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Abstract

In this article, we study a particular example of general random tessellation, the

dead leaves model. This model, first studied by the Mathematical Morphology

school, is defined as a sequential superimposition of random closed sets,

and provides the natural tool to study the occlusion phenomenon, essential

ingredient in the formation of visual images. We generalize results from G.

Matheron, and in particular we compute the probability for n compact sets to

be included in visible parts. This result characterizes the distribution of the

boundary of the dead leaves tessellation.
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1. Introduction

The dead leaves model has been introduced by G. Matheron in [18]. This model

results from sequential superimposition of random sets. As such, it provides the natural

tool for studying the non-linear occlusion phenomena, of great importance in image

modeling and processing. However, to the best of our knowledge, this model has not

been systematically investigated, and even its mere definition lacks some precision.

Our purpose in this paper is twofold: first to provide a rigorous definition of the model

as a random tessellation, second to give new proofs or extensions of Matheron’s results

in the framework of Palm calculus.

A first motivation to study this model comes from applications. Amongst existing

stochastic models for natural images, the dead leaves is the only one whose definition

agrees with their physical formation. Several recent studies have demonstrated the

ability of specific dead leaves models to reproduce most known statistics of natural

images, see [23], [1], [16]. The model has also been proposed as a tool to resample

random fields for texture synthesis, see [10]. Other examples of application come from

material sciences, see [14] and [8].

As a second motivation, let us stress that the dead leaves model provides non-trivial

examples of general random tessellations, in the sense that their cells are general closed

sets. In particular, they are not necessarily polygonal, connected or convex, as it is

the case for the most popular tessellation models, such a Poisson flats, Voronoi or

Delaunay tessellations. Note that non-convex and non-polygonal cells are encountered

in the case of Johnson-Mehl tessellation (see e.g. [26]), but that there are relatively few

such examples. Therefore, there are few studies of “general” tessellations, even though

classical formulae originally proved in the convex and polygonal case have been shown

to hold in more general contexts, see [25], [28] and [6].

In Section 2 we first recall some facts on random closed sets and slightly reformulate

[21] and [25] to define random tessellations and typical cell distributions. In Section

3 we define the dead leaves model as a random tessellation obtained from an initial
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Poisson process, and give some of its elementary properties. Then, in Section 4, we

generalize results from G. Matheron. In order to do so in a rigorous way, we make

use of point processes theory through the systematic use of Palm calculus. We first

give the probability for n compact sets to be included in n different visible parts, a

result which completely characterizes the distribution of the boundary of our model

as a random closed set. Then we compute the distribution of “objects” that remain

completely visible. Eventually, we reobtain in the Palm calculus framework a nice

result from G. Matheron giving the length distribution of the intersection of objects

with a line of fixed direction, stating in particular that its expectation is divided by

two as a result of occlusion.

Previous work. The dead leaves model was introduced in [18], an internal note

written in an informal style, but containing all basic ideas. The model is defined as

the superimposition of infinitesimal boolean models, and formula for the probability

of a compact set to be included in a visible part and for the distribution of completely

visible parts, among other things, are derived. Most of these definitions and results

are stated in the book by J. Serra [24]. D. Jeulin further studied this model in [13],

still with the same infinitesimal formalism, and gave an explicit formula for the joint

probability of two compact sets to be included in visible parts. In [12] he generalizes

the model to the case of random functions and extend to this setting formulae for the

distribution of visible parts and for inclusion probabilities. R. Cowan and A. Tsang, in

a very interesting paper [5], make use of mean value formulae for tessellations to derive

the expectations of various quantities such as the number of connected components of

visible parts or the length of their boundaries per surface unit.
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2. Basic definitions

2.1. Closed Sets and Tessellations

Let F , G and K be respectively the sets of all closed, open and compact sets of Rd,

d ≥ 1. Let us denote for any A ⊂ Rd,

FA = {F ∈ F : F ∩A = ∅} and FA = {F ∈ F : F ∩A 6= ∅}.

The Borel σ-field BF on F is generated by the basis of open sets {FK ,K ∈ K;FG, G ∈

G}. Borel sets are defined on G and K in a way similar to those of F , see [19]. A

random closed set (RACS) of Rd is a measurable function from a probability space

(Ω,S, P ) into (F ,BF ). For any sets A and B, we will denote

A	B = {x ∈ Rd : x + B̌ ⊂ A} and A⊕B = {x + y : x ∈ A, y ∈ B},

where B̌ = {−x, x ∈ B}. A	 B̌ is called the erosion of A by B, and A⊕ B̌ the dilation

of A by B. Measurability properties of these operators are established in [19].

