K(1[ti ,ti+1])(t) dt dr.

UsingK ∗
T , the formal adjoint ofK := I−1

0+ ◦K on L2([0,T]), we have

Rπ
T(u) = δ

(
∑
ti∈π

1
δi

Z ti+1

ti
K ∗

T u(t) dt
)

+ ∑
ti∈π

1
δi

ZZ
[ti ,ti+1]2

K ∗
T (∇ru)(t) dt dr. (11)

We now recognize the Skorohod-Stratonovitch sum associated to the standard Brow-
nian motionB and to the integrandK ∗

T u. For the sequel to be meaningful, we need
to assume that the mapK exists. This is guaranteed forα ≥ 1/2, sinceI +

α+1/2,2
is embedded in the set of absolutely continuous functions with square integrable
derivative, but forα < 1/2, we need to introduce an additional hypothesis.

Hypothesis II. We assume that for anyT ∈ [0,1], the mapK = I−1
0+ ◦K is a densely

defined, closable operator fromL2([0,T]) into itself and that its domain contains
a dense subset,D, stable by the mapspT , for anyT ∈ [0,1], wherepT f ≡ f 1[0,T).
We denote byK ∗

T its adjoint in L2([0,T]). We assume furthermore thatK ∗
1 is

continuous fromI 1−
1/2−α,p into L2([0,T]), for any p≥ 2.
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Remark4.1. In the preceding examples,D may be taken toI(1/2−α)+,2.

Remark4.2. For the sake of simplicity, we will speak of the domains ofK and
K ∗

T independently of the position ofα with respect to 1/2. It must be plain that for
α > 1/2, DomK = L2([0,1]) and DomK ∗

T = L2([0,T]).
Remark4.3. SinceI1

1−(εt) = 1[0,t], we have

K ∗(1[0,t]) = K∗(εt) = K(t, .).

This means thatK ∗
t is identical to the operator denoted byIKH

t in [CCM02].

Notation 1. For anyp≥ 1, we denote byp∗ the conjugate ofp. For any linear
mapA, we denote byA∗T , its adjoint inL2([0,T]). We denote byc any irrelevant
constant appearing in the computations,c may vary from one line to another.

Definition 4.1. Assume that Hypothesis I holds forα ≥ 1/2. We say that u is
Stratonovitch integrable on[0,T] whenever the family RπT(u), defined in (11), con-
verges in probability as|π| goes to0. In this case the limit will be denoted byR T

0 us◦ dXs.

This definition could be theoretically extended toα < 1/2 but would be prac-
tically unusable. Indeed, as we shall see below, whenα < 1/2, the convergence
of the second sum ofRπ

T(u) requires thatu belongs toI1+η−α,2 for someη > 0
andK ∗

T to be continuous from this space to a space of Holderian functions. Since
1+ η−α− 1/2 > 0, the two spacesI1+η−α

0+ (L2([0,T])) and I1+η−α
T− (L2([0,T]))

are not canonically isomorphic (ifu belongs to the first one thenu(0) = 0 whereas
whenu belongs to the latter,u(T) = 0). We thus have to specify to which one
u belongs exactly. In view of the example of the Lévy fractional Brownian where
K ∗

T = IH−1/2
T− , it is more convenient to assume thatu belongs toI1+η−H

T− (L2([0,T]))
and thus thatu(T) is equal to 0. That raises a problem because the restriction of
an element ofI1+η−H

T− (L2([0,T])) to a shorter interval, say[0,S], does not belong

I1+η−H
S− (L2([0,S])) so that, we can’t see

R S
0 u(r)◦ dXr as

R T
0 u(r)1[0,S](r)◦ dXr .

On the other hand, since(u−u(S))1[0,S] belongs toI1+η−H
S− (L2([0,S])) as soon

asu belongs toI1+η−H
T− (L2([0,T])), it is reasonable to considerRπ

T(u−u(T)). For
the limit to stay the same, we have to add the termu(T)X(T). Indeed, the well
known relationship (see [Nua95, Ü95])

δ(aξ) = aδξ−
Z 1

0
∇raξ(r) dr, (12)

for a∈ D2,1 andξ ∈ L2(Ω× [0,1]), entails that

Rπ
T(u) = Rπ

T(u−u(T))+u(T)Xπ(T). (13)

As a conclusion, forα < 1/2, the definitive definition is

12



Definition 4.2 (Definition for α < 1/2). Assume that Hypothesis I and II hold for
α < 1/2. We say that u is Stratonovitch integrable on[0,T], whenever the family
Rπ

T(u−u(T)) converges in probability as|π| goes to0. In this case, we setZ T

0
us◦ dXs = lim

|π|→0
Rπ

T(u−u(T))+u(T)X(T). (14)

In view of the preceding discussion, the following lemma will play a key role
in the sequel.

Lemma 4.1. For T ∈ (0,1], let pT f denote the restriction of f to[0,T). For any
f ∈ DomK ∗

1 , f belongs toDomK ∗
T , pT f belongs toDomK ∗

1 and we have

pTK ∗
1 (pT f )≡K ∗

T ( f ). (15)

Proof. Since K is triangular, forg ∈ D, pTg belongs to DomK and pTKg =
pTK(pTg) = KpTg. By derivation, it follows thatpTK g = pTK pTg = K pTg,
so that, forf ∈ DomK ∗

1 ,

|
Z t

0
f (s)K g(s) ds|= |

Z 1

0
(pT f )(s)K g(s) ds|

= |
Z 1

0
f (s)(pTK g)(s) ds|

= |
Z 1

0
f (s)K (pTg)(s) ds|

≤ c‖pTg‖L2([0,1]) = c‖g‖L2([0,T]).

By density, this identity remains true forg∈DomK , thus this means thatf belongs
to DomK ∗

T and thatpT f belongs to DomK ∗
1 .

