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Abstract— This paper introduces a fast implementation of the
power iteration method for subspace tracking, based on an
approximation less restrictive than the well known projection
approximation. This algorithm, referred to as the fast API
method, guarantees the orthonormality of the subspace weightm
matrix at each iteration. Moreover, it outperforms many subspae
trackers related to the power iteration method, such as PAST,
NIC, NP3 and OPAST, while having the same computational
complexity. The APl method is designed for both exponential
windows and sliding windows. Our numerical simulations show
that sliding windows offer a faster tracking response to abrupt
signal variations.

Index Terms— Subspace tracking, projection approximation,
power iteration.

I. INTRODUCTION

The estimation of the signal subspace can also be viewed
as a constrained or unconstrained optimization proble-[16
[21], for which the introduction of a projection approxiroat
hypothesis lead to fast subspace tracking methods €sge
the PAST [22] and NIC [23] algorithms). In [8], it is shown
that these subspace trackers are closely linked to theiadhss
power iteration method [24]. Several implementations @ th
method based on QR factorizations are proposed in [6], among
which the Loraf2 and Loraf3 algorithms. However, compared
to PAST and NIC, Loraf2 is more computationally demanding
and the performance of Loraf3 is degraded. Another fast im-
plementation of the power iteration method, the NP3 algorit
which relies on rank-one matrix updates, is proposed in [8],
but our numerical simulations showed that this algorithragdo
not converge in many situations. An orthonormal version of
the PAST algorithm, proposed in [25], can be seen as a fast

HE interest in subspace-based methods stems from {hfhlementation of the power method and outperforms PAST,

T fact that they consist in splitting the observations into gic and NP3. Concurrently, the recent API method [26],
set of desired and a set of disturbing components, which eangysed on the power iteration method and on a new projection
viewed in terms of signal and noise subspaces. These methgggroximation, has the same computational complexity @s th
have applications in numerous domains including the fieldgove mentioned algorithms but provides a better estimatio
of adaptive filtering, source localization, or parameteines  of the dominant subspace.
tion [1]. The estimation of the signal subspace is commonly s these adaptive techniques are designed for exponential
based on the traditional eigenvalue decomposition (EVIQingows. Indeed, this choice tends to smooth the variations
or singular value decomposition (SVD). However, the maigs the signal parameters, and thus allows a low-complexity
drawback of these_decomposmons is their inherent Commex.update at each time step. However, it is only suitable for
Therefore, there is a real need for fast subspace trackigig\yly changing signals. Conversely, a few subspace tracke
techniques in the context of adaptive signal processing.  gre pased on sliding windows, which generally require more
Due to this interest, a large number of approaches haygmputations, but offer a faster tracking response to sudde
already been introduced. A reference method is I. Karas;alg’igna| changes [22], [27]-[30]. In particular, a slidingndow
algorithm [2], which involves the full SVD of a small matrix.ersion of the API algorithm is proposed in [31].
A fast tracking method based on Givens rotations (the FSTypig naner presents several fast implementations of the API

algorithm) is proposed in [3]. Other approaches consishin i o4 These algorithms present several advantages:
terlacing a recursive update of the estimated correlatiatrim

or the data matrix with one or a few steps of a standard SVD or®
power iteration algorithm. This is the case of the Jacobi SVD
method [4], the transposed QR-iteration [5], the orthodjona
/ bi-orthogonal iteration [6], [7], and the power method.[8] °
Other matrix decompositions have also successfully beed us

they can be applied either on an infiniexponential
windowor on atruncated windowe.g.a sliding window
which may have an exponential decrease),

an orthonormal subspace basis is compugtdeach
time step which is required for some subspace-based

in subspace tracking (for example the rank-revealing QR
factorization [9], the rank-revealing URV decompositidi©], .
and the Lankzos (bi)-diagonalization [11]). Other teclueis

rely on the noise and signal subspace averaging method [12],
the maximum likelihood principle [13], the operator restion
analysis [14], or the perturbation theory [15].

estimation methods, such as MUSIC [32],

they rely on a new projection approximation, less re-
strictive than the classical one, which leads to better
tracking results. In particular, it is shown that the PAST
and OPAST subspace trackers can be viewed as approx-
imations of the fast APl method.

The paper is organized as follows. In section Il, we in-
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section 1ll, the classical power iteration method is reaew
then the projection approximation is discussed in sectian |



Our approximated power iteration (API) method is introdiice I1l. THE CLASSICAL POWER ITERATION METHOD

in section V, and a fast implementation of this algorithm is 1,4 power iteration method [8] tracks the dominant sub-

proposed in section VI. In section VII, it is shown that bo“épacé of dimensionr < n spanned by the: x n matrix
PAST and OPAST can be seen as approximations of the fast .

- ' > wz(t). At each time step, a basis of this subspace is
API algorithm. In section VI, the performance of this meth computed, represented by an orthonormal ma¥ix(t) of

is compared to that of several subspace trackers, amon@\whigensiony, x . The computation oW (¢) consists of a data
PAST and OPAST. Finally, the main conclusions of this PaP@hmpression step (9) and an orthonormalization step (10) of

are summarized in section IX. the compressed matrix at each iteration:

Il. DATA WINDOWING

Let {x(t)}:cz be a sequence ai-dimensional data vec-
tors. We are interested in computing the dominant subspace W (t) R(t) = Cyy(t). (10)
spanned by its correlation matrix. This matrix can be edtitha
according to the nature of the data window.