A σ-finite measure on F ′ := F\{∅} (endowed with its Borel σ-algebra BF ′) is a

measure taking finite values on FK , for all K ∈ K, see [19]. We denote by NF ′ the set

of σ-finite counting measures on (F ′,BF ′). For all M ∈ NF ′ , we write M =
∑

i δFi
,

where δFi is the unit mass measure at point Fi. The boundary of M is defined as

∂M =
⋃

i ∂Fi, where ∂Fi denotes the topological boundary of Fi. A point process on

F ′ is a measurable function from a probabilistic space to (NF ′ ,BNF′ ), where BNF′ is

the usual σ-field on NF ′ , see e.g. [7].

Following Stoyan [25], a tessellation of Rd is defined as follows.

Definition 1. Let T =
∑

i δFi ∈ NF ′ . We say that T is a tessellation of Rd if

(i)
⋃

i Fi = Rd.

(ii) for all i 6= j, IntFi ∩ Fj = ∅, where IntF denotes the interior of F ,
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or equivalently if {(IntFi)i, ∂T} is a partition of Rd.

Note that T ∈ NF ′ implies that the number of cells Fis hitting a compact set is

finite. This condition is added in the original definition in [25], where the Fis are

marks of a point process N =
∑

i δxi
on Rd, where xi is called the centroid of Fi. The

centroids are unimportant for the definition of a tessellation but they are quite useful

for defining the typical cell distribution as we will recall below.

Let T be the set of all tessellations inNF ′ . Expressing assertions (i) and (ii) as limits

of the elementary sets operations (F, F ′) 7→ F ∪ F ′, (F, F ′) → F ∩ F ′ and F → ∂F ,

whose measurability may be found in [19, Section 1-2], one easily gets that T ∈ BNF′ .

A random tessellation of Rd is then defined as a point process T on F ′, such that T ∈ T

almost surely (a.s.). Classical examples of random tessellations (see the references in

[26, Chapter 10] and [22]) include Poisson hyperplanes processes, Delaunay, Voronoi

and Johnson-Mehl tessellations. A standard approach (see e.g. [2], [4], [20], [21] or

[26]), which applies in these examples, is to define ∂T directly as a RACS without

considering the underlying random tessellation. However, it is not always possible to

recover the Fi’s from ∂T (they may not be connected, see [6] and Remark 2 below for

a precise example).

2.2. Typical Cell distribution

In [21] a typical cell is defined by using the Palm distribution of a simple marked

point process N =
∑

i δxi,Fi
of points in Rn with marks in F ′, stationary with respect

to shifts N 7→
∑

δxi−x,Fi−x, x ∈ Rd. More precisely, let us denote by µ the intensity of

N , which we assume to be finite, and by P0
N its Palm distribution. Let x0 be the point

nearest to the origin and F0 be its corresponding cell. Then the typical cell distribution

is defined on the σ-field I of all translation-invariant events in BF ′ by χ 7→ P0
N (F0 ∈ χ),

χ ∈ I. A result in [21], proven in the case of tessellations whose cells are bounded

polytopes, can be easily extended as follows.
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Proposition 1. Let B be a Borel set in Rd such that

0 < ν(Fi ⊕B) < +∞ for all i a.s., (1)

where ν is the Lebesgue measure on Rn. Then µ = E
∑

i
11(0∈Fi⊕B)

ν(Fi⊕B) and

P0
N (F0 ∈ χ) =

1
µ

E
∑

i

11(0 ∈ Fi ⊕B)11(Fi ∈ χ)
ν(Fi ⊕B)

, χ ∈ I.

When starting from a stationary point process M =
∑

i δFi
on F ′, a marked point

process N can be obtained by constructing points xi = ∆(Fi), where ∆ is such that

∆(Fi − x) = ∆(Fi)− x. Classical examples for ∆ include the set-centroid, the median

point or the extremal point in a given direction. Observe that, under Condition (1), it

is always possible to define such a set-centroid by taking for each coordinate the median

of the marginal measure of ν restricted to Fi ⊕ B; for instance, the first coordinate is

then defined as the smallest x such that ν((Fi ⊕B)∩ (−∞, x]×Rd−1) ≥ ν(Fi ⊕B)/2.