Forg∈ L2([0,T])∩DomK , we denote by ˜g its extension toL2([0,T]) defined
by g̃(s) = 0 whenevers≥ T. We haveZ T

0
pTK ∗

1 pT f (s)g(s) ds=
Z 1

0
K ∗

1 pT f (s)pT g̃(s) ds

=
Z 1

0
pT f (s)K (pT g̃)(s) ds

=
Z T

0
f (s)K g(s) ds

=
Z T

0
K ∗

T f (s)g(s) ds,

where the last equality follows by the first part of the proof and the definition of the
adjoint of a linear map. Sinceg can be arbitrary, (15) follows by identification.

13



Theorem 4.1. Let α < 1/2 and p≥ 2. Assume that Hypothesis I and II hold. As-
sume furthermore that there existsσ > 1/p andη > 0, such thatK ∗

1 is continuous
from I 1−

σ,p into Hol(η). If u belongs toDp,1(I 1−
σ+ε,p), for someε > 0, then for any

T ∈ [0,1], there exists a measurable and integrable process, denoted byD̃Tu such
that, for any s, any0≤ a < b < 1,

E

[Z b

a
|K ∗

T (∇r(u−u(T)))(s)− D̃Tu(r)|p dr

]
≤ cE

[Z 1

0
|s− r|pη‖∇ru‖p

I 1−
σ+ε,p

dr

]
. (16)

Moreover,

E

[
‖

Z .

0
D̃Tu(r) dr‖p

I +
1,p

]
≤ c‖u‖p

Dp,1(I 1−
σ+ε,p)

. (17)

Proof. Sinceσ > 1/p, u is continuous and we can speak unambiguously ofu(T).
The assumed continuity ofK ∗

1 entails thatK ∗
T (u−u(T)) belongs toDp,1(Hol(η))

and that

E

[Z b

a
|∇rK ∗

T (u−u(T))(s)−∇rK ∗
T (u−u(T))(τ)|p dr

]
≤ cE

[Z 1

0
|s− τ|pη‖∇ru‖p

I 1−
σ+ε,p

dr

]
. (18)

Consider(ρn, n≥ 1) a one-dimensional positive mollifier, we can define P⊗ dr
a.s.,D̃Tu(s) by

D̃Tu(r) = lim
n→∞

Z T

0
ρn(τ)K ∗

T (∇ru)(τ− r) dτ.

Hence,D̃Tu(r) is measurable with respect to(ω, r) and according to (18), we have
(16). Substituting 0 tos (18), we get

E

[Z T

0
|D̃Tu(r)|p ds

]
≤ c‖u‖p

Dp,1(I 1−
σ,p)

.

This means that
R .

0 D̃Tu(s) ds belongs toI +
1,p and that (17) holds.

Example 1 cont’d. In this case,K ∗
1 = IH−1/2

1− is continuous fromI 1−
σ,p into I +

σ+α−1/2,p.
This latter space is embedded in a space of Hölderian functions provided that
σ > 1/2−α+1/p. A

14



Example 2 cont’d. According to [SKM93],K ∗
1 = x1/2−H IH−1/2

1− xH−1/2 and since
since 2(1+H−1/2) = 2H +1> 1, we infer from [SKM93, Lemma 10.1] thatK ∗

1
is continuous fromI 1−

σ,p into I +
σ+α−1/2,p, for anyσ≥ 0. A

Theorem 4.2. Let α < 1/2 and p≥ 2. Assume that Hypothesis I and II hold.
Assume furthermore that there existsσ > 1/p andη > 0, such thatK ∗

1 is contin-
uous fromI 1−

σ,p into Hol(η). If u belongs toDp,1(I 1−
σ+ε,p), for someε > 0, then u is

Stratonovitch integrable on[0,T] for any T∈ [0,1], andZ T

0
u(s)◦ dXs = δ(K ∗

T u)+
Z T

0
D̃Tu(s) ds+u(T)X(T). (19)

Proof. For the latest sum ofRπ
T(u−u(T)), we have according to Theorem 4.1,

E

[∣∣∣∣∣∑ti∈π

1
δi

Z ti+1

ti

Z ti+1

ti
K ∗

T ∇r(u−u(T))(s) ds dr−
Z T

0
D̃Tu(r) dr

∣∣∣∣∣
p]

≤cE

[
∑
ti∈π

1
δi

Z ti+1

ti

Z ti+1

ti
|K ∗

T (∇r(u−u(T))(s)− D̃Tu(r)|p ds dr

]

≤cE

[
∑
ti∈π

1
δi

Z ti+1

ti

Z ti+1

ti
|s− r|pη‖∇ru‖p

I 1−
σ+ε,p

ds dr

]
≤c|π|pη‖u‖p

Dp,1(I 1−
σ+ε,p)

.

Therefore, the latest sum ofRπ
T(u−u(T)) converges inLp(Ω) (and thus in prob-

ability) to
R T

0 D̃Tu(s) ds. In order to conclude, note that in virtue of the continuity
of the divergence, the first term ofRπ

T(u− u(T)) tends toδ(K ∗
T (u− u(T))), see

[Nua95].

Lemma 4.2. Under the assumptions of Theorem 4.2, for any0≤S≤ T ≤ 1, u1[0,S]
is Stratonovitch integrable on[0,T] and we haveZ T

0
(u(r)−u(S))1[0,S](r)◦ dXr =

Z S

0
u(r)◦ dXr , (20)

for any0≤ S≤ T ≤ 1.

Proof. According to Eqn. (12) and to Lemma 4.1, we have

Rπ
T(pS(u−u(S))) = Rπ

S(u−u(S))+u(S)Xπ(S).

According to Theorem 4.2, the right-hand-side sum converges so thatu1[0,S] is
Stratonovitch integrable on[0,T] and Eqn. (20) follows by remarking thatpS(u−
u(S))(T) = 0.
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Remark4.4. For the hypothesis “K ∗
1 is continuous fromI 1−

σ,p into Hol(η)” to hold,
in view of the examples cited above, this requires thatσ to be greater than 1/2−
α+1/p+η.