Coy(t) = Cur(t) W(t — 1) 9)

where C,,(t) can be considered as = x r correlation
matrix between the:-dimensional data vectors(¢) and the

S r-dimensional compressed data vectors
A. Exponential window

The estimated: x n correlation matrix is defined as y(t) =Wt —1)"a(1). 11)

¢ The orthonormalization step (10) involvesrax r matrix

Coa(t) = Y B @(u)x(u)” R(t), such thatR(t)" R(t) = ®(t), where &(t) is the
u=—00 r x r positive definite matrixC.,(t)” C,,(t). Consequently,

where0 < 3 < 1 is the forgetting factor. It can be recursivelyR(¢)" is a square root o (t). In particular,R(¢)¥ is equal
updated according to the following scheme: to the positive definite square root @(¢), right multiplied

by a unitary matriX. For example,R(t) can be triangular [6],
or positive definite [8].

If C..(t) remains constant and if its firsteigenvalues are
strictly larger than then — r)*" others, the power iteration
The n x n correlation matrixC,,(t) is estimated on a method converges globally and exponentially to the priaicip

Coo(t) = BC.(t — 1)+ x(t) z(t)H. (1)

B. Truncated window

window of lengthl € N*: subspace [8] [24, pp. 410-411]. Note that the multiplicaiio
: step (9) involvesn?r operations, and the orthonormalization
C.u(t) Z B w(u) (). (2) step (10) require)(nr?) operationd. Because of its high
w—t 141 computational cost, this algorithm is not suitable for +exale
where0 < 5 < 1. The cases = 1 corresponds to a rectangularprocessmg‘

(or sliding) window. This matrix can be recursively updated
according to the following scheme: IV. THE PROJECTION APPROXIMATION
_ H ! H We are now looking for an approximation that will allow
Coalt) = BCo(t =) +a(t)2()" — Fa(t =D a(t l)(gj us to reduce the complexity. Suppose tWet(t — 1) exactly
spans the~-dimensional dominant subspace ©f,.(t). Then
o o equation (9) yields
C. Unified formalization

Both equations (1) and (3) can be written in the form Cuy(t) = W(t—1)Cyy(t) (12)
Coo(t) = BCuu(t — 1) +z(t) Jz(t)"” (4) where the matrixCy,(t) £ W(t — 1)"C,.(t) W(t — 1)

] ) ) can be seen as the correlation matrix of the compressed data
wherez(t) andJ are defined according to the window shape:

e in the exponential window case: 1The r-dimensional dominant subspace of the positive semidefinitebmat
C.:(t) is the subspace spanned by theigenvectors olC';.(t) associated
J =1 (5) to ther eigenvalues of highest magnitude (which are supposed toriocdyst
greater than thes — r others).
z(t) = z(t) (6) 2If T is a positive definite matrix, square rootof T" is any matrixS of trlle

. . . same dimension such th& S = T'. Such a matrix is denote§ = T'2.
« in the truncated window case: There is only one positive definite square root®f The other square roots
1 0 are obtained by right multiplyinlg this positive definite sgpaoot by any

J = 0 — /Bl (7) unitary transform. The notatio§2 can denote any of them.

3In this paper, operations counts are expressed in terms ofipigult

z(t) = [ z(t) ‘ xz(t—1) ]. (8) / accumulate (MAC) operations, herein referred to faps Whenever a

. . ) specific matrix function is used, such as orthonormalizatiomersion or

Let p be the rank of the update involved in equation (4)quare rooting, only the order of the operations count iserted, since
Sincep = 1 in the exponential window case apd= 2 in the the exact operations count depends on the way this funcitiamplemented.

¢ ted wind h teri th ind h | Nevertheless; is supposed to be much lower thanso that the dominant cost
runcated winaow casg, characterizes the window shape. Iy e power iteration method is that of the first step, whosecerperations

particular,z(t) is an x p matrix andJ is ap x p matrix. count is known 42r).



vectors. In this casé¥ (t) and W (¢t —1) are two orthonormal A. Recursion for the matriC , (t)

matrices spanning the range spaceCbf, (t), thus It is shown in this section that the x - matrix C,,,(t) can
W(t) = W(t —1)©(t) (13) be up.dated .in the same way as thex n matrix C,.(t) in
equation (4):
where ©(t) & W(t — )W (t) is ar x r orthonormal
matrix. Substituting equation (12) into equation (10) aeft | _ - _ ~(VH
multiplying by W (¢)¥ yields the polar decomposition of Cayt) = fCoy(t =D O = 1) +2(B) IO (17)
R(t)H: In the exponential window case, equation (17) involves a
R = C,,(t) O(t) (14) rank-one updatex((t) andy(t) are vectors and is a scalar),
whereas in the truncated window case it involves a rank-two
where C, (t) is the positive definite factor an@(t) is the update &(¢) and y(¢) are two-column matrices and is a
orthonormal factor. Now suppose tHaf (¢ —1) approximately 2 x 2 matrix).
spans the dominant subspacef..(¢). Then equations (13) 1) Truncated windowfirst, equation (2) can be written
and (14) become approximations:

C..(t) = X(t) D X ()" (18)
W) = W(t-1)6() (15 where X (1) 2 [2(t — 1+ 1), &(t —1+2), ..., ()] is the
Rt ~ Cyy(t)O(t) (16) n x | data matrix andD is the | x [ diagonal matrix

diag(ﬁl_la ﬁl_Qa RS 67 1) .

where ther x r matrix ©(¢) is nearly orthonormal. Substituting equation (18) into equation (9) yields

