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Fast Approximated Power Iteration
Subspace Tracking

Roland Badeau,Member, IEEE, Bertrand David, and Gaël Richard,Member, IEEE

Abstract— This paper introduces a fast implementation of the
power iteration method for subspace tracking, based on an
approximation less restrictive than the well known projection
approximation. This algorithm, referred to as the fast API
method, guarantees the orthonormality of the subspace weighting
matrix at each iteration. Moreover, it outperforms many subspace
trackers related to the power iteration method, such as PAST,
NIC, NP3 and OPAST, while having the same computational
complexity. The API method is designed for both exponential
windows and sliding windows. Our numerical simulations show
that sliding windows offer a faster tracking response to abrupt
signal variations.

Index Terms— Subspace tracking, projection approximation,
power iteration.

I. I NTRODUCTION

T HE interest in subspace-based methods stems from the
fact that they consist in splitting the observations into a

set of desired and a set of disturbing components, which can be
viewed in terms of signal and noise subspaces. These methods
have applications in numerous domains including the fields
of adaptive filtering, source localization, or parameter estima-
tion [1]. The estimation of the signal subspace is commonly
based on the traditional eigenvalue decomposition (EVD)
or singular value decomposition (SVD). However, the main
drawback of these decompositions is their inherent complexity.
Therefore, there is a real need for fast subspace tracking
techniques in the context of adaptive signal processing.

Due to this interest, a large number of approaches have
already been introduced. A reference method is I. Karasalo’s
algorithm [2], which involves the full SVD of a small matrix.
A fast tracking method based on Givens rotations (the FST
algorithm) is proposed in [3]. Other approaches consist in in-
terlacing a recursive update of the estimated correlation matrix
or the data matrix with one or a few steps of a standard SVD or
power iteration algorithm. This is the case of the Jacobi SVD
method [4], the transposed QR-iteration [5], the orthogonal
/ bi-orthogonal iteration [6], [7], and the power method [8].
Other matrix decompositions have also successfully been used
in subspace tracking (for example the rank-revealing QR
factorization [9], the rank-revealing URV decomposition [10],
and the Lankzos (bi)-diagonalization [11]). Other techniques
rely on the noise and signal subspace averaging method [12],
the maximum likelihood principle [13], the operator restriction
analysis [14], or the perturbation theory [15].
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The estimation of the signal subspace can also be viewed
as a constrained or unconstrained optimization problem [16]–
[21], for which the introduction of a projection approximation
hypothesis lead to fast subspace tracking methods (seee.g.
the PAST [22] and NIC [23] algorithms). In [8], it is shown
that these subspace trackers are closely linked to the classical
power iteration method [24]. Several implementations of this
method based on QR factorizations are proposed in [6], among
which the Loraf2 and Loraf3 algorithms. However, compared
to PAST and NIC, Loraf2 is more computationally demanding
and the performance of Loraf3 is degraded. Another fast im-
plementation of the power iteration method, the NP3 algorithm
which relies on rank-one matrix updates, is proposed in [8],
but our numerical simulations showed that this algorithm does
not converge in many situations. An orthonormal version of
the PAST algorithm, proposed in [25], can be seen as a fast
implementation of the power method and outperforms PAST,
NIC and NP3. Concurrently, the recent API method [26],
based on the power iteration method and on a new projection
approximation, has the same computational complexity as the
above mentioned algorithms but provides a better estimation
of the dominant subspace.

All these adaptive techniques are designed for exponential
windows. Indeed, this choice tends to smooth the variations
of the signal parameters, and thus allows a low-complexity
update at each time step. However, it is only suitable for
slowly changing signals. Conversely, a few subspace trackers
are based on sliding windows, which generally require more
computations, but offer a faster tracking response to sudden
signal changes [22], [27]–[30]. In particular, a sliding window
version of the API algorithm is proposed in [31].

This paper presents several fast implementations of the API
method. These algorithms present several advantages:

• they can be applied either on an infiniteexponential
windowor on atruncated window(e.g.a sliding window
which may have an exponential decrease),

• an orthonormal subspace basis is computedat each
time step, which is required for some subspace-based
estimation methods, such as MUSIC [32],

• they rely on a new projection approximation, less re-
strictive than the classical one, which leads to better
tracking results. In particular, it is shown that the PAST
and OPAST subspace trackers can be viewed as approx-
imations of the fast API method.

The paper is organized as follows. In section II, we in-
troduce the various window shapes applied to the data. In
section III, the classical power iteration method is reviewed,
then the projection approximation is discussed in section IV.
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Our approximated power iteration (API) method is introduced
in section V, and a fast implementation of this algorithm is
proposed in section VI. In section VII, it is shown that both
PAST and OPAST can be seen as approximations of the fast
API algorithm. In section VIII, the performance of this method
is compared to that of several subspace trackers, among which
PAST and OPAST. Finally, the main conclusions of this paper
are summarized in section IX.

II. DATA WINDOWING

Let {x(t)}t∈Z be a sequence ofn-dimensional data vec-
tors. We are interested in computing the dominant subspace
spanned by its correlation matrix. This matrix can be estimated
according to the nature of the data window.

A. Exponential window

The estimatedn × n correlation matrix is defined as

Cxx(t) =

t∑

u=−∞
βt−u x(u)x(u)H

where0 < β < 1 is the forgetting factor. It can be recursively
updated according to the following scheme:

Cxx(t) = β Cxx(t − 1) + x(t)x(t)H . (1)

B. Truncated window

The n × n correlation matrixCxx(t) is estimated on a
window of lengthl ∈ N

∗:

Cxx(t) =

t∑

u=t−l+1

βt−u x(u)x(u)H . (2)

where0 < β ≤ 1. The caseβ = 1 corresponds to a rectangular
(or sliding) window. This matrix can be recursively updated
according to the following scheme:

Cxx(t) = β Cxx(t− 1) + x(t)x(t)H − βlx(t− l)x(t− l)H .
(3)

C. Unified formalization

Both equations (1) and (3) can be written in the form

Cxx(t) = β Cxx(t − 1) + x(t)J x(t)H (4)

wherex(t) andJ are defined according to the window shape:
• in the exponential window case:

J = 1 (5)

x(t) = x(t) (6)

• in the truncated window case:

J =

[
1 0
0 −βl

]
(7)

x(t) =
[

x(t) x(t − l)
]
. (8)

Let p be the rank of the update involved in equation (4).
Sincep = 1 in the exponential window case andp = 2 in the
truncated window case,p characterizes the window shape. In
particular,x(t) is a n × p matrix andJ is a p × p matrix.

