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Blind Separation of Impulsive Alpha-Stable Sources
Using Minimum Dispersion Criterion

Mohamed Sahmoudi1, Karim Abed-Meraim2 and Messaoud Benidir1.

Abstract— This paper introduces a novel Blind Source Separa-
tion (BSS) approach for extracting impulsive signals from their
observed mixtures. The impulsive signals are modeled as real-
valued symmetric alpha-stable(SαS) processes characterized by
infinite second and higher order moments. The proposed ap-
proach uses the minimum dispersion (MD) criterion as a measure
of sparseness and independence of the data. A new whitening pro-
cedure by a normalized covariance matrix is introduced. We show
that the proposed method is robust, so-named for the property
of being insensitive to possible variations in the underlying form
of sampling distribution. Algorithm derivation, and simulation
results are provided to illustrate the good performance of the
proposed approach. The new method has been compared with
three of the most popular BSS algorithms; JADE, EASI and
Restricted Quasi-Maximum Likelihood (RQML).

Index Terms— α-Stable distribution, BSS, Normalized covari-
ance, Minimum dispersion criterion, Robustness.

I. I NTRODUCTION

Heavy-tailed distributions, largely used to model impulsive
signals, assign relatively high probabilities to the occurrence
of large deviations from the median. A common character-
istic property of many heavy-tailed distributions, such as the
α−stable family, is the nonexistence of finite second or higher
order moments. There are several well-known methods for
BSS [1], [2], based in general on second or higher-order
statistics of the observations and so are inadequate to handle
heavy-tailed sources. In that case, fractional lower-order theory
is used instead [7]. Only a limited literature was dedicated
to BSS of impulsive signals. In [12], the RQML approach
is introduced as an extension of the popular Pham’s quasi-
maximum likelihood approach to theα-stable sources case.
Other solutions exist in the literature based on the spectral
measure [6], the normalized statistics [10] and the order statis-
tics [12]. In this paper, we introduce a new method forα-stable
source separation from their observed linear mixtures using the
minimum dispersion criterion [9]. In the finite variance case,
a similar approach for principal components analysis (PCA)
that uses the output variances has been proposed in [3].

A. Why heavy-tailedα-stable distributions

The stable distribution is a very flexible modeling tool in
that it has a parameterα (0 < α ≤ 2), called thecharacteristic
exponent, that controls the heaviness of its tails. A small
positive value ofα indicates severe impulsiveness, while a
value of α close to 2 indicates a more Gaussian type of
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behavior. Stable distributions obey theGeneralized Central
Limit Theorem (GCLT)which states that if the sum of i.i.d
random variables with or without finite variance converges
to a distribution by increasing the number of variables, the
limit distribution must be stable [7]. Thus, non-Gaussian stable
distributions arise as sums of random variables in the same
way as the Gaussian distribution. Another defining feature
of the stable distribution is the so-calledstability property,
which says that the sum of two independent stable random
variables with the same characteristic exponent is again stable
and has the same characteristic exponent. For these reasons,
statisticians [7], economists [8] and other scientists engaged in
a variety of disciplines have embraced alpha-stable processes
as the model of choice for heavy-tailed data.

B. The symmetricα−stable distributions

No closed form exist forα-stable probability density func-
tion (pdf) except for the casesα = 1/2 (Levy distribution),
α = 1 (Cauchy distribution) andα = 2 (Gaussian distribution)
and is best defined by its characteristic function [7].

Definition 1: A random variable (RV) is said to have a sym-
metric alpha-stable distributionSαS(γ, µ) if its characteristic
function is of the formϕ(t) = exp{jµt − γ | t |α} where
0 < α ≤ 2 is the characteristic exponent, which measures
the thickness of the tails of the distribution,µ ∈ IR is the
location parameterand γ(γ > 0) is the dispersionof the
distribution. The dispersion parameterγ determines the spread
of the distribution around its location parameterµ.
The following properties ofSαS(γ, µ) laws will be used next
for BSS ofα-stable signals [7].