Compared to equation (15), the classical projection approx
imation [22] is equivalent toW (t) ~ W(t — 1) at each C.y(t)=X(t) DY (t)" (19)
time stef. The validity of this approximation additionallywherey(t) 2 W(t—1)HX(t) is ther x | compressed data
requires tha®(¢) is close to the" x r identity matrix (herein matrix. Now let us show recursions for matricé&(t) and

; : e
denoted,). In th's. case, _equatlon (16) shows thR(t_) Y (t). The first one is straightforward:
must be nearly positive definfteConsequently, the choice of

the square rooR(t)" of ®(t) is restricted €.g. R(t) can no [z(t—1) | X(t) | =] X({t—-1) | =) ]. (20)

longer be upper triangular, as it was in [6]). Then left multiolvi ti 20) bW (¢ — 1) vield
The NP3 implementation of the power method [8] is based en left multiplying equation (20) byv'( )" yields

on this approximation, but this algorithm relies on a ma- [ v(t—1) | Y (t) | =] W(t—-1)"X(t-1) | y(t) |

trix R(t) which deviates from the positive definite structure (21)
constraint. Therefore, the classical projection appraxion Wwherey(t), defined in equation (11), and

does not stand, and this subspace tracker is not guaramteed t o(t —1) 2 W(t — DHa(t 1) 22)
converge.

Concurrently, the algorithms presented in section V daer-dimensional compressed data vectors. Applying approx-
not have to face this limitation, since they rely on the leggation (15) at timet — 1 to equation (21) yields the recursion
restrictive approximation (15). Also note that (15) is tesb [ v(t—1) | Y (t) | ~ [ Vt—1) |yt } whereV (¢ — 1)
approximation ofW () in terms of mean square error, sincgs ther x | compressed data matrix
the solution to the minimization problem

Vit-1)20¢t-1)Tyt-1). (23)
. 2
A8 T W () -W(t—-1) Ol From now on, the exact definition o¥ (t) is therefore
eplaced b
isO(t) =W (t—1)TW(t) (whereW (¢t — 1) is supposed to ep y R
be orthonormal). [ot—0)|Y(t) | £ [ V(t-1) |y } (24)

where ther-dimensional vectow (¢ — [), defined by the first
column in the left side of equation (24), is an approximatbn

The complexity of the power iteration method can bghe vectorv(t —1). Equations (19), (20), (23) and (24) finally
reduced by introducing approximation (15) at tirhe- 1 in  Yyield
step (9). Then ther x r matrix C,,(¢t) can be computed Coy(t) = BCuy(t—1)O( 1)
recursively, as shown in section V-A, and factorization)(10 Y { H _ gl Dot —DH (25)

. . ’ +ax(t)y(t)" - pla(t - 1)v(t—1)

can be updated, as shown in section V-C. This fast update

requires the introduction of @ x r auxiliary matrix Z(¢), 1S recursion can be seen as a particular case of equa-
introduced in section V-B. tion (17), whereJ andx(t) are defined in equations (7) and (8)

and ther x p (with p = 2) matrix
4In fact, the projection approximation in [22] is definedWa&(t' ) x(t) ~ ~ A

Wt — 1)Hx(t) £ y(t) V&’ > t. It was shown in [8, pp. 301] that this y@t) = [ y(t) ‘ o(t —1) } (26)
approximation is equivalent t® (t) ~ W (¢ — 1) at each time step. . imati f
SConversely, ifR(t)" is chosen close to the only positive definite squarJ—:‘S an approximation o
root of ®(t), the approximate polar decomposition (16) shows B§t) ~ A H _
I, so that equation (15) yield&V (t) ~ W (t — 1). ﬂ(t) - W(t - 1) 2(t) - [ y(t) ‘ v(t - l) ] : (27)

V. APPROXIMATED POWER ITERATION



2) Exponential window: substituting equation (1) into
equation (9) yields

Applying the projection approximation (15) at tinte- 1,
equation (28) can be replaced by the following recursion:

Cay(t) = BCuy(t —1)O(t — 1) +a(t)y(t)".  (29)

DWW (t—1) + (28)

Lemma 5.2 applied to equation (36) shows that the
r matrix ©(t) R(t) is non-singular if and only if the x p
matrix 5J " + y(t)" h(t) is non-singular (which provides a
fast way of detecting the singularity @2(¢) or ©(t)). In the
non-singular case, lemma 5.2 leads to the equation

— lz(t - (I, —yt)gt)").

(©(t) R(t) 3

This recursion can be seen as a particular case of equa@pn (hnally, left multiplying the complex conjugate transpose
whereJ andz(t) are defined in equations (5) and (6) and thinjs last equation byO(t )7 and right multiplying it by

r X p (with p = 1) matrix y(t
vectory(t) £ W (t — 1)"x(t)

y(t) is now equal to the

) =
=y(t).