As noticed by [21], the typical cell distribution should not depend on the choice of the

xis, which is insured by Proposition 1 provided that one can find a Borel set B for

which (1) is fulfilled. This will be the case for the dead leaves model considered below.

In order to define the typical cell of a tessellation, assume that

 0 < ν(Fi) < ∞

ν(∂Fi) = 0
for all i a.s. (2)

Note that the first condition above is Condition (1) with B = {0}. The second condition

enables to define, almost everywhere, F{x} as the cell to which the point x belongs.

By stationarity of N , F{0} is defined a.s. Applying Proposition 1, we then get

µ = E
1

ν(F{0})
and P0

N (F0 ∈ χ) :=
1
µ

E
11(F{0} ∈ χ)

ν(F{0})
, χ ∈ I. (3)
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We thus obtain the formula of the typical cell distribution derived in [20], [21] (when the

Fi’s are bounded polytopes) and [4] (when the Fi’s are uniformly bounded polytopes).

We end this section with a limit theorem. Let Bn = B(0, rn) be the ball centered

at 0 of radius rn where rn →∞. Let (An)n∈N be any increasing sequence of compact

convex sets such that for all n, Bn ⊂ An. The individual ergodic theorem (Proposition

10.2.II of [7]) easily yields the following.

Proposition 2. If N is ergodic and satisfies (2), then, for all χ ∈ I,

lim
n

∑
i 11(Fi ∈ χ)ν(Fi∩An)

ν(Fi)∑
i

ν(Fi∩An)
ν(Fi)

= P0
N (F0 ∈ χ) a.s. (4)

Equation (4) is a weighted average, where each Fi has a weight equal to its proportion

included in An. From a statistical point of view, (4) can be used for deriving a strongly

consistent estimator of P0
N (F0 ∈ χ) for a given χ ∈ I. Under stronger hypothesis on

the cells, there may be different sequences having the same limit as in (4). For example,

if the cells are uniformly bounded (as in [4]), Relation (4) implies, a.s.,

P0
N (F0 ∈ χ) = lim

n

∑
i 11(Fi ∈ χ)11(Fi ⊂ An)∑

i 11(Fi ⊂ An)
= lim

n

∑
i 11(Fi ∈ χ)11(Fi ∩An 6= ∅)∑

i 11(Fi ∩An 6= ∅)
.

Sufficient conditions under which these equalities hold are studied in [6].

3. The dead leaves model

3.1. Definition

The dead leaves model is obtained through sequential superimposition of random

objects falling on Rd. Let
∑

i∈N δxi,ti
be a homogeneous Poisson point process on the

half-space Rd×(−∞, 0] with intensity one. Let P be a probability measure on (F ,BF ),

and (Xi)i∈N, be i.i.d. random variables on F with distribution P and independent of

the Poisson point process above. Equivalently, Φ =
∑

i δxi,ti,Xi
is a Poisson point

process on Rd × (−∞, 0]×F with intensity measure ν(dx)dtP (dX).
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We write (Ω,S, P) for the probabilistic space on which Φ is defined and E for the

expectation with respect to P. From now on, X will always denote a random variable

on F with distribution P independent of all other variables, and E will denote the

expectation with respect to P .

Definition 2. For all i ∈ N, the random closed set xi + Xi is called a leaf and

Vi = (xi + Xi) \

 ⋃
tj∈(ti,0)

(xj + IntXj)

 (5)

is called a visible part.

From now on we assume that X satisfies the following three conditions:

(C-1) For all K ∈ K, Eν(X ⊕K) < +∞,

(C-2) There exists a ball B with strictly positive radius, such that Eν(X 	B) > 0.

(C-3) X is a regular closed set, i.e. X is the closure of its interior, P -a.s.

Proposition 3. We denote by M the point process on F ′ obtained by removing all

sets with empty interior in the collection {Vi}, that is,

M =
∑

i

11{IntVi 6= ∅} δVi
. (6)

Then M is a random tessellation of Rd. Moreover N =
∑

i 11{IntVi 6= ∅} δxi,Vi
is

stationary, mixing and has finite intensity.

Remark 1. The condition IntVi 6= ∅ in the definitions of M and N is adopted for

convenience as it eliminates visible parts with zero d-dimensional Lebesgue measure.