III. T HE CLASSICAL POWER ITERATION METHOD

The power iteration method [8] tracks the dominant sub-
space1 of dimensionr ≤ n spanned by then × n matrix
Cxx(t). At each time step, a basis of this subspace is
computed, represented by an orthonormal matrixW (t) of
dimensionn× r. The computation ofW (t) consists of a data
compression step (9) and an orthonormalization step (10) of
the compressed matrix at each iteration:

Cxy(t) = Cxx(t)W (t − 1) (9)

W (t)R(t) = Cxy(t). (10)

where Cxy(t) can be considered as an × r correlation
matrix between then-dimensional data vectorsx(t) and the
r-dimensional compressed data vectors

y(t) = W (t − 1)Hx(t). (11)

The orthonormalization step (10) involves ar × r matrix
R(t), such thatR(t)H R(t) = Φ(t), where Φ(t) is the
r × r positive definite matrixCxy(t)HCxy(t). Consequently,
R(t)H is a square root ofΦ(t). In particular,R(t)H is equal
to the positive definite square root ofΦ(t), right multiplied
by a unitary matrix2. For example,R(t) can be triangular [6],
or positive definite [8].

If Cxx(t) remains constant and if its firstr eigenvalues are
strictly larger than the(n − r)th others, the power iteration
method converges globally and exponentially to the principal
subspace [8] [24, pp. 410-411]. Note that the multiplication in
step (9) involvesn2r operations, and the orthonormalization
step (10) requiresO(nr2) operations3. Because of its high
computational cost, this algorithm is not suitable for real-time
processing.

IV. T HE PROJECTION APPROXIMATION

We are now looking for an approximation that will allow
us to reduce the complexity. Suppose thatW (t − 1) exactly
spans ther-dimensional dominant subspace ofCxx(t). Then
equation (9) yields

Cxy(t) = W (t − 1)Cyy(t) (12)

where the matrixCyy(t) , W (t − 1)HCxx(t)W (t − 1)
can be seen as the correlation matrix of the compressed data

1The r-dimensional dominant subspace of the positive semidefinite matrix
Cxx(t) is the subspace spanned by ther eigenvectors ofCxx(t) associated
to ther eigenvalues of highest magnitude (which are supposed to be strictly
greater than then − r others).

2If T is a positive definite matrix, asquare rootof T is any matrixS of the
same dimension such thatS SH = T . Such a matrix is denotedS = T

1
2 .

There is only one positive definite square root ofT . The other square roots
are obtained by right multiplying this positive definite square root by any
unitary transform. The notationS

1
2 can denote any of them.

3In this paper, operations counts are expressed in terms of multiply
/ accumulate (MAC) operations, herein referred to asflops. Whenever a
specific matrix function is used, such as orthonormalization,inversion or
square rooting, only the order of the operations count is presented, since
the exact operations count depends on the way this function is implemented.
Nevertheless,r is supposed to be much lower thann, so that the dominant cost
of the power iteration method is that of the first step, whose exact operations
count is known (n2r).
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vectors. In this case,W (t) andW (t−1) are two orthonormal
matrices spanning the range space ofCxy(t), thus

W (t) = W (t − 1)Θ(t) (13)

where Θ(t) , W (t − 1)HW (t) is a r × r orthonormal
matrix. Substituting equation (12) into equation (10) and left
multiplying by W (t)H yields the polar decomposition of
R(t)H :

R(t)H = Cyy(t)Θ(t) (14)

whereCyy(t) is the positive definite factor andΘ(t) is the
orthonormal factor. Now suppose thatW (t−1) approximately
spans the dominant subspace ofCxx(t). Then equations (13)
and (14) become approximations:

W (t) ≃ W (t − 1)Θ(t) (15)

R(t)H ≃ Cyy(t)Θ(t) (16)

where ther × r matrix Θ(t) is nearly orthonormal.
Compared to equation (15), the classical projection approx-

imation [22] is equivalent toW (t) ≃ W (t − 1) at each
time step4. The validity of this approximation additionally
requires thatΘ(t) is close to ther× r identity matrix (herein
denotedIr). In this case, equation (16) shows thatR(t)H

must be nearly positive definite5. Consequently, the choice of
the square rootR(t)H of Φ(t) is restricted (e.g.R(t) can no
longer be upper triangular, as it was in [6]).

The NP3 implementation of the power method [8] is based
on this approximation, but this algorithm relies on a ma-
trix R(t) which deviates from the positive definite structure
constraint. Therefore, the classical projection approximation
does not stand, and this subspace tracker is not guaranteed to
converge.

Concurrently, the algorithms presented in section V do
not have to face this limitation, since they rely on the less
restrictive approximation (15). Also note that (15) is the best
approximation ofW (t) in terms of mean square error, since
the solution to the minimization problem

arg min
Θ∈Cr×r

‖W (t) − W (t − 1)Θ‖
2
F

is Θ(t) = W (t− 1)HW (t) (whereW (t− 1) is supposed to
be orthonormal).

V. A PPROXIMATED POWER ITERATION

The complexity of the power iteration method can be
reduced by introducing approximation (15) at timet − 1 in
step (9). Then then × r matrix Cxy(t) can be computed
recursively, as shown in section V-A, and factorization (10)
can be updated, as shown in section V-C. This fast update
requires the introduction of ar × r auxiliary matrix Z(t),
introduced in section V-B.