B. Recursion for the matriZ (t)

©(t)~H yields recursion (34). [ ]

C. Recursion for the matrif¥ (¢)
Next, proposition 5.3 introduces a fast update for the

Now, we aim at updating factorization (10) by meansubspace weighting matrix.

of equation (17). This calculation requires the introdometi
of an auxiliary matrix, denotedZ(¢). Let S(t — 1) =

(R(t—1)O(t—1))" and suppose that the x r matrix

S(t — 1) is non-singular. Then let

Zt-1)28t-1)""! (30)
Proposition 5.1: The » x r matrix
S(t) £ (R(t)©(1))" (31)

is non-singular if and only if thep x p matrix 3J ' +
y(t)? h(t) is non-singular, where

h(t) £ Z(t - 1) (). (32)
has dimension x p. In this case, the x r matrix
Z(t) =S (33)

satisfies the recursion

1 _
BQ(t)H (I, —gtyy®") Zzt—-1)©1t) " (34)
whereg(t) is ther x p matrix

2 h(t) (827" +y()"h(1))

Z(t) =

g(t) - (35)

Proof:

Proposition 5.3:1f the p x p matrix 8J " + y(t)? h(t) is
non-singular,W (t) satisfies the recursion

W(t)=(W(t—1)+e®) gt)”)O(1) (37)
wheree(t) is then x p matrix
e(t) = a(t) - W(t—1)y(t). (38)

Proof:
Substituting equation (10) into equation (17) and right
multiplying by ©(t) shows thatW (¢) satisfies the recursion

W(HSH" = (Wt~ 1)S(t — 1" +z(t) J5(1)") ©(t)

Substituting equations (36) and (38) into the above egnatio
yields

W(HSH" =W(t-1)01)SH)" +e(t) Ly(t)" o).
(39)

However, left multiplying (36) byy(¢) and replacingy(t)
by its definition in equation (35) leads to

g()TOM)R(t) = (8L +y(t)"h(t) "
((ss-0) "+ (wone0) " m0).
Then equations (32) and (30) show that
(BS(t—Dh)" =sg®" =8I Jgm)".  (41)

Substituting equation (10) into equation (17) and left mul-

tiplying by W (t — 1) leads to

Ot R(t)=pS(t— 1) +

y() Ly (36)

Next, the following matrix inversion lemma [33, pp. 18-19
will be applied to invert the right member of this equality.

The interest of this approach is that the » matrix inversion
problem is converted into a smallerx p matrix inversion
(with p =1 or 2).

Lemma 5.2:Let A be ar x r non-singular complex matrix.
Consider the x r matrix B= A+ P J Q, whereP, J and
Q have dimensions x m, m x m andm x r, and J is
supposed to be non-singular. Thé&h is non-singular if and
only if J7' + Q A™! P is non-singular, and in this case
QA

loal—A'P(I QA P

Substituting equation (41) into equation (40) yields
g ©(t) R(t) = Jyt)" (42)

Finally, substituting equation (42) into equation (39) and
ight multiplying by S(t)=# = Z(t)" vyields equation (37).
[ ]
Note that if3.J ' 4+ y(t)" h(t) is singular,Z (t) and W (t)
can no longer be updated with equations (34) and (37). In
practice, we never encountered this rank deficiency case in
our numerical simulatiofis

6A solution consists in computingV () and R(t) by means of a SVD
or a QR factorization 0fCqy (t). Then®(t) = W(t — 1)HW(t) can be
deduced. Note that the whole processing requ(Deﬁsw ) operations; this
technique must be used whilR(t) or @(¢) remains singular. When both
R(t) and®(t) become non-singular again, théf(t) can be computed, and
the algorithm can switch back to the fully adaptive proasgsi



TABLE | TABLE I

EXPONENTIAL WINDOW API ALGORITHM TRUNCATED WINDOW API (TW-API) ALGORITHM
Initialization & T T T TT7 Tnitialization : -
I, I
wo [ o1, ] m0-1 o= 0,5, | 2021 XO 20 FOZ0
_F;j_rza;h—t;{e_;e; do -/ /07—~ For each time step do
[ Input vector : @(t) r Input vector : @(t)
PAST main section Cost Section similar to SW — PAST Cost
y(t) = Wt — ) x(t) (11) nr [2@¢—-0 | X(@#) ]=[ X(t-1) | =) ] (20
h(t) = Z(t — 1) y(t) (32) r? y(t) =w-1)"=z@) (11 nr
g(t) = ——n (35) 2r -0 | Y®) ]=[Ve-D |y®) ] @4
API main section ot —1) = W(t— 1) 7wt - 1) @) |
e(t) = (t) — W(t— 1) y(t) 38) nr %EB = { mgt) | =(t *ll; J ((252)
_1 Yy =
o) = (I + le®)*g(t) g()™) 2 @3) | n+0(*) y(t) =[ () \ v t—l) ] (27)
1 h(t) = — 2
zZw) = Lem” (1, 75(t)y(t)H) a9l o6 h(t) - Z(t 1)%(1&) . B 32) 2r
Z(t—1)0() 9(t) =h(t) (8271 + ()" (1)) @) | s
W(t) = ( (t— 1)+ e(t) g(t) ) o) @7 nr?+ar TW — API main section
ey o S e(t) =a(t) - W(t—1)y(0) (38) 2nr
- _1
o = (I.+g() (eme®) g®)™) 2 @3 | 4n+0(?)
zw= 3em” (I, -gtym™) @] ow
Since W (t — 1) is orthonormal,e(t) is orthogonal to Z(t -new . ,
W (t — 1). Moreover, the orthonormality oV (¢), associated | W) = (WS: D+e®g®) O (B7) | mr” + 2nr
to equation (37), yields s Yw=eeyyey . ® T
—1
e e = (I, +g(t) (e(t)"et) g)™) . (43)
Therefore®(t) is an inverse square root of ther positive VI. FAST API METHOD

definite matrixI,. + g(t) (e(t)"e(t)) g(t)". The choice of |y his section, a fast implementation of the API method is
this inverse square root does not affect the subspace m@Ckﬂ)roposed based on a partlcular choice of the marix). It
performancé is supposed tha J~! + y(t)”h(t) is non-singular, so that