Property 1: Let X1 andX2 be independent RVs withXi ∼
SαS(γi, µi), i = 1, 2. Then, X1 + X2 ∼ SαS(γ, µ) with
γ = γ1 + γ2 andµ = µ1 + µ2.

Property 2: Let X ∼ SαS(γ, µ) andh be a real constant.
Then,hX ∼ S(| h |α γ, hµ).

Property 3: If X ∼ SαS(γ, µ) and α 6= 2, then
limt→∞ tαP (| X |> t) = γCα whereCα is a constant that
depends onα only.
A direct consequence of this property is that forSαS RV, pth
moments are finite if and only ifp < α.

Property 4: The fractional lower order moments (FLOMs)
of an α-stable random variable with zero location parameter
and dispersionγ are given byE|X|p = C(p, α)γ

p
α for 0 <

p < α where E(.) denotes the expectation operator and
C(p, α) is a constant depending only onp andα.
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C. Problem Formulation

In many situations of practical interest, one has to consider
m mutually independent signals whosen ≥ m linear combi-
nations are observed. They are formulated asx(t) = As(t),
wheres(t) = [s1(t), · · · , sm(t)]T is the real valuedimpulsive
source vectorand A is a n × m full rank mixing matrix.
The source signalssi(t), i = 1, · · · ,m are assumed to be
mutually independent,SαS(0, γsi) processes with the same
characteristic exponentα 1. The purpose of blind source
separation is to find a separating matrix, i.e., anm×n matrix
B such thatz(t) = Bx(t) is an estimate of the source signals
up to a permutation and scaling factors [1].

II. SOURCESEPARATION

A. Whitening by normalized covariance matrix

The first step consists in whitening the observations (orthog-
onalizing the mixture matrixA). For finite variance signals,
the whitening matrixW is computed as the inverse square root
of the signal covariance matrix. At a first glance, this should
not be applied toα-stable sources. However, we have been
proved in [11] that a properly normalized covariance matrix
converges to a finite matrix with the appropriate structure when
the sample sizeN tends to infinity. Note that for limiting
space, all proofs are omitted in this letter and can be found in
[11].

Theorem 1:Let x
a
= As be a data vector of anα-stable

process mixture and̂R def= 1
N

∑N
t=1 x(t)x(t)T it’s sample

covariance matrix. Then, the normalized covariance matrix of
x defined by

R̂ def=
R̂

Trace(R̂)
(1)

converges asymptotically to the finite matrixADAT , where
D = diag(d1, · · · , dm) with di = γsiPm

j=1 γsj
‖aj‖2 where‖.‖

denotes the Frobenius norm.

Proposition 1: Let R̂ be the normalized covariance matrix
defined above in (1) of the consideredα-stable mixture. Then
the inverse square root matrix of̂R is a data whitening matrix.

B. Minimum Dispersion Criterion

The minimum dispersion (MD)criterion is a common tool
in linear theory of stable processes as the dispersion of a
stable RV plays a role analogous to the variance. In addition,
we should note that the MD criterion is a direct generaliza-
tion of the MMSE criterion in the Gaussian case [7]. Let
z(t)

a
= Bx(t) whereB is unitary,x denotes the whitened data,

i.e, x = Wx and B is a separating matrix to be estimated.
Let us consider the global MD criterion given by the sum of
dispersions of all entries ofz, i.e.