4In fact, the projection approximation in [22] is defined asW(t′)Hx(t) ≈
W(t − 1)Hx(t) , y(t) ∀t′ ≥ t. It was shown in [8, pp. 301] that this
approximation is equivalent toW(t) ≃ W(t − 1) at each time step.

5Conversely, ifR(t)H is chosen close to the only positive definite square
root of Φ(t), the approximate polar decomposition (16) shows thatΘ(t) ≃

Ir , so that equation (15) yieldsW(t) ≃ W(t − 1).

A. Recursion for the matrixCxy(t)

It is shown in this section that then× r matrix Cxy(t) can
be updated in the same way as then × n matrix Cxx(t) in
equation (4):

Cxy(t) = β Cxy(t − 1)Θ(t − 1) + x(t)J ŷ(t)H . (17)

In the exponential window case, equation (17) involves a
rank-one update (x(t) andŷ(t) are vectors andJ is a scalar),
whereas in the truncated window case it involves a rank-two
update (x(t) and ŷ(t) are two-column matrices andJ is a
2 × 2 matrix).

1) Truncated window:first, equation (2) can be written

Cxx(t) = X(t)D X(t)H (18)

where X(t) , [x(t − l + 1), x(t − l + 2), . . . , x(t)] is the
n × l data matrix andD is the l × l diagonal matrix
diag(βl−1, βl−2, . . . , β, 1) .

Substituting equation (18) into equation (9) yields

Cxy(t) = X(t)D Y (t)H (19)

whereY (t) , W (t − 1)HX(t) is ther × l compressed data
matrix. Now let us show recursions for matricesX(t) and
Y (t). The first one is straightforward:

[
x(t − l) X(t)

]
=

[
X(t − 1) x(t)

]
. (20)

Then left multiplying equation (20) byW (t − 1)H yields
[

v(t − l) Y (t)
]

=
[

W (t − 1)HX(t − 1) y(t)
]

(21)
wherey(t), defined in equation (11), and

v(t − l) , W (t − 1)Hx(t − l) (22)

arer-dimensional compressed data vectors. Applying approx-
imation (15) at timet−1 to equation (21) yields the recursion[

v(t − l) Y (t)
]
≃

[
V̂ (t − 1) y(t)

]
, whereV̂ (t − 1)

is ther × l compressed data matrix

V̂ (t − 1) , Θ(t − 1)HY (t − 1). (23)

From now on, the exact definition ofY (t) is therefore
replaced by

[
v̂(t − l) Y (t)

]
,

[
V̂ (t − 1) y(t)

]
(24)

where ther-dimensional vector̂v(t − l), defined by the first
column in the left side of equation (24), is an approximationof
the vectorv(t − l). Equations (19), (20), (23) and (24) finally
yield

Cxy(t) = β Cxy(t − 1)Θ(t − 1)
+x(t)y(t)H − βl x(t − l) v̂(t − l)H (25)

This recursion can be seen as a particular case of equa-
tion (17), whereJ andx(t) are defined in equations (7) and (8)
and ther × p (with p = 2) matrix

ŷ(t) ,
[

y(t) v̂(t − l)
]

(26)

is an approximation of

y(t) , W (t − 1)Hx(t) =
[

y(t) v(t − l)
]
. (27)
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2) Exponential window: substituting equation (1) into
equation (9) yields

Cxy(t) = β Cxx(t − 1)W (t − 1) + x(t)y(t)H . (28)

Applying the projection approximation (15) at timet − 1,
equation (28) can be replaced by the following recursion:

Cxy(t) = β Cxy(t − 1)Θ(t − 1) + x(t)y(t)H . (29)

This recursion can be seen as a particular case of equation (17),
whereJ andx(t) are defined in equations (5) and (6) and the
r × p (with p = 1) matrix ŷ(t) , y(t) is now equal to the
vectory(t) , W (t − 1)Hx(t) = y(t).

B. Recursion for the matrixZ(t)

Now, we aim at updating factorization (10) by means
of equation (17). This calculation requires the introduction
of an auxiliary matrix, denotedZ(t). Let S(t − 1) ,

(R(t − 1)Θ(t − 1))
H and suppose that ther × r matrix

S(t − 1) is non-singular. Then let

Z(t − 1) , S(t − 1)−1. (30)

Proposition 5.1:The r × r matrix

S(t) , (R(t)Θ(t))
H (31)

is non-singular if and only if thep × p matrix βJ−1 +
y(t)Hh(t) is non-singular, where

h(t) , Z(t − 1) ŷ(t). (32)

has dimensionr × p. In this case, ther × r matrix

Z(t) , S(t)−1 (33)

satisfies the recursion

Z(t) =
1

β
Θ(t)H

(
Ir − g(t)y(t)H

)
Z(t − 1)Θ(t)−H (34)

whereg(t) is ther × p matrix

g(t) , h(t)
(
βJ−1 + y(t)Hh(t)

)−1
. (35)

Proof:
Substituting equation (10) into equation (17) and left mul-

tiplying by W (t − 1)H leads to

Θ(t)R(t) = β S(t − 1)H + y(t)J ŷ(t)H . (36)

Next, the following matrix inversion lemma [33, pp. 18-19]
will be applied to invert the right member of this equality.
The interest of this approach is that ther× r matrix inversion
problem is converted into a smallerp × p matrix inversion
(with p = 1 or 2).

Lemma 5.2:Let A be ar×r non-singular complex matrix.
Consider ther× r matrix B = A + P J Q, whereP , J and
Q have dimensionsr × m, m × m and m × r, and J is
supposed to be non-singular. ThenB is non-singular if and
only if J−1 + Q A−1 P is non-singular, and in this case

B−1 = A−1 − A−1 P
(
J−1 + Q A−1 P

)−1
Q A−1.

Lemma 5.2 applied to equation (36) shows that ther ×
r matrix Θ(t)R(t) is non-singular if and only if thep × p
matrix βJ−1 + y(t)Hh(t) is non-singular (which provides a
fast way of detecting the singularity ofR(t) or Θ(t)). In the
non-singular case, lemma 5.2 leads to the equation

(Θ(t)R(t))
−1

=
1

β
Z(t − 1)H

(
Ir − y(t) g(t)H

)
.