The question arises whether M ′ :=
∑

i 11{Vi 6= ∅} δVi
also verifies such property. For

simple examples of X, it is easily shown that M = M ′ a.s. but we do not know

whether this equality is true under the general assumptions (C-1)-(C-3). In any case,

because (5) implies that ∂Vi ⊂ ∪tj>ti∂{IntVj}, we always have ∂M = ∂M ′.



The dead leaves model 9

In order to prove Proposition 3 we will make use of the following two lemmas. The

first one, which is easy to prove by referring to the definition of the intensity of the

Poisson point process Φ, will be repeatedly needed in the sequel.

Lemma 1. Let K be a bounded Borel set, −∞ < s1 < s2 < 0 and define

ΦK(s1, s2) :=
∑

i

11 {ti ⊂ (s1, s2] and K ⊂ xi + Xi} ,

ΦK(s1, s2) :=
∑

i

11 {ti ⊂ (s1, s2] and K ∩ xi + Xi 6= ∅} .

ΦK(t1, t2) and ΦK(t1, t2) are Poisson random variables with respective means (t2 −

t1)Eν(X	Ǩ) and (t2 − t1)Eν(X⊕Ǩ).

Lemma 2. If K is a Borel set of Rd such that Eν(X 	 Ǩ) > 0, then K is almost

surely covered by some leaf xi + Xi. As a consequence, any bounded set is a.s. covered

by a finite number of leaves.

Proof. Let us fix t < 0. Using Lemma 1, the probability P(ΦK(t, 0) = 0) that none

of the leaves xi + Xi with t < ti < 0 satisfies K ⊂ xi + Xi is exp(tEν(X 	 Ǩ)), which

yields the first assertion. Now let B be a ball such that Condition (C-2) is satisfied,

that is Eν(X 	 B) > 0. Since any bounded set K is covered by a finite number of

balls with the same radius as B, it also follows that K is covered by ∪ti>T (xi + Xi)

for some T < 0.

Proof of Proposition 3. Let us now show that, P-a.s., M ∈ NF ′ . In fact, we show

that, P-a.s., M ′ :=
∑

i 11(Vi 6= ∅)δVi
∈ NF ′ (which implies M ∈ NF ′), that is, that

only a finite number of visible parts Vi may intersect a given compact set K. By

Lemma 2, P-a.s., there exists a negative T such that K is covered by leaves xi + Xi

satisfying ti > T . It follows that the visible parts intersecting K correspond to leaves

falling after time T . The number of such leaves is thus ΦK(T, 0), which is finite P-

a.s. by Lemma 1 with Condition (C-1). To show that M is a random tessellation,

we now verify that it satisfies Conditions (i) and (ii) of Definition 1. Let T < 0.
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Since ∪ti>T Vi ⊆ ∪ti>T (xi + Xi) and since a point in xi + Xi either belongs to Vi or

to xj + IntXj for some tj > ti, we have ∪ti>T (xi + Xi) = ∪ti>T Vi. Therefore by

Lemma 2 we get, P-a.s., ∪iVi = Rd. We observe from Condition (C-3) that IntVi =

(xi + IntXi) ∩
{
∩tj>ti(xj + Xj)c

}
. It follows that IntVi = ∅ if and only if Vi ⊂

∪tj>ti
(xj + Xj) = ∪tj>ti

Vj . Indeed, the “if” part is obvious, while the “only if”

part is obtained by observing that xi + IntXi ⊆ ∩tj>ti
(xj + Xj) implies the same

inclusion for xi + IntXi = xi + Xi ⊇ Vi. Finally, consider a realization of Φ such that

M ′ ∈ NF ′ and ∪iVi = Rd, which happens P-a.s., as we have shown above. Pick any

point x ∈ Rd. Since M ′ ∈ NF ′ , there exists a positive and finite number of indices

i such that x ∈ Vi and hence one i such that x ∈ Vi and x /∈ Vj for all tj > ti. By

the above characterization, this implies IntVi 6= ∅. Hence ∪{Vi : IntVi 6= ∅} = Rd,

that is, M satisfies Condition (i) of Definition 1. Condition (ii) of Definition 1 is easily

obtained from (5) and (C-3) by considering the cases tj > ti and ti > tj successively.

Next we show stationarity and mixing property. Define

Π :
∑

i

δxi,ti,Xi 7→
∑

i

11(IntVi 6= ∅)δxi,Vi . (7)

Recall that P denotes the distribution of the initial (homogeneous) Poisson point

process Φ, so that PΠ = P ◦ Π−1 is the distribution of N . Further observe that

translations on the xi’s correspond to translations on the Vi’s through Π. It follows that

the stationarity and the mixing property of N (respect to shifts N →
∑

δxi−x,Vi−x,

x ∈ Rd) are inherited from Φ.