J(B)
a
=

m∑

i=1

γzi (2)

1Note that the proposed method retains its performance under at least mild
violation of the assumption under which it is derived. Indeed, the robustness
against model deviations is assessed next by simulation experiments.

whereγzi denotes the dispersion ofzi(t) the i-th entry ofz(t).
In this letter we prove that the MD criterion defines a contrast
function in the sense that the global minimization of the
objective function given in (2) leads to a separating solution.
The pth order moment of anα-stable RV and its dispersion
are related through only a constant (see property 4). Therefore,
the MD criterion is equivalent to leastlp-norm estimation
where0 < p < α. Although the most widely used contrast
functions for BSS are based on the second and fourth-order
cumulants [1], we believe however that there are good reasons
to extend the class of contrast functions from cumulants to
fractional moments, as we argue next. Mutual information
(MI) is usually chosen to measure the degree of independence.
Because the direct estimation of MI is very difficult, one
can then derive approximative contrast functions, often based
on cumulant expansions of the densities. However, one can
approximate the Shannon entropy (that is closely related to
the MI) using thelp-norm concept ([5]) and hence use it
to approximate the MI. For example, in [4] the author uses
the lp-norm concept to approximate the MI and then to find
the optimal contrast function for exponential power family
of density fp(x) = k1 exp(k2|x|p). Thus we propose the
MD criterion for measuring independence of alpha-stable
distributed data as shown by the following result.

Theorem 2:The minimum dispersion criterion in (2) is a
contrast function under orthogonality constraint for separating
an instantaneous mixture ofSαS sources.

The proposed method requires no or littlea priori knowledge
of the input signals. The dispersion as well as the characteristic
exponentα are estimated according to [7] where the proposed
estimator is proved to be consistent and asymptotically normal.

C. Separation Algorithm

Theorem 2 proves that under orthogonal transform the
signal has minimum dispersion if its entries are mutually
independent. The problem now is to minimize a cost function
under orthogonal constrained. Different approaches exist to
perform this constrained optimization problem. We chose here
to estimateB as a product of Givens rotations according to
B =

∏

#sweeps

∏

1≤p<q≤m

Ωpq(θ) WhereΩpq(θ) is the elemen-

tary Givens rotation defined as orthogonal matrix where all
diagonal elements are 1 except for the two elementsc = cos(θ)
in rows (and columns)p and q. Likewise, all off-diagonal
elements ofΩpq(θ) are 0 except for the two elementss =
sin(θ) and−s at positions(p, q) and(q, p), respectively. The
minimization ofJ(Ωpq(θ)) is done numerically by searching
θ using a fine grid into[0, π/2] 2. The so called MD algorithm
can be summarized as follows:

2Here, we consider[0, π/2] instead of[0, π] becauseΩpq(θ + π/2) is
equal toΩpq(θ) up to a generalized permutation matrix.
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Minimum Dispersion Algorithm

Step 1.Whitening transform.
Step 2.Sweep. For all pairs1 ≤ p < q ≤ m, do

• Compute the Givens angle0 ≤ θ̂pq < π/2 that
maximize the pairwise independence forzp and zq

by minimizing the global dispersionJ(Ωpq(θ)).
• If θ̂pq ≥ θmin

a, rotate the pair accordingly.
• If no pair has been rotated in the previous sweep,

end. Otherwise perform another sweep.

aThe constantθmin is a threshold value that defines the minimum
rotation angle that is significant in estimatingB. In our simulation, it
is set equal toπ/100 the value of the chosen angle grid resolution.

III. PERFORMANCEEVALUATION

Considern = 3 mixtures ofm = 3 i.i.d. impulsive standard
SαS (µ = 0 and γ = 1) source signals. The statistics are
evaluated over 100 Monte Carlo runs and the mixing matrix
as well as the sources are generated randomly at each run. The
performance of our MD method is compared to three widely
used BSS algorithms; JADE [1], EASI [2] and RQML [12].
To measure the quality of source separation, we did use the
generalized rejection level criterion defined below.