Finally, left multiplying the complex conjugate transposeof
this last equation byΘ(t)H and right multiplying it by
Θ(t)−H yields recursion (34).

C. Recursion for the matrixW (t)

Next, proposition 5.3 introduces a fast update for the
subspace weighting matrix.

Proposition 5.3: If the p × p matrix βJ−1 + y(t)Hh(t) is
non-singular,W (t) satisfies the recursion

W (t) =
(
W (t − 1) + e(t) g(t)H

)
Θ(t) (37)

wheree(t) is then × p matrix

e(t) , x(t) − W (t − 1)y(t). (38)

Proof:
Substituting equation (10) into equation (17) and right

multiplying by Θ(t) shows thatW (t) satisfies the recursion

W (t)S(t)H =
(
βW (t − 1)S(t − 1)H + x(t)J ŷ(t)H

)
Θ(t)

Substituting equations (36) and (38) into the above equation
yields

W (t)S(t)H = W (t − 1)Θ(t)S(t)H + e(t)J ŷ(t)H
Θ(t).

(39)
However, left multiplying (36) byg(t)H and replacingg(t)

by its definition in equation (35) leads to

g(t)H
Θ(t)R(t) =

(
βJ−1 + y(t)Hh(t)

)−H

((
βS(t − 1)h(t)

)H

+
(
y(t)Hh(t)

)H

J ŷ(t)H

)
.

(40)

Then equations (32) and (30) show that

(βS(t − 1)h(t))
H

= β ŷ(t)H = βJ−1 J ŷ(t)H . (41)

Substituting equation (41) into equation (40) yields

g(t)H
Θ(t)R(t) = J ŷ(t)H . (42)

Finally, substituting equation (42) into equation (39) and
right multiplying by S(t)−H = Z(t)H yields equation (37).

Note that ifβ J−1 +y(t)Hh(t) is singular,Z(t) andW (t)
can no longer be updated with equations (34) and (37). In
practice, we never encountered this rank deficiency case in
our numerical simulations6.

6A solution consists in computingW(t) and R(t) by means of a SVD
or a QR factorization ofCxy(t). ThenΘ(t) = W(t − 1)HW(t) can be
deduced. Note that the whole processing requiresO(nr2) operations; this
technique must be used whileR(t) or Θ(t) remains singular. When both
R(t) andΘ(t) become non-singular again, thenZ(t) can be computed, and
the algorithm can switch back to the fully adaptive processing.



5

TABLE I

EXPONENTIAL WINDOW API ALGORITHM

Initialization :
8

W (0) =

�
Ir

0(n−r)×r

�
, Z(0) = Ir

For each time step do2666666666666666666664
Input vector : x(t)
PAST main section Cost

y(t) = W (t − 1)Hx(t) (11) nr
h(t) = Z(t − 1) y(t) (32) r2

g(t) =
h(t)

β+y(t)H h(t)
(35) 2r

API main section

e(t) = x(t) − W (t − 1) y(t) (38) nr

Θ(t) =
�

Ir + ‖e(t)‖2g(t) g(t)H
�− 1

2 (43) n + O(r3)

Z(t) = 1
β

Θ(t)H
�

Ir − g(t) y(t)H
�

Z(t − 1)Θ(t)−H
(34) O(r3)

W (t) =
�

W (t − 1) + e(t) g(t)H
�

Θ(t) (37) nr2 + nr

Since W (t − 1) is orthonormal,e(t) is orthogonal to
W (t − 1). Moreover, the orthonormality ofW (t), associated
to equation (37), yields

Θ(t)Θ(t)H =
(
Ir + g(t)

(
e(t)He(t)

)
g(t)H

)−1
. (43)

Therefore,Θ(t) is an inverse square root of ther×r positive
definite matrixIr + g(t)

(
e(t)He(t)

)
g(t)H . The choice of

this inverse square root does not affect the subspace tracking
performance7.

The pseudo-code of the exponential window API algorithm
is presented in table I, and that of the truncated window API
algorithm (TW-API) is presented in table II. It can be noted
that the first section of API is exactly the same as that of the
PAST subspace tracker [22]; it requires onlynr + r2 + O(r)
operations per time step, while the rest of the algorithm hasa
nr2 + o(nr2) computational complexity. In the same way, the
first section of TW-API is similar to that of the sliding window
version of PAST [29]; it requires only2nr + 2r2 + O(r),
while the rest of the algorithm has a(n + l)r2 + o(nr2)
computational complexity. Note that the implementations of
API and TW-API presented in tables I and II are of limited
interest, since a number of faster subspace trackers have
already been proposed in the literature, which have aO(nr)
complexity (among which [3], [22], [23], [25], [29], [34] are
illustrated in section VIII). A faster implementation of API
and TW-API is proposed in section VI.

7Let Θ
P (t) be the only positive definite inverse square root. ThenΘ(t)

can be written in the form

Θ(t) = Θ
P (t) U(t) (44)

whereU(t) is a r × r orthonormal matrix. Substituting equation (44) into
equation (37) yields

W(t) =
n�

W(t − 1) + e(t) g(t)H
�
Θ

P (t)
o

U(t).

It can be readily seen in this last equation thatU(t) does not affect the
subspace spanned byW(t); it only affects the particular orthonormal basis
W(t) of this subspace. Consequently, the choice of a particular inverse square
root Θ(t) has no impact on the subspace tracking performance.