For α > 1/2, the mapK is still a regularizing operator so that the hypothesis are
much weaker. Following the very same lines, we can prove:

Theorem 4.3. Let α > 1/2. Assume that Hypothesis I holds. Assume furthermore
thatK ∗

1 is continuous fromL p into I−α−1/2,p for some p> (α−1/2)−1. If u belongs

to Dp,1(L p), then, for any T∈ [0,1], there exists a measurable and integrable
process, denoted bỹDTu such that, for almost any r,

E
[
|∇rK ∗

T u(s)− D̃Tu(r)|p
]1/p ≤ c|s− r|α−1/2−1/p‖∇ru‖Lp(Ω×[0,1]).

Moreover,

E

[
‖

Z .

0
D̃u(r) dr‖p

Hol(1−1/p)

]
≤ c‖u‖p

Dp,1(L p).

Theorem 4.4. Assume that Hypothesis I holds forα > 1/2. Assume furthermore
thatK ∗

1 is continuous fromL p into I−α−1/2,p for some p> (α−1/2)−1. If u belongs

to Dp,1(L p), then for any T∈ [0,1], u is Stratonovitch integrable on[0,T] andZ T

0
us◦ dXs = δ(K ∗

T u)+
Z T

0
D̃Tu(s) ds.

Remark4.5. The difference in this case is thatL p([0,1]) is stable by the mapspT

so that we immediatly have:Z T

0
u(s)◦ dXs =

Z 1

0
u(s)1[0,T](s)◦ dXs,

in both theorems 4.2 and 4.4.

Coming back to SSπ(u), we have:

SSπ(u) = δ
(

∑
ti∈π

1
δi

Z ti+1

ti
us ds

(
K(ti+1, .)−K(ti , .)

))
+ ∑

ti∈π

1
δi

Z ti+1

ti

(
K(∇.us)(ti+1)−K(∇.us)(ti)

)
ds

The trace-like term is similar to those we had to treat in the previous theorems. The
difference is that its limit is formally

R 1
0 (K ∇)su(s) ds instead of

R 1
0 ∇(K ∗

1 u)(s) ds
in Theorems 4.1 and 4.3. We thus need some regularity of the maps 7→ ∇su(r)
which is something less easy to verify than properties on the maps 7→∇ru(s). This
restriction reduces the interest of this approach.
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Theorem 4.5. Assume that Hypothesis I holds forα > 1/2. Assume furthermore
that K is continuous fromL p([0,1]) into I−α−1/2,p for some p> (α−1/2)−1. If u

belongs toDp,1(L p([0,1])), then there exists a measurable and integrable process,
denoted byD̂u such that, for almost any r,

E
[
|(K ∇)su(r)− D̂u(r)|

]
≤ c|s− r|η‖D.u(r)‖Dp,1(L p([0,1])). (21)

Moreover,

E

[
‖

Z .

0
D̂u(r) dr‖p

Hol(1−1/p)

]
≤ c‖u‖p

Dp,1(L p([0,1])). (22)

Furthermore,K ∗
T u belongs toDomδ and the family SSπ(u) converges in L2(Ω) to

δ(K ∗
T u)+

R T
0 D̂u(s) ds.

Remark4.6. Foru belonging toDp,1(L p([0,1])) and cylindric, it is easy to see thatZ 1

0
D̂u(r) dr =

Z 1

0
D̂1u(r) dr. (23)

According to (22) and (4.3), this remains true for anyu∈ Dp,1(L p([0,1])).
Remark4.7. For α < 1/2, one could also state a similar theorem but it would be
practically of little use since it is rather hard to determine whether

E

[Z 1

0
‖∇.u(s)‖2

S1+η−α,2
ds

]
is finite.

5 Regularity

There are two kinds of regularity results which may be interesting : continuity with
respect to the time variable and continuity with respect to the kernel. Actually,
when one thinks to the generalized fBm (see Example 3), the complete identifi-
cation of the model requires the perfect knowledge of the functionH. Since that
seems out of reach, one can naturally ask how much an error onH will modify the
stochastic integral of a given integrand. The trace-like term can be controlled via
theorems 4.3 and 4.1. We are now interested in the divergence part. We denote by
‖K ∗

1 ‖α,p, the norm ofK ∗
1 as a map fromI ′α−1/2,p into L p.

Theorem 5.1.Letα∈ (0,1/2) and1< p< (1/2−α)−1, assume that assumptions
I and II hold. Assume furthermore that there existsε ∈ (0,1/p− (1/2−α)) such
that u belongs toDp,1(I1/2−α+ε,p). Then, the process{δ(K ∗

t u), t ∈ [0,1]} admits
a modification withε̃-Hölder continuous paths for anỹε < ε, and we have the
maximal inequality :

‖δ(K ∗
. u)‖Lp(Ω;I +

1/p∗+ε̃,p∗ )
≤ c‖K ∗‖α,p‖u‖Dp,1(I1/2−α+ε,p).
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Proof. Since 1/2−α+ ε is strictly less than 1/p, we know that for anyT ∈ [0,1],
pTu belongs toI1/p−α+ε,p, see Proposition 2.1. In view of Lemma 4.1, we have
δ(K ∗

t u) = δ(K ∗
1 (u1[0,t])). Therefore, forg∈ C ∞ andψ a cylindric real-valued func-

tional,

E

[Z 1

0
δK ∗

1 (u1[0,t])g(t) dt ψ
]

= E

[ZZ
[0,1]2

K ∗
1 (u1[0,t])(r)g(t)∇rψ dt dr

]
= E

[Z 1

0
K ∗

1 (uI1
1−g)(r)∇rψ dr

]
= E

[
δ(K ∗

1 (u.I1
1−g)ψ

]
.