The pseudo-code of the exponential window API algorlthr@( t) is also non-singular. Below, thex p identity matrix is
is presented in table I, and that of the truncated window A'alanotedl

algorithm (TW-API) is presented in table IlI. It can be noted
that the first section of API is exactly the same as that of t
PAST subspace tracker [22]; it requires omly + 72 + O(r)
operations per time step, while the rest of the algorithméias Let £(¢) be a square root of the x p matrix e(t)”e(t) :
nr? + o(nr?) computational complexity. In the same way, the H _ H

first seétion)of TW-API is similar to that of the sliding windo et)el®)” = (g(t) g(t)) ' (45)
version of PAST [29]; it requires onlgnr + 2r? + O(r), Substituting equation (45) into equation (43) and applyime
while the rest of the algorithm has @ + 1)r? + o(nr?) matrix inversion lemma shows tifat

computational complexity. Note that the implementatiofis o
API and TW-API presented in tables | and Il are of limited _
interest, since a number of faster subspace trackers have e em” =1 —g(t)(t) p(t) 1§<t)Hg(t)H (46)
already been proposed in the literature, which hav@(ar) wherep(t) is thep x p positive definite matrix

complexity (among which [3], [22], [23], [25], [29], [34] ar B " "

illustrated in section VIII). A faster implementation of AP p(t) =1, +e(t)" (g(t)"g(t)) £(t). (47)

and TW-API is proposed in section VI. Considering equation (46), we are looking for a special
solution of the form

e
}A A particular solution to equatio43)

"Let ®% (t) be the only positive definite inverse square root. Ti@(t)
can be written in the form @(t) —I, - Q(t) §(t) Q(t)flé(t)Hg(t)H (48)
ot =ef ) Uu®) (44)
« W/(0) should be an x r orthonormal matrix,
¢ Z(0) should be ar x r positive definite matrix.

Both matrices can be calculated from an initial block of datér@m arbitrary

— H\ gP .

w(t) = {(W(t -1 +e(t)g(t) ) S (t)} U(t). initial data. The simplest way, however, is to 98£(0) = 0, I’)
n—r)Xr
It can be readily seen in this last equation tii&fz) does not affect the and Z(0) = I,. The choice of these initial values affects the transient
subspace spanned B (¢); it only affects the particular orthonormal basisbehavior but not the steady state performance of the algorith
W (t) of this subspace. Consequently, the choice of a particwerse square  %Lemma 5.2 is applied withA = I, P = g(t)e(t), J = 1, and
root ®(t) has no impact on the subspace tracking performance. Q= §(t)H7( YH . In particular, the non-singularity @®(t) is equwalent to
8The initial valuesW (0) and Z(0) have to be chosen suitably: the non-singularity ojp(t).

whereU (¢) is ar x r orthonormal matrix. Substituting equation (44) into
equation (37) yields



whereg (t) is ap x p non-singular matrix. The interest of thisHowever, substituting equations (38) and (54) into equa-
approach is that the x r matrix square rooting problem intion (58) yields

equation (46) is converted into a smaljex p matrix square . ,

rooting. Indeed, substituting equation (48) into equaii4é) et)=z(t)nt) - WI(t-1)y' (). (59)
yields a sufficient condition :

Finally, substituting equation (51) into equation (23)lg&
a(t) " +a®) T+ o) (L, — p(t) at)" T = p(t) .

5 H
Left multiplying the two members of this last equation dft) Vi =Yt -9 (g®)zt)" Y (). (60)

and right multiplying them bys(¢)¥ yields the equatiofy The pseudo-code of the exponential window fast API al-
_ H gorithm (FAPI) is presented in table Ill, and that of the

(e®) = p(®) p(O)" (e(®) —p(1) " = I, truncated window fast API algorithm (TW-FAPI) is presented

whose solution is in table 1IV. The overall computational cost of FAPI is

1 H n(3r + 2) + 5r2 4+ O(r) flops per iteratioh® (whereas the
a(t) = p(t) +p(t)% . (49)  complexities of PAST [22] and OPAST [25] are respectively

Even if other choices would be possible, from now on wnr + 2r% + O(r) andn(4r + 1) + 2% + O(r)). The overall

suppose that the square root ) which is involved in the computational cost of TW-FAPI ig (67 + 8) + 4ir + O(r?)

above equation is the only positive definite square roots THIOps per iteratioff (whereas the complexities of SW-PAST

condition guarantees thatt) is positive definite, so tha®(¢) and SW-OPAST [29] are respectivelyur + 41> + O(r) and

is hermitiart’. Then define the x p positive definite matrix 7(157 + 28) + 127 + O(r)). Note that the presence ofddr
term in the complexity of TW-FAPI may make this algorithm

(t) =g(t) o (t) 'e(). (50)  more computationally demanding in applications for which
Substituting equation (50) into equation (48) yields is r_nuch Iarger tham. However, in the_ context of frequency
. estimation, it has been proved that optimal Cramer-Rao d®un

Ot =I—gt)z(t)gt)". (51) were obtained forin < I < 2n [35], and in section VIII-A,

TW-FAPI is tested withl = 2n.
B. Fast implementation of the particular solution

Based on the low-rank matrix update @(t) in equa- TABLE I
tion £51), it is shown below that the matrice®(t), W (t) EXPONENTIAL WINDOW FAST AP| (FAPI) ALGORITHM
and V (t) can also be efficiently updated. Consider the p
matrix .
n(t) =1, - (gt)"g(t)) z(t). (52)  Imitialisation (cttablel) _