8The initial valuesW(0) andZ(0) have to be chosen suitably:

TABLE II

TRUNCATED WINDOW API (TW-API) ALGORITHM

Initialization :

W (0) =

�
Ir

0(n−r)×r

�
, Z(0) = Ir, X(0) = 0n×l, bV (0) = 0r×l

For each time step do2666666666666666666666666666666666664

Input vector : x(t)
Section similar to SW − PAST Cost�

x(t − l) X(t)
�

=
�

X(t − 1) x(t)
�

(20)
y(t) = W (t − 1)Hx(t) (11) nr� bv(t − l) bY (t)

�
=
� bV (t − 1) y(t)

�
(24)

v(t − l) = W (t − 1)Hx(t − l) (22) nr
x(t) =

�
x(t) x(t − l)

�
(8)by(t) =

�
y(t) bv(t − l)

�
(26)

y(t) =
�

y(t) v(t − l)
�

(27)
h(t) = Z(t − 1) by(t) (32) 2r2

g(t) = h(t)
�

β J−1 + y(t)Hh(t)
�−1

(35) 8r

TW − API main section

e(t) = x(t) − W (t − 1) y(t) (38) 2nr

Θ(t) =
�

Ir + g(t)
�

e(t)He(t)
�

g(t)H
�− 1

2 (43) 4n + O(r3)

Z(t) = 1
β

Θ(t)H
�

Ir − g(t) y(t)H
�

Z(t − 1)Θ(t)−H
(34) O(r3)

W (t) =
�

W (t − 1) + e(t) g(t)H
�

Θ(t) (37) nr2 + 2nrbV (t) = Θ(t)H bY (t) (23) lr2

VI. FAST API METHOD

In this section, a fast implementation of the API method is
proposed, based on a particular choice of the matrixΘ(t). It
is supposed thatβ J−1 + y(t)Hh(t) is non-singular, so that
Θ(t) is also non-singular. Below, thep × p identity matrix is
denotedIp.

A. A particular solution to equation(43)

Let ε(t) be a square root of thep × p matrix e(t)He(t) :

ε(t) ε(t)H =
(
e(t)He(t)

)
. (45)

Substituting equation (45) into equation (43) and applyingthe
matrix inversion lemma shows that9

Θ(t)Θ(t)H = Ir − g(t) ε(t) ρ(t)−1ε(t)Hg(t)H (46)

whereρ(t) is thep × p positive definite matrix

ρ(t) = Ip + ε(t)H
(
g(t)Hg(t)

)
ε(t). (47)

Considering equation (46), we are looking for a special
solution of the form

Θ(t) = Ir − g(t) ε(t)σ(t)−1ε(t)Hg(t)H (48)

• W(0) should be an × r orthonormal matrix,
• Z(0) should be ar × r positive definite matrix.

Both matrices can be calculated from an initial block of data or from arbitrary

initial data. The simplest way, however, is to setW(0) =

�
Ir

0(n−r)×r

�
and Z(0) = Ir . The choice of these initial values affects the transient
behavior but not the steady state performance of the algorithm.

9Lemma 5.2 is applied withA = Ir , P = g(t) ε(t), J = Ip and
Q = ε(t)Hg(t)H . In particular, the non-singularity ofΘ(t) is equivalent to
the non-singularity ofρ(t).
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whereσ(t) is ap× p non-singular matrix. The interest of this
approach is that ther × r matrix square rooting problem in
equation (46) is converted into a smallerp × p matrix square
rooting. Indeed, substituting equation (48) into equation(46)
yields a sufficient condition :

σ(t)−1 + σ(t)−H + σ(t)−1
(
Ip − ρ(t)

)
σ(t)−H = ρ(t)−1.

Left multiplying the two members of this last equation byσ(t)
and right multiplying them byσ(t)H yields the equation10

(
σ(t) − ρ(t)

)
ρ(t)−1

(
σ(t) − ρ(t)

)H
= Ip

whose solution is

σ(t) = ρ(t) + ρ(t)
1
2

H

. (49)

Even if other choices would be possible, from now on we
suppose that the square root ofρ(t) which is involved in the
above equation is the only positive definite square root. This
condition guarantees thatσ(t) is positive definite, so thatΘ(t)
is hermitian11. Then define thep × p positive definite matrix

τ(t) = ε(t)σ(t)−1ε(t)H . (50)

Substituting equation (50) into equation (48) yields

Θ(t) = Ir − g(t) τ(t) g(t)H . (51)

B. Fast implementation of the particular solution

Based on the low-rank matrix update ofΘ(t) in equa-
tion (51), it is shown below that the matricesZ(t), W (t)
and V̂ (t) can also be efficiently updated. Consider thep × p
matrix

η(t) = Ip −
(
g(t)Hg(t)

)
τ(t). (52)

SinceΘ(t) is non-singular, the matrix inversion lemma shows
thatη(t) is also non-singular12. Then substituting equation (51)
into equation (34) yields

Z(t) =
1

β

(
Z(t − 1) − g(t)h′(t)H + ǫ(t) g(t)H

)
(53)

where ther × p matricesh′(t) andǫ(t) are defined by

y′(t) = y(t) η(t) + g(t) τ(t) (54)

h′(t) = Z(t − 1)Hy′(t) (55)

ǫ(t) =
(
Z(t − 1)g(t) − g(t)

(
h′(t)Hg(t)

))

(
τ(t) η(t)−1

)H
(56)

Then substituting equation (51) into equation (37) yields

W (t) = W (t − 1) + e′(t) g(t)H (57)

wheree′(t) is then × p matrix

e′(t) = e(t) η(t) − W (t − 1) g(t) τ(t). (58)

10Remember thatρ(t) is an hermitian matrix.
11More precisely,Θ(t) is positive definite. Indeed, equation (49) shows

that σ(t) andρ(t) are simultaneously diagonalizable, and the eigenvalues of
σ(t) are strictly greater than those ofρ(t). Therefore,ρ(t)−1 − σ(t)−1 is
a positive definite matrix. Then subtracting equation (46) from equation (48)
shows thatΘ(t) is positive definite.

12Lemma 5.2 is applied to equation (51), withA = Ir , P = g(t) τ(t),
J = Ip andQ = g(t)H .