Thus, Z 1

0
δ(K ∗

t u)g(t) dt = δ(K ∗
1 (u.I1

1−g)) P-a.s.. (24)

Since p < (1/2− α)−1, 1/2− α < 1/p, we can then apply Corollary 2.1 with
t = 1/2−α, r = 1/p− ε̃ ands= 1/2−α+ ε. Sinceg is deterministic, we have

‖δ(K ∗
1 (u.I1

1−g))‖Lp(Ω) ≤ c‖K ∗‖α,p‖u‖Dp,1(I1/2−α+ε,p)‖I
1
1−g‖I1/p−ε̃,p. (25)

We then obtain that forψ ∈ Lp∗(Ω), for g∈ (I−1/p−1−ε̃,p)
′,

|E
[Z 1

0
δK ∗

1 (u1[0,t])g(t) dt ψ
]
|

≤ c‖K ∗‖α,p‖ψ‖Lp∗ (Ω)‖g‖(I−1/p−1−ε̃,p)
′‖u‖D2,1(S1/2−α,p). (26)

It follows that{δ(K ∗
t u), t ∈ [0,1]} belongs to(Lp∗(Ω;I−−1+1/p−ε̃,p))

′, which is iso-

morphic toLp(Ω;I +
1−1/p+ε̃,p∗), and that

‖δ(K ∗
. u)‖Lp(Ω;I +

1/p∗+ε̃,p∗ )
≤ c‖K ∗‖α,p‖u‖Dp,1(I1/2−α+ε,p).

This induces that there exists a modification of{δ(K ∗
t u), t ∈ [0,1]} with ε̃-Hölder

continuous sample-paths.

Remark5.1. Note that 1 belongs toI1/2−ε,2 for any ε > 0, thus we retrieve that
Xt = δ(K ∗

1 ptu) has a version with(α− ε)-Hölder continuous sample-paths.

If ε > 1/p−1/2+α, we cannot apply Lemma 2.1 any more, sinces= 1/2−
α + ε would be greater than 1/p. This is more than a technical problem: in this
situation, i.e.,u ∈ Iε+1/2−α,p, u is continuous andpTu does not necesssary be-
longs toIε+1/2−α,p, so that the whole principle of the above proof fails. However,
as Lemma 2.3 shows, if we considerpT(u− u(T)) instead ofPTu, this function
belongs toIε+1/2−α,p, for a smallerε. Thus, we have:
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Theorem 5.2. Let α ∈ (0,1/2) and p> 1, assume that assumptions I and II hold.
Assume furthermore that there existsε∈ ((1/p−1/2+α)+,1) such that u belongs
to Dp,1(I−ε+1/2−α,p). Then, for anỹε < ε, the process{δ(K ∗

t (u−u(t))), t ∈ [0,1]}
admits a modification with̃ε-Hölder continuous paths and we have the maximal
inequality :

‖δ(K ∗
. (u−u(.)))‖Lp(Ω;I +

1/p∗+ε̃,p∗ )
≤ c‖K ∗‖α,p‖u‖Dp,1(I−ε+1/2−α,p)

. (27)

Proof. Note that we are allowed to consideru− u(t) since 1/p− 1/2+ α < ε
implies thatε + 1/2−α > 1/p and thus thatI−ε+1/2−α,p is embedded in Hol(ε +
1/2−α−1/p). The very same techniques as above show thatZ 1

0
δ(K ∗

t (u−u(t)))g(t) dt = δ(K ∗
1 (uI1

1−g− I1
1−(ug))), P a.s..

A classical integration by parts and then a fractional integration by parts (see (2))
give that Z 1

0
δ(K ∗

t (u−u(t)))g(t) dt =−δ(K ∗
1 (I1

1−(I−ζ
0+ uIζ

1−g))), P a.s..

Now, we clearly have

‖I1
1−(I−ζ

0+ uIζ
1−g)‖I1/2−α,p

= ‖I−ζ
0+ uIζ

1−g‖I−1/2−α,p
.

Applying Corollary 2.1 withζ = 1/2−α+ ε−1/p+ ε′, t =−(1/2+α), s+ζ =
1/2−α+ ε andr +s= t +1/p+ ε′ for someε′ > 0 sufficiently small, we get

‖K ∗
1 (I1

1−(I−ζ
0+ uIζ

1−g))‖L p ≤ c‖I−ζ
0+ u‖I−s,p‖I

ζ
1−g‖I−r,p

= c‖u‖I−s+ζ,p
‖g‖I−r−ζ,p

= c‖u‖I−1/2−α+ε,p
‖g‖I−−1+1/p−ε+ε′,p

.

It follows as in the previous proof that{δ(K ∗
t (u−u(t))), t ≥0} belongs toLp(Ω; I +

1/p∗+ε̃,p∗)
(with ε̃ = ε− ε′) and that the maximal inequality (27) holds.

Theorem 5.3. For anyα ∈ [1/2,1), assume that assumption I holds. Let u belong
to Dp,1(L p) with αp > 1. The process{δ(K ∗

t u), t ∈ [0,1]} admits a modification
with (α−1/p)-Hölder continuous paths and we have the maximal inequality :

‖δ(K ∗
. u)‖Lp(Ω;Hol(α−1/p)) ≤ c‖K ∗

1 ‖α,2‖u‖Dp,1.
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Proof. We begin as in Theorem 5.1 until Eqn. (24). Sinceα > 1/2, it is clear
thatK is continuous fromL2([0,1]) into Iα−1/2,2 thus thatK ∗ is continuous from

I ′α−1/2,2 in L2([0,1]). SinceIα−1/2,2 is continuously embedded inL(1−α)−1
, it fol-

lows thatL1/α = (L1/(1−α))′ is continuously embedded inI1/2−α,2. Sinceubelongs
to Dp,1(L p), the generalized Hölder inequality implies that

‖uI1
1−g‖L1/α ≤ ‖u‖L p‖I1

1−g‖L(α−1/p)−1 .

It follows that{δ(K ∗
t u), t ∈ [0,1]} belongs toLp(Ω;I +

1,(1−α+1/p)−1) with

‖δ(K ∗
. u)‖Lp(Ω;I +

1,(1−α+1/p)−1) ≤ c‖K ∗
1 ‖α,2‖u‖Dp,1.

The proof is completed remarking that 1−1/(1−α + 1/p)−1 = α−1/p so that
I +

1,(1−α+1/p)−1 is embedded in Hol(α−1/p).

Remark5.2. These results extend similar results in [AMN01] in the sense that the
assumptions on the kernel and on the integrand are here much weaker for the same
conclusion.