For each time step do

Since®(t) is non-singular, the matrix inversion lemma shows ( Input vector : &(t)
thatn(t) is also non-singulaf. Then substituting equation (51) PAST main section (cf. table Cout
into equation (34) yields 2(t) = =) — lu@®)]? @5) | n+r
1 () = —0— : (50) r
2() = 5 (Z(t -1 -gORO" +e)g®) (63 | 0 G Rl OO 6| 1
yi(t) =n(t) y(t)lj Tl(t)g(t) (54) 2;‘
where ther x p matricesh’(t) ande(t) are defined by hi(t) = Z(t ~ )7y’ () S|
/ e(t) = 28 (2@t - Dg) — (W ®)7g9() a(®))  ©6) | r*+3r
y(t) = y®)nt)+gt)z(t) G |z =5 (2e-D-gOWO" +egv)) 63| 2
/ — _1\H e'(t)=nt)x(t) — W(t—1)y'(t) (59) | nr+n
mo = ze-vw 8 Lwedwesrewget |
e(t) = (Z(t-1g(t)—g) (R'(t)"g(t)))
_1\H
(z(t)n()™) (56)
Then substituting equation (51) into equation (37) yields  v/||. [ Nk WiTH THE PASTAND OPASTALGORITHMS
W(t)=W(t—1)+€t)gt)” (57) In this section, it is shown that the classical exponential
wheree' (t) is then x p matrix window PAST algorithm can be seen as a first order approx-
) imation of the FAPI algorithm. Indeed, the erre(t) is the
e'(t)=e()n(t)—W(t—1)gt)z(t) (58)  component ofc(t) that does not belong to the signal subspace

10 _ y _ spanned byW (¢ — 1). Thus, if this subspace slowly varies
| Remember thap(t) is an hermitian matrix. . upon time, and if the Signal to Noise Ratio (SNR) is high,
More precisely,®(t) is positive definite. Indeed, equation (49) shows f th 9 . .
thato(t) and p(t) are simultaneously diagonalizable, and the eigenvalues g(t) ~ 0. If the second order terrfe(t)||* is disregarded in

o(t) are strictly greater than those pft). Therefore,o(t)~! — o(t)~1 is
a positive definite matrix. Then subtracting equation (46frequation (48) 13Note that this implementation of FAPI is faster than that peebin [26],
shows that®(t) is positive definite. whose global cost was(4r + 2) + 5r2 + O(r).

12 emma 5.2 is applied to equation (51), with = I, P = g(t) 7(t), 14This implementation of TW-FAPI is also faster than that pregbis [31],
J=1,andQ = gt)f. whose global cost was(8r + 8) + 4lr + O(r?).



TABLE IV

TRUNGATED WINDOW FAST API (TW-FAPI) ALGORITHM A. Comparison of FAPI and TW-FAPI with other existing

subspace trackers

In this section, the test signal is a sumof= 4 complex
———————————————————————————————— — sinusoidal sources plus a complex white gaussian noise (the
———————————————————————————————— — SNR is 5.7 dB). The frequencies of the sinusoids vary ac-

For each time step do

- Section similar to SW — PAST (cf. table I1) cording to a jump scenario originally proposed by P. Strbbac
TW — FAPI main section Cost in the context of Direction Of Arrival estimation [36]: thei
e(t) = (g(t)Hg(t)_g(t)Hg(t))i @5) | 4n+4r values abruptly change at different time instants, between
o(t) = I, + =0 (a0 g(0)) =t 47) 4r whi(I::h theylremz_T_itr:_ constarllt: Their varia(;io_ns are rep\r/ﬁb:tl

1H\TL on Figure 1-a. This signal is processed in section -A.
() =) (ﬁ(t) o) ) = Gy o by means of an exponential window whose forgetting factor
() =1, - CIORFIO)EZG 62)| o) is 8 ~ 0.99, and in section VIII-A.2 by means of a sliding
%8 ZEZ((? %(?);5((?)1@ e | o window of lengthl = 120. This parameters were chosen so
e(t) = (Z(t ~Da(t) — g(t) (E(t)Hg(t))) that the effective window length is the same in both cases,

56) | 2r2 + 12r _ 1 ; . .
(I(t)ﬂ(t)_l)H (56) B = 117 Section VIII-A.3 focuses on the orthonormality

Z() =1 (Z(t_ 1) — gt B/ ()" +§(t)g(t),,) (53) 02 of Fhe subspace we|ght|ng_ matrix. T_he c_omple>_<|t|e_s of the
o/ (1) = m() () — W(t— 1)y (1) 59) | 2nr + 4n various subspace trackers illustrated in this section ameng
W) =W(E—1)+e 1) gt)? (57) onr in table V.
~ - H
_‘_‘i(t_) _: _Y it)___g_(t)_(_g(_t)_z(i)l _i(t_) ______ (EO)___iZT___ Algorithm Complexity (flops) Window Figure
FAPI n(3r +2) + 572 + O(r)
PAST 3nr + 2r2 4+ O(r) exponential | Fig. 1
NIC dnr + 2r2 4+ O(r)
2
table Ill, 7(t) = 0, (t) = 1 and ©(t) becomes the x r OPAST n{dr +1) + 2r + O(r)
. . . . Karasalo nr +n(3r +2) + O(r?)
identity matrix. Then equations (57) and (53) become EST n(6r +2) + 12r2 + O(r)
Householder PAST|  n(4r + 1) + 2r2 + O(7) exponential | Fig. 2
W(t)=W(t—1)+e(t)gt)? 61 Loraf2 nr? +n(3r +2) + O(r°)
( ) ( ) ( )g( ) (61) SP1 4nr? + n(4r +2) + O(r3)
) TW-FAPI n(6r + 8) + 4ir + O(r?%)
B H SW-PAST 5nr 4 4r2 4 O(r)
Z(t) = 3 (Z(t—1)—g(t)h(t)") (62) SW-NIC 6nr + 4r2 + O(r) sliding | Fig. 3
SW-OPAST n(15r 4+ 28) +12r% + O(r)
(in particular, it can be recursively shown th#ft) is always TABLE V
hermitian). Consequently, this first order approximatibmhe COMPARISON OF THE COMPLEXITIES