However, substituting equations (38) and (54) into equa-
tion (58) yields

e′(t) = x(t) η(t) − W (t − 1)y′(t). (59)

Finally, substituting equation (51) into equation (23) yields

V̂ (t) = Y (t) − g(t)
(
g(t) τ(t)

)H
Y (t). (60)

The pseudo-code of the exponential window fast API al-
gorithm (FAPI) is presented in table III, and that of the
truncated window fast API algorithm (TW-FAPI) is presented
in table IV. The overall computational cost of FAPI is
n(3r + 2) + 5r2 + O(r) flops per iteration13 (whereas the
complexities of PAST [22] and OPAST [25] are respectively
3nr + 2r2 + O(r) andn(4r + 1) + 2r2 + O(r)). The overall
computational cost of TW-FAPI isn(6r + 8) + 4lr + O(r2)
flops per iteration14 (whereas the complexities of SW-PAST
and SW-OPAST [29] are respectively5nr + 4r2 + O(r) and
n(15r + 28) + 12r2 + O(r)). Note that the presence of a4lr
term in the complexity of TW-FAPI may make this algorithm
more computationally demanding in applications for whichl
is much larger thann. However, in the context of frequency
estimation, it has been proved that optimal Cramer-Rao bounds
were obtained for12n ≤ l ≤ 2n [35], and in section VIII-A,
TW-FAPI is tested withl = 3

2n.

TABLE III

EXPONENTIAL WINDOW FAST API (FAPI) ALGORITHM

Initialization (cf. table I)

For each time step do26666666666666666666664
Input vector : x(t)
PAST main section (cf. table I)
FAPI main section : Cost

ε2(t) = ‖x(t)‖2 − ‖y(t)‖2 (45) n + r

τ(t) =
ε2(t)

1+ε2(t)‖g(t)‖2+
√

1+ε2(t)‖g(t)‖2
(50) r

η(t) = 1 − τ(t) ‖g(t)‖2 (52) 1
y′(t) = η(t) y(t) + τ(t) g(t) (54) 2r

h′(t) = Z(t − 1)Hy′(t) (55) r2

ǫ(t) =
τ(t)
η(t)

�
Z(t − 1)g(t) −

�
h′(t)Hg(t)

�
g(t)

�
(56) r2 + 3r

Z(t) = 1
β

�
Z(t − 1) − g(t) h′(t)H + ǫ(t) g(t)H

�
(53) 2r2

e′(t) = η(t) x(t) − W (t − 1) y′(t) (59) nr + n

W (t) = W (t − 1) + e′(t) g(t)H (57) nr

VII. L INK WITH THE PAST AND OPASTALGORITHMS

In this section, it is shown that the classical exponential
window PAST algorithm can be seen as a first order approx-
imation of the FAPI algorithm. Indeed, the errore(t) is the
component ofx(t) that does not belong to the signal subspace
spanned byW (t − 1). Thus, if this subspace slowly varies
upon time, and if the Signal to Noise Ratio (SNR) is high,
e(t) ≃ 0. If the second order term‖e(t)‖2 is disregarded in

13Note that this implementation of FAPI is faster than that proposed in [26],
whose global cost wasn(4r + 2) + 5r2 + O(r).

14This implementation of TW-FAPI is also faster than that proposed in [31],
whose global cost wasn(8r + 8) + 4lr + O(r2).
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TABLE IV

TRUNCATED WINDOW FAST API (TW-FAPI) ALGORITHM

Initialization (cf. table II)

For each time step do2666666666666666666666666666666664
Section similar to SW − PAST (cf. table II)
TW − FAPI main section Cost

ε(t) =
�

x(t)Hx(t) − y(t)Hy(t)
� 1

2 (45) 4n + 4r

ρ(t) = Ip + ε(t)H
�

g(t)Hg(t)
�

ε(t) (47) 4r

τ(t) = ε(t)

�
ρ(t) + ρ(t)

1
2

H
�−1

ε(t)H (50) O(1)

η(t) = Ip −
�

g(t)Hg(t)
�

τ(t) (52) O(1)

y′(t) = y(t) η(t) + g(t) τ(t) (54) 8r

h′(t) = Z(t − 1)Hy′(t) (55) 2r2

ǫ(t) =
�

Z(t − 1)g(t) − g(t)
�

h′(t)Hg(t)
���

τ(t) η(t)−1
�H (56) 2r2 + 12r

Z(t) = 1
β

�
Z(t − 1) − g(t) h′(t)H + ǫ(t) g(t)H

�
(53) 4r2

e′(t) = x(t) η(t) − W (t − 1) y′(t) (59) 2nr + 4n

W (t) = W (t − 1) + e′(t) g(t)H (57) 2nrbV (t) = Y (t) − g(t)
�

g(t) τ(t)
�H

Y (t) (60) 4lr

table III, τ(t) = 0, η(t) = 1 and Θ(t) becomes ther × r
identity matrix. Then equations (57) and (53) become

W (t) = W (t − 1) + e(t) g(t)H (61)

Z(t) =
1

β

(
Z(t − 1) − g(t)h(t)H

)
(62)

(in particular, it can be recursively shown thatZ(t) is always
hermitian). Consequently, this first order approximation of the
fast API method is an exact implementation of the classical
PAST subspace tracker [22], which only provides anearly
orthonormal subspace weighting matrix. In other respects,a
thorough examination of the OPAST algorithm presented in
[25] shows thatW (t) is updated as in equation (57) (which
guarantees the orthonormality, contrary to equation (61)).
However,Z(t) is updated as in equation (62). Consequently,
OPAST can be seen as an intermediary between PAST and
FAPI.

VIII. S IMULATION RESULTS

In this section, the performance of the subspace estimation
is analyzed in the context of frequency estimation, in terms
of the maximum principal angle between the true dominant
subspace of the correlation matrixCxx(t) (obtained via an
exact eigenvalue decomposition), and the estimated dominant
subspace of the same correlation matrix (obtained with the
subspace tracker). This error criterion was initially proposed
by P. Comon and G.H. Golub as a measure of the distance
between equidimensional subspaces [24, pp. 603-604]). In
section VIII-A, the FAPI and TW-FAPI algorithms are com-
pared to other existing subspace trackers. In section VIII-B,
the behavior of the API method regarding the SNR and the
parametersn andr is investigated.