6 Itô Formula

We are now interested in non-linear transformations of Itô-like processes:

Z(t) = z+
Z t

0
u(s)◦ dXs, (28)

for a sufficiently regularu. The Itô formula for fBm-like processes has already a
long history. There are two technical barriers: it is relatively easy to prove Itô
formula forα > 1/2, since we then have a process more regular than the ordinary
Brownian motion and all the limiting procedures are straightforward (cf. [DH96,
DÜ95, DÜ99]) . Harder is the situation whereα belongs to(0, 1/2], Alòs et al.
[ALN01] obtained a formula for the fBm of Hurst index greater than 1/4. By a very
different procedure, Gradinaru et al. [GRV] were able to include 1/4 in the domain
of validity of the formula. In another different approach, Feyel et al. [FdlP01]
also gave a formula for any Hurst index via analytic continuation of the formula
obtained forα ≥ 1/2. Carmona et al. [CCM02] obtained an Itô formula forα >
1/6, for a class of processes similar to our so-called Volterra processes.

The following results owes much to the paper [CCM02] which shows that it
was possible to go beyond the barrier 1/4, to the paper [AMN01] which gives the
simplest expression of the Itô formula and to the work [GRV] which emphasizes
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the importance of symmetrization. Actually, the key remark is that there exists
integrandsu for which

Rh(u) := h−1
Z 1

0

(
K ∗

1 pt+hu(s)−K ∗
1 ptu(s)

)(
K ∗

1 pt+hu(s)+K ∗
1 ptu(s)

)
ds

= h−1
Z 1

0
K ∗

1 pt,t+hu(s)K ∗
1 (pt + pt+h)u(s) ds

= h−1
Z 1

0
(K ∗

1 pt+hu(s)2−K ∗
1 ptu(s)2) ds,

(29)

has a finite limit. Ifu≡ 1, since1[0,t) = I∗1(εt), it follows from the definition ofK
thatK ∗

1 pt1 = K(t, .) and thusRh(1) = h−1(R(t +h, t +h)−R(t, t)), whereR is the
covariance kernel ofX. For instance, ifX is the fBm with stationary increments,
this expression is proportional toh−1((t +h)2α− t2α). The different barriers can be
explained from the behavior of this last term, whose limit is clearlyt2α−1. When
α > 1/2, this is a bounded function oft so easily controllable in the limiting pro-
cedures. Forα ∈ (1/4,1/2), it is no longer bounded but still inL2([0,1]). When,
α < 1/4, we only have anL p integrable function for 1− p−1 < 2α.

Hypothesis III. Let R the set of processes such thatRh(u), as defined in (29), has
a finite limit in L1(Ω). We assume thatK ∗

1 is such thatR is non-empty.

Lemma 6.1. Let α ∈ (0,1), be given and assume that hypothesis I, II andIII hold.
Let u be a cylindric process, belonging toR . Let

nα := inf{n : 2nα > 1}.

For any f∈ C nα
b , i.e., nα-times differentiable with bounded derivatives, we have

d
dt

E

[
f (Zt)ψ

]
= E

[
f ′(Zt)(K ∇)t(u(t)ψ)

]
+

1
2

E

[
f ′′(Zt)ψ

d
dt

Z 1

0
K ∗

1 (ptu)(s)2 ds

]
+E

[
u(t) f ′′(Zt)ψ(K ∇)t

(Z t

0
(K ∇)ru(r) dr

)]
+E

[
u(t) f ′′(Zt)δ

(
(K ∇)t(K ∗

1 ptu)
)
ψ

]
.

(30)

Proof. Introduce the functiong as

g(x) = f (
a+b

2
+x)− f (

a+b
2

−x).
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This function is even, satisfies

g(2 j+1)(0) = 2 f (2 j+1)((a+b)/2) andg(
b−a

2
) = f (b)− f (a).

Applying the Taylor formula tog between the points 0 and(b−a)/2, we get

f (b)− f (a) =
n−1

∑
j=0

2−2 j

(2 j +1)!
(b−a)2 j+1 f (2 j+1)(

a+b
2

)

+
(b−a)2n

(2n)!

Z 1

0
λ2n−1g(2n)(λa+(1−λ)b) dλ.

We thus have

E[( f (Zt+h)− f (Zt))ψ] =
nα−1

∑
j=0

2−2 j

(2 j +1)!
E

[
(b−a)2 j+1 f (2 j+1)(

a+b
2

) ψ
]

+
1

2nα!
E

[
(Zt+h−Zt)(2nα)

Z 1

0
r2nα−1g(2nα)(rZt +(1− r)Zt+h) dr ψ

]
. (31)

We need to prove that, when divided byh, the latter quantity has a limit when
h goes to 0. It turns out that the sole contributing term is the first one. We first
show thatnα is chosen sufficiently large so that the last term vanish. SinceZ
belongsL2(Ω; Hol(α− ε)) for any ε > 0, and sinceg(2nα) is bounded, the last
term is bounded by a constant timesh2nα(α−ε). Hence, this last term divided by
h vanishes whenh goes to 0. We next deal with the first order term. Sinceu is
cylindric,

Zt = δ(K ∗
1 ptu)+

Z t

0
K ∗

1 (∇sptu)(s) ds. (32)

Substitute Eqn. (32) into the first order term and use integration by parts formula,
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this yields to:

E

[
(Zt+h−Zt) f ′(

Zt +Zt+h

2
)ψ

]
= E

[Z
K ∗

1 (pt,t+hu)(s)∇s( f ′(
Zt +Zt+h

2
)ψ) ds

]
+E

[
f ′(

Zt +Zt+h

2
)ψ

Z
K ∗

1 (pt,t+h∇su)(s) ds

]
= E

[
f ′(

Zt +Zt+h

2
)

Z
K ∗

1 (pt,t+hu)(s)∇sψ ds

]
+E

[
f ′′(

Zt +Zt+h

2
)ψ

Z
K ∗

1 (pt,t+hu)(s)∇s(
Zt +Zt+h

2
) ds

]
+E

[
f ′(

Zt +Zt+h

2
)ψ

Z 1

0
K ∗

1 (pt,t+h∇su)(s) ds

]
=

3

∑
i=1

Ai .