It remains to prove that the intensity µ of N is finite. For all T < 0, let NT :=∑
δxi,Vi11(ti > T, IntVi 6= ∅). Let µT denote the intensity of NT ; we have µT ≤

E
∑

11(xi ∈ [0, 1]n, ti > T ) ≤ −T , hence µT is finite. By monotone convergence, since

µT is non-decreasing as T decreases to −∞, µ = limT→−∞ µT . Below we provide a

uniform upper bound for µT , which will thus apply to µ and conclude the proof. Using
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Proposition 1 with B given by (C-2), we get

µT = E
∑

i

11(0 ∈ Vi ⊕B)
ν(Vi ⊕B)

11(ti > T, IntVi 6= ∅)

≤ ν(B)−1 E
∑

i

11 {0 ∈ xi + Xi ⊕B, 0 /∈ ∪ti>t(xi + IntXi 	B)} ,

where the inequality follows both from ν(Vi ⊕ B) ≥ ν(B), and Vi ⊕ B ⊂ (xi + Xi ⊕

B)\ ∪ti>t (xi + IntXi 	B), which in turn follows from (5) and standard properties of

morphological operations. Now, Campbell’s theorem and Slivnyak’s theorem yield

µT ≤ 1
ν(B)

∫
[T,0]×Rd×F

11(0 ∈ x + X ⊕B)P(0 /∈ ∪ti>t{xi + IntXi 	B})dtν(dx)P (dX).

Noticing that ∪ti>t(xi + IntXi 	B) is a boolean model with intensity t, we thus get

µT ≤ 1
ν(B)

Eν(X ⊕B)
∫ 0

T

exp(tEν(X 	B))dt ≤ 1
ν(B)

Eν(X ⊕B)
Eν(X 	B)

,

which is finite under (C-1) and (C-2).

In the definition of M , we assume that
∑

i δxi,ti
has intensity one. However, rescaling

the xi’s is equivalent, up to a global rescaling of the model, to a rescaling of X and any

order preserving modification of the ti’s is unimportant as seen from the definition.

Definition 3. The point process M defined in Proposition 3 is called the dead leaves

tessellation associated with the RACS X.

Remark 2. The dead leaves model clearly shows the necessity to define a tessellation

through its cells, and not only its boundary. Indeed, visible parts defined by (5) are

not necessarily connected, see Figure 2.

3.2. Perfect simulation

The term “dead leaves model” originates from a more natural definition which

consists in putting each new leaf above the previous ones and then considering the
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stationary distribution of this Markov process. Let K be a compact set of R2. A

classical “coupling from the past” argument enables perfect simulation of the stationary

distribution restricted to K, by putting each new leaf below the already fallen leaves

until K is completely covered (see the illustrating web applet [15]). This elegant

argument was first introduced for the dead leaves model in [27]. In Figures 1 and 2 we

show simulations of the model computed this way. To visualize the model each grain

is allocated a random gray level.

Figure 1: on the left, simulation of a dead leaves model, where the grain X0 is a disk with
constant radius. On the right, simulation of a dead leaves model, where the grain X0 is a disk
with a uniformly distributed radius.

Figure 2: simulations of dead leaves models. Left: the grain X0 is a rectangle with a direction
uniformly distributed in [0, π]. Right: the grain is a more complicated shape, the distribution
of its size being uniform.
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3.3. Regularity properties of visible parts

Some almost sure regularity results about visible parts are a consequence of the

following remark. From Lemma 1, a visible part Vi is P-a.s. equal to a leaf xi + Xi to

which a finite number of other leaves have been removed. Now remark that if A is a

closed set and B an open set, then ∂ (A \B) = (∂A \B) ∪ (∂B ∩A). It follows that

∂Vi is a finite union of sets, each of which is included in xj + ∂Xj for some tj ≥ ti so

that some regularity properties on ∂X are inherited by the ∂Vi’s. Note however that

possible convexity of the grain X is not inherited by the Vi’s, see Figure 1.

Proposition 4. We have ν(∂M) = 0 P-a.s. if and only if ν(∂X) = 0 P-a.s.