A. Comparison of FAPI and TW-FAPI with other existing
subspace trackers

In this section, the test signal is a sum ofr = 4 complex
sinusoidal sources plus a complex white gaussian noise (the
SNR is 5.7 dB). The frequencies of the sinusoids vary ac-
cording to a jump scenario originally proposed by P. Strobach
in the context of Direction Of Arrival estimation [36]: their
values abruptly change at different time instants, between
which they remain constant. Their variations are represented
on Figure 1-a. This signal is processed in section VIII-A.1
by means of an exponential window whose forgetting factor
is β ≈ 0.99, and in section VIII-A.2 by means of a sliding
window of lengthl = 120. This parameters were chosen so
that the effective window length is the same in both cases,i.e.
β = 1

1−1/l . Section VIII-A.3 focuses on the orthonormality
of the subspace weighting matrix. The complexities of the
various subspace trackers illustrated in this section are given
in table V.

Algorithm Complexity (flops) Window Figure
FAPI n(3r + 2) + 5r2 + O(r)
PAST 3nr + 2r2 + O(r) exponential Fig. 1
NIC 4nr + 2r2 + O(r)

OPAST n(4r + 1) + 2r2 + O(r)
Karasalo nr2 + n(3r + 2) + O(r3)

FST n(6r + 2) + 12r2 + O(r)
Householder PAST n(4r + 1) + 2r2 + O(r) exponential Fig. 2

Loraf2 nr2 + n(3r + 2) + O(r3)
SP1 4nr2 + n(4r + 2) + O(r3)

TW-FAPI n(6r + 8) + 4lr + O(r2)
SW-PAST 5nr + 4r2 + O(r)
SW-NIC 6nr + 4r2 + O(r) sliding Fig. 3

SW-OPAST n(15r + 28) + 12r2 + O(r)

TABLE V

COMPARISON OF THE COMPLEXITIES

1) Exponential window case:figure 1-b shows the maxi-
mum principal angle error trajectoryθFAPI(t), obtained with
the FAPI method with parametersn = 80 and β ≈ 0.99.
Then this result is compared to that obtained with the PAST
subspace tracker: figure 1-c shows the ratio in dB of the
trajectories obtained with FAPI and PAST,i.e.

20 log10

(
θFAPI(t)

θPAST(t)

)
.

At initialization, it can be noticed that FAPI converges faster
than PAST. Moreover, PAST does not provide an orthonormal
subspace weighting matrix. Figure 1-d shows the ratio in dB
of the trajectories obtained with FAPI and the NIC subspace
tracker15, which is a robust generalization of PAST [23]. It
can be seen that the subspace estimation error is always
smaller with FAPI. As PAST, NIC does not guarantee the
orthonormality of the subspace weighting matrix. Figure 1-
e shows the ratio of the trajectories obtained with FAPI and
OPAST. The two algorithms reach the same performance,
except at initialization, where FAPI converges faster. In fact,
the difference is much more distinct with the sliding window
versions of these algorithms (see section VIII-A.2).

15The learning stepη is equal to0.7.
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Fig. 1. Subspace tracking based on an exponential window
(a) Normalized frequencies of the sinusoids
(b) Maximum principal angle trajectory obtained with FAPI
(c) Ratio of the trajectories obtained with FAPI and PAST
(d) Ratio of the trajectories obtained with FAPI and NIC
(e) Ratio of the trajectories obtained with FAPI and OPAST

In figure 2, the FAPI algorithm is compared to five other
well-known subspace trackers :

• I. Karasalo’s algorithm [2],
• the Fast Subspace Tracking (FST) algorithm [3],
• the novel PAST algorithm employing Householder trans-

formations, herein called Householder PAST [34],
• the Low-Rank Adaptive Filter (Loraf2) algorithm [7],
• and the Subspace Projection (SP1) algorithm [37].

Figure 2-a shows that the behaviors of FAPI and Karasalo’s
algorithm are very similar. However the dominant cost of
the latter isnr2 (see table V). Figure 2-b shows that FAPI
converges to the signal subspace much more precisely than
FST. Moreover, FST is more computationally demanding than
FAPI. Figure 2-c shows that FAPI and Householder PAST
reach the same performance, except at initialization, where
FAPI converges faster. Figure 2-d shows that the same remark
can be made about FAPI and Loraf2. Besides, the dominant
complexity of Loraf2 isnr2.

Among the various subspace trackers that we have tested,
SP1 is the only one which really outperformed FAPI (see
figure 2-e). However, table V shows that SP1 is the most
computationally demanding algorithm. In other respects, it
is only suitable for time series data analysis, and was only
designed for exponential windows.

2) Sliding window case:figure 3-a shows the maximum
principal angle error trajectoryθTW−FAPI(t), obtained with
the TW-FAPI method with parametersβ = 1 (which turns
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Fig. 2. Subspace tracking based on an exponential window
(a) Ratio of the trajectories obtained with FAPI and Karasalo
(b) Ratio of the trajectories obtained with FAPI and FST
(c) Ratio of the trajectories obtained with FAPI and Householder PAST
(d) Ratio of the trajectories obtained with FAPI and Loraf2
(e) Ratio of the trajectories obtained with FAPI and SP1

the truncated window into a sliding window),n = 80 and
l = 120. It can be noticed that this algorithm has a fast
convergence rate after each frequency jump. This result canbe
compared to that of figure 1-b, obtained with the exponential
window FAPI method, for which the response to frequency
jumps is slower, because of the nature of the window which
tends to smooth the signal variations. Figure 3-b shows the
ratio in dB of the trajectories obtained with TW-FAPI and the
sliding window version of PAST, herein called SW-PAST [22],
[29]. It can be seen that TW-FAPI converges faster than SW-
PAST at initialization. Note that as PAST, SW-PAST does not
provide an orthonormal subspace weighting matrix. Figure 3-c
shows the ratio in dB of the trajectories obtained with TW-
FAPI and a sliding window version of the NIC algorithm,
herein called SW-NIC16. Finally, figure 3-d shows the ratio in
dB of the trajectories obtained with TW-FAPI and the sliding
window OPAST algorithm [29]. It can be noticed that the
maximum principal angle error trajectory obtained with TW-
FAPI is about 20 dB lower than those obtained with SW-NIC
and SW-OPAST in regions where the frequencies are constant.