fast APl method is an exact implementation of the classical

PAST subspace tracker [22], which only providesearly

orthonormal subspace weighting matrix. In other respexts, 1) Exponential window casefigure 1-b shows the maxi-
thorough examination of the OPAST algorithm presented mum principal angle error trajectogapr(¢), obtained with
[25] shows thatW (¢) is updated as in equation (57) (whichthe FAPI method with parameters = 80 and 8 ~ 0.99.
guarantees the orthonormality, contrary to equation (61))hen this result is compared to that obtained with the PAST
However, Z(t) is updated as in equation (62). Consequentlgubspace tracker: figure 1-c shows the ratio in dB of the
OPAST can be seen as an intermediary between PAST argjectories obtained with FAPI and PASTe.

FAPI. 201log (GFAPI(t)>
Y0\ Opast(t) )

VIII. SIMULATION RESULTS At initialization, it can be noticed that FAPI convergestéas

. ) _ than PAST. Moreover, PAST does not provide an orthonormal
~ In this section, the performance of the subspace estimatigisspace weighting matrix. Figure 1-d shows the ratio in dB
is analyzed in the context of frequency estimation, in termg the trajectories obtained with FAPI and the NIC subspace
of the maximum principal angle between the true dominagiciefs, which is a robust generalization of PAST [23]. It
subspace of the correlation matr&,, (f) (obtained via an can pe seen that the subspace estimation error is always
exact eigenvalue decomposition), and the estimated domingmnaiier with FAPI. As PAST, NIC does not guarantee the
subspace of the same correlation matrix (obtained with tighonormality of the subspace weighting matrix. Figure 1-
subspace tracker). This error criterion was initially @e@d ¢ spows the ratio of the trajectories obtained with FAPI and
by P. Comon and G.H. Golub as a measure of the distan§paAST, The two algorithms reach the same performance,
between equidimensional subspaces [24, pp. 603-604]). dicept at initialization, where FAPI converges faster. dotf
section VIII-A, the FAPI and TW-FAPI algorithms are come difference is much more distinct with the sliding window

pared to other existing subspace trackers. In section B/lll-yersions of these algorithms (see section VIII-A.2).
the behavior of the API method regarding the SNR and the

parameters: andr is investigated. 15The learning step is equal t00.7.
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In figure 2, the FAPI algorithm is compared to five othethe truncated window into a sliding window), = 80 and

well-known subspace trackers : [ = 120. It can be noticed that this algorithm has a fast
« |. Karasalo’s algorithm [2], convergence rate after each frequency jump. This resulbean

« the Fast Subspace Tracking (FST) algorithm [3], compared to that of figure 1-b, obtained with the exponential

« the novel PAST algorithm employing Householder trangvindow FAPI method, for which the response to frequency

formations, herein called Householder PAST [34], jumps is slower, because of the nature of the window which

. the Low-Rank Adaptive Filter (Loraf2) algorithm [7], tends to smooth the signal variations. Figure 3-b shows the

« and the Subspace Projection (SP1) algorithm [37].  ratio in dB of the trajectories obtained with TW-FAPI and the

Figure 2-a shows that the behaviors of FAPI and Karasal$4ding window version of PAST, herein called SW-PAST [22],
algorithm are very similar. However the dominant cost df9l: It can be seen that TW-FAPI converges faster than SW-
the latter isnr? (see table V). Figure 2-b shows that FAPPAST at initialization. Note that as PAST, SW-PAST does not

converges to the signal subspace much more precisely tfR§Avide an orthonormal subspace weighting matrix. Figuce 3
FST. Moreover, FST is more computationally demanding th&hoWs the ratio in dB of the trajectories obtained with TW-
FAPI. Figure 2-c shows that FAPI and Householder PASTAP! and a sliding window version of the NIC algorithm,
reach the same performance, except at initialization, evhdterein called SW-NIE. Finally, figure 3-d shows the ratio in

FAPI converges faster. Figure 2-d shows that the same rem@Fk Of the trajectories obtained with TW-FAPI and the sliding
can be made about FAPI and Loraf2. Besides, the domindfdow OPAST algorithm [29]. It can be noticed that the
complexity of Loraf2 isnr2. maximum principal angle error trajectory obtained with TW-

Among the various subspace trackers that we have testB@P! IS about 20 dB lower than those obtained with SW-NIC
SP1 is the only one which really outperformed FAPI (se%”d SW-OPAST in regions where the frequepues are constant.
figure 2-e). However, table V shows that SP1 is the most3) Orth'ono'rmahty error: the orthonormality of the sub-
computationally demanding algorithm. In other respedts, §Pace weighting matri#¥(¢) can be measured by means of
is only suitable for time series data analysis, and was orffje following error criterion:
designed for exponential windows. H