We can writeA1 as

A1 = E

[Z t+h

t
u(s)(K ∇)sψ ds f′(

Zt +Zt+h

2
)ψ

]
,

by dominated convergence, it is then easily shown that

lim
h→0

h−1A1 = E
[
u(t) f ′(Zt)(K ∇)tψ

]
. (33)

By direct calculations, sinceu is cylindric, we haveZ 1

0
K ∗

1 (pt,t+h∇su)(s) ds=
Z t+h

t
(K ∇)su(s) ds, thus,

lim
h→0

h−1A3 = E
[

f ′(Zt)ψ(K ∇)tu(t)
]
. (34)

Expanding∇s(Zt +Zt+h), we obtain

2A2 = E

[
f ′′(

Zt +Zt+h

2
)ψ

Z 1

0
K ∗

1 (pt,t+hu)(s)K ∗
1 (ptu+ pt+hu)(s) ds

]
+E

[
f ′′(

Zt +Zt+h

2
)ψ

Z 1

0
K ∗

1 (pt,t+hu)(s)δ
(

K ∗
1 (pt + pt+h)∇su)

)
ds

]
+E

[Z 1

0
K ∗

1 (pt,t+hu)(s)∇s

(Z 1

0
(pt + pt+h)(K ∇)ru(r) dr dr

)
ds

× f ′′(
Zt +Zt+h

2
)ψ

]
=

3

∑
i=1

Bi .
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According to Hypothesis III,

lim
h→0

h−1B1 = E

[
d
dt

Z 1

0
K ∗

1 (ptu)(s)2 ds f′′(Zt)ψ
]
. (35)

It is rather clear that

lim
h→0

h−1B3 = 2E

[
u(t)(K ∇)t(

Z t

0
(K ∇)ru(r) dr) f ′′(Zt)ψ

]
. (36)

To deal withB2, we need to apply once more the integration by parts formula. This
gives,

B2 = E

[Z 1

0

Z 1

0
K ∗

1 (pt,t+h∇ru)(s)∇sK ∗
1 (pt + pt+h)u(r) ds dr

× f ′′(
Zt +Zt+h

2
)ψ

]
+E

[Z 1

0
K ∗

1 (pt,t+hu)(s)
Z 1

0
K ∗

1 ((pt + pt+h)∇su)(r)

×∇r( f ′′(
Zt +Zt+h

2
)ψ) dr ds

]
.

It follows from this expression that

lim
h→0

h−1B2 = 2E

[Z 1

0
(K ∇)t(K ∗

1 ptu)(r)∇r(u(t) f ′′(Zt)ψ) dr

]
= 2E

[
u(t) f ′′(Zt)ψδ

(
(K ∇)tK ∗

1 ptu
)]

. (37)

The remaining terms are of the form

E

[
(Zt+h−Zt)2 j+1 f (2 j+1)(

Zt +Zt+h

2
)ψ

]
= E

[Z 1

0
K ∗

1 (pt,t+hu)(s)∇s

(
(Zt+h−Zt)2 j f (2 j+1)(

Zt +Zt+h

2
)ψ

)
ds

]
+E

[
(Zt+h−Zt)2 j f (2 j+1)(

Zt +Zt+h

2
)ψ

Z 1

0
K ∗

1 (pt,t+h∇su)(s) ds

]
= C1 +C2.

By dominated convergence, it is clear thath−1C2 vanishes ash goes to 0. As toC1,
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it can be splitted into three parts

C1 = 2 j E

[
(Zt+h−Zt)2 j−1 f (2 j+1)(

Zt +Zt+h

2
)ψ

×
Z 1

0
K ∗

1 (pt,t+hu)(s)∇s(Zt+h−Zt) ds

]
+E

[
(Zt+h−Zt)2 j f (2 j+2)(

Zt +Zt+h

2
)ψ Z 1

0
K ∗

1 (pt,t+hu)(s)∇s(
Zt +Zt+h

2
) ds

]
+E

[
(Zt+h−Zt)2 j f (2 j+1)(

Zt +Zt+h

2
)

×
Z 1

0
K ∗

1 (pt,t+hu)(s)∇sψ ds

]
=

3

∑
i=1

Di .

By dominated convergence,h−1D3 vanishes ash goes to 0. Expanding the Gross-
Sobolev derivativeD2, we get

2D2 = E

[
f (2 j+2)(

Zt +Zt+h

2
)(Zt+h−Zt)2 jψ

×
Z 1

0
K ∗

1 (pt,t+hu)(s)K ∗
1 (ptu+ pt+hu)(s) ds

]
+E

[
f (2 j+2)(

Zt +Zt+h

2
)(Zt+h−Zt)2 jψ

×
Z 1

0
K ∗

1 (pt,t+hu)(s)δ
(

K ∗
1 (pt∇su+ pt+h∇su)

)
ds

]
+E

[
f (2 j+2)(

Zt +Zt+h

2
)(Zt+h−Zt)2 jψ

×
Z 1

0
K ∗

1 (pt,t+hu)(s)∇s

(Z 1

0
(pt + pt+h)(K ∇)ru(r) dr

)
ds

]
.

Following the reasoning applied toA2, we see that all the terms in the integrals are
converging a.s. (when divided byh) to a finite limit, since there still is a factor
(Zt+h−Zt)2 j , with j > 0, the product converges to 0. By dominated convergence,
the convergence can be seen to hold inL1(Ω), thush−1D2 goes to 0 ash goes to 0.
The really difficult term isD1. For the sake of clarity, we only treat the casej = 1.
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For j = 1,

D1 = E

[
(Zt+h−Zt) f (3)(

Zt +Zt+h

2
)ψ

×
Z 1

0
K ∗

1 (pt,t+hu)(s)∇s(Zt+h−Zt) ds

]
= 2 E

[
(Zt+h−Zt) f (3)(

Zt +Zt+h

2
)ψ

Z 1

0
K ∗

1 (pt,t+hu)(s)2 ds

]
+2 E

[
(Zt+h−Zt) f (3)(

Zt +Zt+h

2
)ψ

×
Z 1

0
K ∗

1 (pt,t+hu)(s)δ(K ∗
1 ((pt + pt+h)∇su)) ds

]
+2 E

[
(Zt+h−Zt) f (3)(

Zt +Zt+h

2
)ψ

×
Z 1

0
K ∗

1 (pt,t+hu)(s)
Z 1

0
K ∗

1 (∇(2)
r,s (pt + pt+h)u)(r) dr ds

]
.