3) Orthonormality error: the orthonormality of the sub-
space weighting matrixW (t) can be measured by means of
the following error criterion:

20 log10

(
‖W (t)HW (t) − Ir‖F

)
.

16SW-NIC is also implemented withη = 0.7.
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Fig. 3. Subspace tracking based on a sliding window
(a) Maximum principal angle trajectory obtained with TW-FAPI
(b) Ratio of the trajectories obtained with TW-FAPI and SW-PAST
(c) Ratio of the trajectories obtained with TW-FAPI and SW-NIC
(d) Ratio of the trajectories obtained with TW-FAPI and SW-OPAST

Algorithms Orthonormality error
FAPI, TW-FAPI, OPAST, Householder PAST about -300 dB

Karasalo, FST, Loraf2 about -280 dB
SP1, SW-OPAST about -240 dB

PAST, NIC about -25 dB
SW-PAST, SW-NIC about -5 dB

TABLE VI

MAXIMUM ORTHONORMALITY ERROR

Table VI shows the maximum orthonormality error reached
by the above mentioned algorithms while tracking the test
signal variations. We observed that FAPI, TW-FAPI, OPAST
and Householder PAST outperformed all the other algorithms,
whereas PAST, NIC, and their sliding window versions do
not guarantee the orthonormality of the subspace weighting
matrix.

B. Behavior of the API method regarding the SNR and the
parametersn and r

In this section, the test signal is still a sum ofr = 4
complex sinusoidal sources plus a complex white gaussian
noise. However, the frequencies of the sinusoids are constant,
equal to the initial values given in figure 1-a.

1) Influence of the SNR:in this section, the effect of the
SNR onto the subspace estimation is investigated. To this end,
the noise part of the test signal was synthesized so that the
SNR varies linearly from +30 dB to -30 dB (see figure 4-a).

Figure 4-b shows the maximum principal angle error trajec-
tory obtained with the FAPI method with parametersn = 80
and β ≈ 0.99. It can be seen that the performance of the
subspace estimation collapses beyondn ≃ 2600. Figure 4-
a shows that from this time instant the SNR is lower than
−10 dB. Figure 4-c shows the maximum principal angle error

trajectory obtained with the TW-FAPI method with parameters
β = 1, n = 80 and l = 120. Again, the performance of the
subspace estimation collapses beyondn ≃ 2600. Although
they are not illustrated here, we observed that the performance
of all the above mentioned subspace trackers similarly collapse
beyond the same SNR limit (−10 dB).
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Fig. 4. Influence of the Signal to Noise Ratio
(a) Signal to Noise Ratio in dB
(b) Maximum principal angle trajectory obtained with FAPI
(c) Maximum principal angle trajectory obtained with TW-FAPI

2) Influence of the ration/r: in this section, we focus on
the influence of the ration/r onto the subspace estimation.
The SNR is constant, equal to5.7 dB.

Figure 5-a shows the mean ofθFAPI(t), as a function of the
ratio n/r, for all n ∈ {r + 1, . . . , 80} (with β ≈ 0.99). It can
be seen that the subspace estimation becomes reliable as soon
asn/r ≥ 7. Figure 5-b shows the mean ofθTW−FAPI(t), as
a function of the ration/r, for all n ∈ {r + 1, . . . , 80} (with
β = 1 and l = 120). Again, it can be seen that the subspace
estimation becomes reliable as soon asn/r ≥ 7. Although
they are not illustrated here, we observed that the same remark
is valid for all the above mentioned subspace trackers.

3) Tracking a subspace of wrong dimension:since the
dimension r of the signal subspace is unknown in many
applications, we investigate in this section the performance
of the FAPI and TW-FAPI algorithms when applied with a
wrong subspace dimensionr. The SNR is constant, equal
to 5.7 dB. The performance of the subspace estimation is
analyzed in terms of the maximum principal angle between
the true 4-dimensional signal subspace and the estimatedr-
dimensional subspace.

Figure 5-c shows the mean ofθFAPI(t), as a function ofr,
for all r ∈ {1, . . . , 20} (with parametersβ ≈ 0.99 and n =
80). Similarly, figure 5-d shows the mean ofθTW−FAPI(t), as a
function ofr, for all r ∈ {1, . . . , 20} (with parametersl = 120
and n = 80). It can be seen that the subspace estimation is
reliable in all cases:

• if r = 4, the maximum principal angle is very low (as
expected),

• if r < 4, the maximum principal angle remains low,
which means that the estimated lower-dimensional sub-
space is nearly included in the true signal subspace,
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Fig. 5. Influence of the parametersn andr
(a) Average max. angle obtained with FAPI as a function ofn/r
(b) Average max. angle obtained with TW-FAPI as a function ofn/r
(c) Average max. angle obtained with FAPI as a function ofr
(d) Average max. angle obtained with TW-FAPI as a function ofr

• is r > 4, the maximum principal angle is even lower
than in the caser = 4, which means that the true
signal subspace is nearly included in the estimated upper-
dimensional subspace. Moreover, it can be noticed that
the maximum principal angle decreases as the dimension
of the estimated subspace increases.

We can conclude that FAPI and TW-FAPI are robust to
erroneous subspace dimensionr.

IX. CONCLUSIONS

In this paper, several implementations of the API algorithm
for subspace tracking were presented, based either on expo-
nential windows or on truncated windows. These algorithms
reach a linear complexity and guarantee the orthonormality
of the subspace weighting matrix at each time step. In the
context of frequency estimation, the method proves able to
track abrupt frequency variations robustly, and outperforms
many subspace trackers, both in terms of subspace estimation
and computational complexity. Finally, these subspace tracking
algorithms can be considered as the starting point of a real-
time frequency tracker, whose full implementation can involve
our adaptive version of the ESPRIT algorithm [38].
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