Proof. The discussion above implies that ν(∂Vi) ≤
∑

tj≥ti
ν(∂Xi) P-a.s. Since

∂M = ∪i∂Vi, ν(∂X) = 0 P-a.s. implies ν(∂M) = 0 P-a.s.

Now, ν(∂M) = 0 P-a.s. implies ν(∂Vi) = 0 for all i and in particular for all cells

such that Vi = xi+Xi (the so-called relief cells studied in the forthcoming Section 4.2).

We will see in Remark 4 below that this in turn implies ν(∂X) = 0 P-a.s.

If IntVi 6= ∅ then ν(Vi) > 0. Besides, Vi ⊂ xi + Xi is bounded P-a.s. by (C-1). If in

addition ν(∂X) = 0 P -a.s., then we are in the framework of Section 2.2 for tessellations.

When ν(∂X) = 0, one says that X is ν-regular, a property that neither implies nor is

implied by (C-3). It is easy to find a set X which is ν-regular and not closed regular,

for instance a set containing isolated points. To construct a closed regular set which is

not ν-regular, one can proceed as follows (for d ≥ 2). Let ν̃ be the (d− 1)-dimensional

Lebesgue measure on the hyperplane {x = (x1, . . . , xd) : x1 = 1/2}. Then there exists

a homeomorphism h : [0, 1]d → [0, 1]d such that ν + ν̃ = ν ◦ h, see [9]. It follows that

X := h([0, 1/2]d) is not ν-regular although it is closed regular.
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4. Some characteristics of the dead leaves tessellation

4.1. Inclusion probabilities and boundary distribution

The main practical result from the original paper by Matheron introducing the dead

leaves model [18] is concerned with a functional, defined on compact sets of the plane,

equal to the probability that a given compact set is included in a visible part of the

model. It is shown that, for a non-empty K ∈ K,

P(K ⊂ IntVi for some i ∈ N) =
Eν(IntX	Ǩ)
Eν(X⊕Ǩ)

. (8)

Considering simple examples of possible K’s such as bipoints or segments leads to

valuable geometric information on the model.

In what follows, we generalize this result by taking interest in the probability that

n compact sets are included in n distinct visible parts. We define

Q(n)(K1, . . . ,Kn) = P(K1 ⊂ IntVi1 , . . . ,Kn ⊂ IntVin
for some ti1 < · · · < tin

< 0).

Proposition 5. Let us denote

F (n)(K1, . . . ,Kn) = Eν(IntX 	 Ǩ1)
n∏

j=2

Eν
(
(IntX 	 Ǩj) ∩ (X ⊕ Ǩj−1)

c)
, (9)

and

G(n)(K1, . . . ,Kn) =
n∏

j=1

Eν
(
X ⊕ Ǩj

)
, (10)

where, for all j = 1, . . . , n,

Kj =
j⋃

k=1

Kk. (11)

Then

Q(n)(K1, . . . ,Kn) =
F (n)(K1, . . . ,Kn)
G(n)(K1, . . . ,Kn)

. (12)

Remark 3. Note that (C-2) implies Eν(X) > 0 and thus that G(n)(K1, . . . ,Kn) does
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not vanish for non-empty compact sets.

Proof. Within this proof section, we fix n non-empty compact sets K1, . . . ,Kn and

we write Q(n) for Q(n)(K1, . . . ,Kn). Summing over disjoint events we have that

Q(n) = E

∑
11(ti1 < · · · < tin

< 0)
n∏

j=1

11(Kj ⊂ IntVij
)

 , (13)

where the sum is taken over all n-tuples of points in Φ. First note that only n-tuples

of distinct points may be considered in this sum and that, from the definition of visible

parts in (5) and (C-3), the summand in this equation may be written as

11(ti1 < · · · < tin < 0)
n∏

j=1

11(Kj ⊂ (xij + IntXij ))
∏

ti>tij

11(Kj ∩ (xi + Xi) = ∅). (14)

In the simplest case n = 1, this amounts to say that Q(1) is the probability that there

exists a leaf Xi such that K1 is included in IntXi and is not hit by subsequent leaves.