Dominated convergence implies that the last term, divided byh, vanishes ash
goes to 0. For the two other summands, the idea is always the same, each time
there is a divergence term, we apply integration by parts formula. Then, each new
term is treated by the previous methods. For instance, the most difficult term to
handle is one of the term which comes from derivative of the divergence in the first
summand:

E

[
f (3)(

Zt +Zt+h

2
)ψ

Z 1

0
∇r(

Z 1

0
K ∗

1 (pt,t+hu)(s)2 ds)K ∗
1 (pt,t+hu)(r) dr

]
= E

[
f (3)(

Zt +Zt+h

2
)ψ

×
Z 1

0

Z 1

0
K ∗

1 (pt,t+hu)(s)K ∗
1 (pt,t+h∇ru)(s)K ∗

1 (pt,t+hu)(r) dr ds

]
= E

[
f (3)(

Zt +Zt+h

2
)ψ

×
Z t+h

t
u(s)K

(Z 1

0
K ∗

1 (pt,t+h∇ru)(.)K ∗
1 (pt,t+hu)(r) dr

)
(s) ds

]
.

Once again, in this form, it is clear that this term, divided byh, converges to 0. All
the remaining term are treated likewise and do not contribute. Thus from Eqn. (30)
follows from (33), (34), (35), (36) and (37).
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Sinceu is cylindric, all the terms of (30) are integrable with respect tot, we
thus have

Corollary 6.1. Under the assuptions of the previous lemma, we have,

E[ f (Zt)ψ] = E[ f (x)ψ]+E

[Z t

0
f ′(Zs)(K ∇)s(u(s)ψ) ds

]
+

1
2

E

[
ψ

Z t

0
f ′′(Zs)

d
ds

Z 1

0
K ∗

1 psu(r)2 dr ds

]
+E

[
ψ

Z t

0
u(s) f ′′(Zs)(K ∇)s

(Z s

0
(K ∇)ru(r) dr

)
ds

]
+E

[
ψ

Z t

0
u(s) f ′′(Zs)δ

(
K ∗

1 ps(K ∇)su
)

ds

]
,

for anyψ such that∇ψ belongs toDomK .

Since(K ∇) is a derivation operator, we obtain after a few manipulations: Since
K ∇ is a derivation operator, we have

E[ f (Zt)ψ] = E[ f (x)ψ]+E

[Z t

0
(K ∇)s( f ′(Zs)u(s)ψ) ds

]
+

1
2

E

[
ψ

Z t

0
f ′′(Zs)

d
ds

Z 1

0
K ∗

1 psu(r)2 dr ds

]
−E

[
ψ

Z t

0
u(s) f ′′(Zs)K K ∗

1 (psu)(s) ds

]
.

This means that for anyt, we have a.e.,

f (Zt) = f (x)+
Z t

0
f ′(Zs)u(s)◦ dXs

+
1
2

Z t

0
f ′′(Zs)

d
ds

Z 1

0
K ∗

1 psu(r)2 dr ds

−
Z t

0
u(s) f ′′(Zs)K K ∗

1 (psu)(s) ds.

(38)

Remark6.1. It has to be noted that in [Dec02b], we announced an Itô formula for
generalu and anyα∈ (0,1). This is unfortunately wrong forα∈ (0,1/2). Actually,
starting from (38), the problem is now to pass to the limit. For the very first term of
the righthandside of (38), we need to find a class of processesu for which f ◦Z.u is
Stratonovich integrable. The most restrictive part is to find conditions under which
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this process has a “trace” in the sense of Theorem 4.1. It is important to note that

∇rZt = K ∗
1 pt(u−u(t))(r)+δ(K ∗

1 pt∇r(u−u(t)))+∇r

Z t

0
(K ∇)s(u−u(t))(s) ds

+X(t)∇ru(t)+u(t)K(t, r)

and thus, we have

K (∇.Zt)(r) = K (K ∗
1 pt(u−u(t)))(r)+K (δ(K ∗

1 pt∇.(u−u(t))))(r)

+K (∇.

Z t

0
(K ∇)s(u−u(t))(s) ds)(r)+K (X(t)∇.u(t))(r)

+K (u(t)K(t, .))(t).

It is possible to impose hypothesis onu such that the first four terms of the previous
equations have a signification whenr = t. Unfortunately, for the very last term, we
have

K (u(t)K(t, .))(t) = u(t)
∂
∂s

R(t,s)|s=t .

In the case of the fBm with stationary increments, this is equal, up to a constant, to
u(t)(s2α−1− (t−s)2α−1)s=t . Since this quantity is infinite forα < 1/2, we haven’t
been able to go below 1/2.

Remark6.2. If we don’t have a trace term we can state the following result.

Theorem6.1. Letα ∈ (0,1), be given and assume that hypothesis I, II andIII hold.
Let u be a cylindric process, belonging toR . Let

nα := inf{n : 2nα > 1}.

Let
Zt = δ(K ∗

1 ptu).

For any f∈ C nα
b , i.e., nα-times differentiable with bounded derivatives, we have

f (Zt) = f (x)+δ
(

K ∗
t (u. f ′ ◦Z)

)
+

1
2

Z t

0
f ′′(Zs)

d
ds

Z 1

0
K ∗

1 psu(r)2 dr ds

+
Z t

0
u(s) f ′′(Zs)δ

(
K ∗

1 ps(K ∇)su
)

ds,

for any t, a.s..