2)gSIiding wir?dow casefigure 3-a shows the maximum 20logyo (IWHTW () —Irllr).
principal angle error trajectoryrw_rapi(t), Obtained with
the TW-FAPI method with parameter$ = 1 (which turns  8SW-NIC is also implemented with = 0.7.
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trajectory obtained with the TW-FAPI method with paramster
8 =1,n =80 and! = 120. Again, the performance of the
subspace estimation collapses beyond- 2600. Although
they are not illustrated here, we observed that the perfocma
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Orthonormality error

FAPI, TW-FAPI, OPAST, Householder PAS]
Karasalo, FST, Loraf2
SP1, SW-OPAST
PAST, NIC
SW-PAST, SW-NIC

r

about -300 dB
about -280 dB
about -240 dB
about -25 dB
about -5 dB

TABLE VI

MAXIMUM ORTHONORMALITY ERROR

(a) Signal to Noise Ratio in dB
(b) Maximum principal angle trajectory obtained with FAPI
(c) Maximum principal angle trajectory obtained with TW-HAP

2) Influence of the ratiov/r: in this section, we focus on
the influence of the ratia:/r onto the subspace estimation.
The SNR is constant, equal ©7 dB.

Figure 5-a shows the mean @&fap1(¢), as a function of the
ration/r, for all n € {r+1,...,80} (with 8 ~ 0.99). It can
be seen that the subspace estimation becomes reliableras soo
asn/r > 7. Figure 5-b shows the mean 6fw_rap1(t), as
a function of the ration/r, for all n € {r +1,...,80} (with

Table VI shows the maximum orthonormality error reacheg _ | gnq7 = 120). Again, it can be seen that the subspace

by the abpv_e mentioned algorithms while tracking the tegkiimation becomes reliable as soon/gs > 7. Although
signal variations. We observed that FAPI, TW-FAPI, OPAS{yey are not illustrated here, we observed that the samerkema
and Householder PAST outperformed all the other algorithms y,a1id for all the above mentioned subspace trackers.
whereas PAST, NIC, and their sliding window versions do 3) Tracking a subspace of wrong dimensiosince the

not guarantee the orthonormality of the subspace weightignensionr of the signal subspace is unknown in many

matrix.

applications, we investigate in this section the perforoean
of the FAPI and TW-FAPI algorithms when applied with a

B. Behavior of the API method regarding the SNR and thgrong subspace dimension The SNR is constant, equal

parametersn and r

to 5.7 dB. The performance of the subspace estimation is

In this section, the test signal is still a sum of= 4 analyzed in terms of the maximum principal angle between
complex sinusoidal sources plus a complex white gaussié}¢ true 4-dimensional signal subspace and the estimated
noise. However, the frequencies of the sinusoids are castalimensional subspace.
equal to the initial values given in figure 1-a.

1) Influence of the SNRin this section, the effect of the for all » € {1,...,20} (with parameters? ~ 0.99 andn =
SNR onto the subspace estimation is investigated. To this ef0). Similarly, figure 5-d shows the mean®fw —rap1(t), as a
the noise part of the test signal was synthesized so that fHaction ofr, forallr € {1,...,20} (with parameters = 120
SNR varies linearly from +30 dB to -30 dB (see figure 4-a)andn = 80). It can be seen that the subspace estimation is

Figure 4-b shows the maximum principal angle error trajeteliable in all cases:

tory obtained with the FAPI method with parameters= 80
and 8 =~ 0.99. It can be seen that the performance of the
subspace estimation collapses beyond- 2600. Figure 4-
a shows that from this time instant the SNR is lower than
—10 dB. Figure 4-c shows the maximum principal angle error

Figure 5-c shows the mean 6f5p:(t), as a function of-,

o if » = 4, the maximum principal angle is very low (as
expected),

o if 7 < 4, the maximum principal angle remains low,
which means that the estimated lower-dimensional sub-
space is nearly included in the true signal subspace,
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« is 7 > 4, the maximum principal angle is even lower*"]

than in the caser =

4, which means that the true[ig

signal subspace is nearly included in the estimated upper-
dimensional subspace. Moreover, it can be noticed t @3]
the maximum principal angle decreases as the dimension

of the estimated subspace increases.

We can conclude that FAPI and TW-FAPI
erroneous subspace dimensian

IX. CONCLUSIONS

[20
are robust to

(21]

(22]

In this paper, several implementations of the API algorithid3]

for subspace tracking were presented, based either on expo-

nential windows or on truncated windows. These algorithns)
reach a linear complexity and guarantee the orthonormalit

of the subspace weighting matrix at each time step. In t
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no. 10, pp. 1377-1387, 2001.

S. Y. Kung, K. I. Diamantaras, and J. S. Taur, “Adaptivéngipal
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] G. Mathew and V. U. Reddy, “Adaptive estimation of eigelospace,”
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Z. Fu and E. M. Dowling, “Conjugate gradient eigenstte tracking
for adaptive spectral estimatiodEEE Trans. Signal Processingol. 43,
no. 5, pp. 1151-1160, May 1995.

B. Yang, “Projection Approximation Subspace TrackinEEE Trans.
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| K. Abed-Meraim, A. Chkeif, and Y. Hua, “Fast orthonormah$T

context of frequency estimation, the method proves able to
track abrupt frequency variations robustly, and outpenfor [26]
many subspace trackers, both in terms of subspace estimatio

and computational complexity. Finally, these subspaaxking

(27]

algorithms can be considered as the starting point of a real- _
] E. C. Real, D. W. Tufts, and J. W. Cooley, “Two algorithnmw fast

time frequency tracker, whose full implementation can ingo

our adaptive version of the ESPRIT algorithm [38].
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