We will now apply the Campbell Formula to compute this expectation, and therefore

need the following notation. Let E := R2 × (−∞, 0] × F . We write N (n) (N for

n = 1) for the space of σ-finite counting measures on En. For all n ≥ 1, we define the

point process on En, Φ(n) =
∑

i1,...,in
δzi1 ,...,zin

, where the sum is taken over all indices

(i1, . . . , in) such that zi1 , . . . , zin
are distinct points of Φ. We define a function f from

En × N (n) to R so that (14) reads f({zij
}n

j=1,Φ
(n)). Applying the refined Campbell

Theorem (see [7]) to compute the expectation in (13), we get

Q(n) =
∫

Z∈En

∫
φ∈N (n)

f(Z, φ) PZ(dφ)
n∏

j=1

µΦ(dz̃j),

where Z = {z̃j}n
j=1, µΦ is the intensity measure of Φ and PZ is the Palm distribution

of the process Φ(n) at Z. Applying the generalized Slivnyak Theorem (see [26]) gives

Q(n) =
∫

Z∈En

E
[
f(Z, (Φ + δz̃1 + · · ·+ δz̃n

)(n))
] n∏

j=1

µΦ(dz̃j), (15)
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where, as usual, E is the expectation associated to Φ. Writing z̃j = (x̃j , t̃j , X̃j) for

j = 1, . . . , n, with t̃1 < · · · < t̃n < 0, by definition of f , we have

f(Z, (Φ + δz̃1 + · · ·+ δz̃n
)(n)) = f(Z,Φ(n)) = n∏

j=1

11(Kj ⊂ x̃j + IntX̃j)

  n∏
j=2

11(Kj−1 ∩ (x̃j + X̃j) = ∅)


n−1∏

j=1

∏
ti∈(t̃j ,t̃j+1]

11(Kj ∩ (xi + Xi) = ∅)

 ∏
tk∈(t̃n,0]

11(Kn ∩ (xk + Xk) = ∅), (16)

with Kj as defined in (11). The expectation in (15) is computed as follows. Since Φ

is a Poisson process, the last line of (16) can be written as a product of independent

terms whose expectations can be computed using that, at fixed s < t ≤ 0, and for K

compact,

P(K ∩ (xi + Xi) = ∅ for all ti ∈ (s, t]) = exp
(
(s− t)Eν(X ⊕ Ǩ)

)
(see Lemma 1). Next, integrating with respect to 11(t̃1 < · · · < t̃n < 0)dt̃1 . . . dt̃n and

using a change of variable uj = t̃j − t̃j+1, for j = 1, . . . , n− 1, we obtain

Q(n) =
n∏

j=1

Eν
(
X ⊕ Ǩj

)−1

∫
(R2×F)n

 n∏
j=1

11(Kj ⊂ x̃j + IntX̃j)

  n∏
j=2

11(Kj−1 ∩ (x̃j + X̃j) = ∅)

 n∏
j=1

(dx̃jP (dX̃j)).

The first term of the right-hand side of the previous equation is (G(n))−1, and the term

of the second line writes

n∏
j=1

(∫
R2×F

11(Kj ⊂ x̃ + IntX̃)11(Kj−1 ∩ (x̃ + X̃) = ∅)dx̃P (dX̃)
)

,
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with the convention K0 = ∅. Now, for two compact sets A and B, we have

∫
11(A ⊂ (x + IntX))11(B ∩ (x + X) = ∅)ν(dx)P (dX) = Eν((IntX 	 Ǎ) ∩ (X ⊕ B̌)c),

which, along with the last equations, yields F (n) and then (12).

For n = 1, we get the original result of Matheron, (8), and the case n = 2 was

treated in [13]. Note that from the Q(n)’s, we can compute the probability

P(K1 ⊂ IntVi1 , . . . ,Kn ⊂ IntVin
for some i1, . . . , in ∈ N)

and thus the probability for n connected compact sets K1, . . . ,Kn to avoid the bound-

ary of the dead leaves tessellation. For n = 2 for instance, this is

P((K1 ∪K2) ∩ ∂M = ∅) = Q(2)(K1,K2) + Q(2)(K2,K1) + Q(1)(K1 ∪K2).

Moreover, it is easily seen that if we consider the random field obtained by indepen-

dently coloring each visible part, then Proposition 5 enables to compute the finite

dimensional distributions of this field. This is a useful result in the context of image

modeling, see [11]. Next, we show that the knowledge of Q(n) for all n characterizes

the distribution of ∂M in (F ,BF ).

Proposition 6. The distribution of the boundary ∂M is uniquely determined by the

functionals Q(n), n ∈ N.