A. Generalized mean rejection level (GMRL) criterion

To evaluate the performance of the separation method, we
propose to define the rejection levelIperf as the mean value
of the interference signal dispersion over the desired signal
dispersion. This criterion generalizes the existing one [9]
based on signal powers3 which represents the mean value of
interference to signal ratio. If sourcek is the desired signal,
the related generalized rejection level would be:

Ik
def=

γ(
∑

l 6=k Cklsl)
γ(Ckksk)

=

∑
l 6=k |Ckl|αγl

|Ckk|αγk
(3)

whereγ(x) denotes the dispersion of aSαS RV x. Therefore,
the averaged rejection level is given byIperf = 1

m

∑m
i=1 Ii.

B. Experimental results

In Figure 1, the GMRL of the MD, EASI, JADE and RQML
algorithms versus the characteristic exponent is plotted. The
sample size is set toN = 1000. It appears that the parameter
α is of crucial importance as it has a major influence on the
separation performance. Two important features are observed:
the mean rejection level increases when the sources are very
impulsive (α close to zero) or when they are close to the
Gaussian case (α close to two). In the latter case (i.e.α = 2),
the source separation is not possible. Moreover, we observe
that the MD algorithm outperforms the other existing algo-
rithms for most values ofα. In Figure 2, the simulation study
shows that estimation errors of the characteristic exponentα
of sources distribution have little influence on the performance
of the algorithm. In Figure 3, for our proposed MD algorithm,
two different scenarios lead to similar performance. In the first

3For SαS processes the variance (power) is replaced by the dispersion.

scenario, we consider a mixture of threeα-stable sources with
same characteristic exponentα = 1.5 and in the second one,
we assume wrongly threeSαS sources withα = 1.5 while,
in reality, the sources areSαS with different characteristic
exponentsα1 = 1.5, α2 = 1 (Cauchy pdf) andα3 = 2
(Gaussian pdf). It can be observed that the algorithm can
separate sources from their mixtures even though we deviate
from the assumptions under which it is derived. Consequently,
the MD algorithm is robust to possible sources modelization
errors. Figure 4 shows the performance realized by each of the
four BSS algorithms as a function of the sample sizeN for
α = 1.5. One can observe that good performance is reached by
the MD algorithm for relatively small/medium sample sizes.
This figure demonstrates also that EASI fails to separateα-
stable signals and that JADE is sub-optimal in this context.
This is due to the fact that EASI and JADE are not specifi-
cally designed for heavy-tailed signals. Moreover, we observe
a certain performance gain in favor of the MD algorithm
compared to RQML. This is due to the fact that truncating
observations, in RQML procedure, created by large source
signal values is not optimal because these observations must
be very informative. In the sixth experiment, we consider the
case where the observation is corrupted by an additive white
gaussian noise. The GMRL versus noise power is depicted
in Figure 5 forα = 1.5 and N = 1000. In this experiment,
the noise levelσ2 is varied between 0 dB and -30 dB. As
can be seen, the performance degrades significantly when the
noise power is high. This might be explained by the fact that
the theory does not take into consideration additive noise.
Improving robustness against noise is still an open problem
under investigation. It can be seen from Figure 6, however,
that the proposed MD method has reliable performance and
outperforms RQML algorithm in the low or moderate noise
power situation.

IV. CONCLUSION

We have introduced a two step procedure forα-stable source
separation. A first whitening step allows to orthogonalize the
mixing matrix using a normalized covariance matrix of the
observation. In the second step, the remaining orthogonal ma-
trix is estimated by minimizing a global dispersion criterion.
The proposed method is robust to modelization errors of the
sources pdf. Numerical examples are presented to illustrate the
effectiveness of the proposed method that is shown to perform
better than the RQLM method. Moreover, they confirm that
existing BSS methods, which are not designed specifically for
impulsive signals, fail to provide good separation quality.
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(a) Fig. 2 GMRL vs.α for N = 1000.
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(b) Fig. 3 GMRL vs. the estimation
error ∆α.
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(d) Fig. 5 GMRL vs. sample size N
for α = 1.5.
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(e) Fig. 6 GMRL vs. the additive
noise power forα = 1.5.
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