Proof. The proof is exactly the same as the previous one.

If u≡ 1, we get the same result as in [AMN01, CCM02, DÜ99, FdlP01] valid
for anyα ∈ (0,1). If K = Id, i.e.,X is an ordinary Brownian motion, andu is not
necessarily adapted, this formula coincides with that given in [Ü88].
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7 Skorohod integral

Since the term
R T

0 D̃Tu(s) ds is a trace-like term, it is reasonable to introduce the
following definitions. We now introduce a stochastic integral defined

Definition 7.1. We denote byDomδK ∗ , the set of processes u belonging a.s. to
DomK ∗ and such thatK ∗u belongs toDomδ. We denote byDomδX, the set of
processes u inDomδK ∗ such that∇K ∗u is P-a.s. a trace class operator.

Definition 7.2. For u∈DomδX, we define the stochastic integral of u with respect
to X by Z 1

0
us∗ dXs

de f
=

Z 1

0
(K ∗u)(s)δBs+ trace(∇(K ∗u))

To define the integral ofu between time 0 andt, we use Lemma 4.1:

Definition 7.3. For u∈DomδX, we define the stochastic integral of u with respect
to X between0 and t byZ t

0
us∗ dXs =

Z 1

0
(ptu)(s)∗ dXs

=
Z t

0
(K ∗

t u)(s)δBs+ trace(pt∇(K ∗
t u)),

where the second equality follows by (15).

Eqn. (23) has its equivalent in this setting :

Lemma 7.1. Assume that I andII hold. Let u∈DomK ∗ belong toD2,1(L2([0,1]))
and be such that∇u belong (a.s.) toDomK . Then trace(∇(K ∗u)) is finite iff
trace((K ∇)u) is finite and they are equal.

Proof. Since DomK ∗∩DomK is a dense subset ofL2, one can find{hi , i ≥ 1} an
ONB of L2 where for anyi, hi belongs to DomK ∗∩DomK . Setπn the orthogo-
nal projection inL2 onto the vector space spanned byh1, . . . ,hn. LetVk = σ{δhi , i =
1, . . . ,k} and consideruk,n = πnE

[
P1/ku|Vk

]
wherePt denote the Ornstein-Uhlenbeck

semi-group of the Wiener processX. It is known, see [UZ00, Lemma B.6.1], that
uk can be written as

uk,n =
n

∑
i=1

f n
i (δh1, . . . ,δhk)hi where fi ∈ C ∞ for any i,
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and thatuk,n converges tou in D2,1. Furthermore, it is clear that we have

trace((K ∇)uk,n) = trace∑
i, j

∂ j f n
i (δh1, . . . ,δhk)hi ⊗K h j

= ∑
i, j

∂ j f n
i (δh1, . . . ,δhk)

Z 1

0
hi(s)(K h j)(s)ds

= ∑
i, j

∂ j f n
i (δh1, . . . ,δhk)

Z 1

0
(K ∗hi)(s)h j(s)ds

= trace(∇(K ∗uk,n)). (39)

Moreover, if trace((K ∇)u) exists a.s., then the series

∑
i

< (K ∇)u, hi ⊗hi >L2⊗L2 is convergent.

Thus, by Cauchy-Schwarz inequality,∣∣∣trace((K ∇)uk,n)− trace((K ∇)u)
∣∣∣

≤ ∑
i≤n

< (K ∇)uk,n− (K ∇)u,hi ⊗hi >L2⊗L2 +∑
i>n

|< (K ∇)u, hi ⊗hi >L2⊗L2 |

≤ n.‖(K ∇)(u−uk,n)‖L2⊗L2 + ∑
i>n

|< (K ∇)u, hi ⊗hi >L2⊗L2 |.

As n goes to infinity, the rightmost term converges a.s. to 0, hence forε > 0, one
can findn such that

P(∑
i>n

|< (K ∇)u, hi ⊗hi >L2⊗L2> ε/2)≤ ε/2.

SinceK is a closed map, for this value ofn, one can findkn such that

P(‖(K ∇)(u−ukn,n)‖L2⊗L2 > ε/2n)≤ ε/2.

For suchn andkn, we have

P(
∣∣∣trace((K ∇)ukn,n)− trace((K ∇)u)

∣∣∣ > ε)≤ ε.

Hence there exists a subsequence(k j ,n j) such that trace((K ∇)uk j ,n j ) converges
P-almost surely, thus that trace(∇(K ∗u)) is finite and that the two expressions are
equal. trace(∇(K ∗u)) = trace((K ∇)u).

The very same reasoning holds true when trace(∇(K ∗u)) is finite.
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Following [Nua95], we know that whenu belongs to the domain of the two
integrals (that of definition 4.1 and that of the last definition), these two integrals
coincide.

A nice feature of this version of the stochastic integral is that we can compute
its transformation under absolutely continuous change of probability.

Theorem 7.1. Let T(ω) = ω+Kv(ω) be such that v belongs toDp,1(L2) for some
p > 1 and T∗P� P. Let u be such that u and u◦T belong toDomδK ∗ and∇K ∗u
and∇(K ∗u◦T) are a.s. trace class operators. Then,

(Z 1

0
u(s)∗ dXs

)
◦T =

Z 1

0
(u◦T)(s)∗ dXs+

Z 1

0
K ∗(u◦T)(s)v(s)ds.

Proof. Theorem B.6.12 of [UZ00] stands that

δ(K ∗u)◦T = δ(K ∗(u◦T))+
Z

K ∗(u◦T)(s)v(s)ds+ trace((∇K ∗u)◦T.∇v).

Proposition B.6.8 of [UZ00] implies that

trace((∇K ∗u)◦T.∇v) = trace(∇(K ∗u◦T))− trace(∇K ∗u)◦T.

The proof is completed by substituting the latter equation into the former.

Forudeterministic andvadapted, this means that the law of the process{
R t

0 usdXs−R t
0 K ∗u(s)v(s)ds, t ≥0}, underT∗P, is identical to theP-law of the process{

R t
0 usdXs, t ≥

0}.
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