Proof. The distribution of ∂M is characterized by its capacity functional defined for

every compact set K by P(F ∩K = ∅), see [19]. Let K ∈ K, let rn > 0 be a sequence

converging to 0, and for each n, let {x(n)
i }i=1,...,Nn

be finite sequences in K such that

K ⊂ Cn = ∪iB(xn
i , rn), where B(x, r) is the (closed) ball centered at x with radius r.

Note that since each Cn is a finite union of connected compact sets, the knowledge of

the Q(i), i ∈ N, uniquely determines P(Cn ∩ ∂M = ∅). Now since Cn ↓ K, we have

that FCn ↑ FK , and thus that P(Cn ∩ ∂M = ∅) ↑ P(K ∩ ∂M = ∅).
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4.2. Typical relief cells

In this section, we take interest in the distribution of cells that remain completely

visible. This problem was first addressed in [18], see also [17], [24] and [12].

Definition 4. A cell Vi is a relief cell if (xi + Xi) = Vi. Denote by Nr =
∑

i 11(Vi =

(xi + Xi))δxi,Vi the point process of relief cells.

As in the proof of Proposition 3, one can show that Nr is stationary and mixing.

From Condition (C-3) if Vi = (xi +Xi) then IntVi 6= ∅. It follows that Nr is a thinning

of N and since N has finite intensity, so has Nr.

Proposition 7. The typical relief cell distribution is absolutely continuous with re-

spect to P with Radon-Nikodym derivative F 7→
(
µrEν(IntX ⊕ F̌ )

)−1
, where µr :=∫

F

P (dF )
Eν(IntX ⊕ F̌ )

is the intensity of Nr.

Remark 4. As a consequence of this Proposition, the typical relief cell distribution

and the leaf distribution P are equivalent measures on I. This remark completes the

proof of the “only if” part of Proposition 4.

Proof. Nr is a simple point process with finite intensity. We denote by P0
Nr

the

Palm distribution of Nr. Writing Nr =
∑

δxr
i ,V r

i
, we have, for all χ ∈ I,

P0
Nr

(V r
0 ∈ χ) =

1
µr

E
∑

i

11(V r
i ∈ χ)11(xr

i ∈ [0, 1]2)

=
1
µr

E
∑

i

11(Vi ∈ χ, xi ∈ [0, 1]2, (xi + Xi) ∩
⋃

tj∈(ti,0]

(xj + IntXj) = ∅) .

From Slivnyak’s theorem and Campbell’s formula,

P0
Nr

(V r
0 ∈ χ) =

1
µr

∫
R2×R−×χ

P((x + F ) ∩
⋃

tj∈(t,0]

(xj + IntXj) = ∅) ν(dx)dtP (dF )

=
1
µr

∫
R−×χ

exp(tEν(IntX ⊕ F̌ )) dtP (dF )

=
1
µr

∫
χ

[
Eν(IntX ⊕ F̌ )

]−1
P (dF ),
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where the second equality follows from Lemma 1. Taking χ = F ′, we also find the

announced formula for the intensity.

For example, we can compute the area distribution of a typical relief cell. For χs =

{F ∈ F ′ : ν(F ) > s}, we find E0
Nr

(ν(Xr
0 )) = µ−1

r

∫
F ′ ν(F )[Eν(IntX ⊕ F̌ )]−1 P (dF ).

Remark 5. For d = 2, if X is convex and isotropic a.s., we obtain the original result

of Matheron by applying the Steiner Formula to compute µr. Let l(K) denote the

length of ∂K, for K convex, we have µr = E
[
(ν(X) + 2

π l(X)El(X) + Eν(X))−1
]
.

4.3. Cells intersected with a line

We now take interest in the intersection between the dead leaves model and a fixed

line D. In this section we take d ≥ 2 and, in addition to (C-1)-(C-3), we assume that

(C-4) ν(∂X) = 0 a.s. and, for any line D′, D′ ∩ ∂X is either empty, finite or has

positive νD′ measure a.s.,

where νD′ is the one-dimensional Lebesgue measure on D′. This assumption is for

instance verified if X is a finite union of convex sets, a.s.

We will compute the Palm distribution of the point process ∂M ∩D and, in the case

where X is convex, prove a result from [18] in the Palm calculus framework.

Lemma 3. ∂M ∩D is a point process on D.

Proof. Since ∂M is a locally finite union of sets ∂Vis a.s. and since, for all i, ∂Vi

is included in a finite union of sets (xj + ∂Xj), it is sufficient to show, that, a.s.,

for any j, (xj + ∂Xj) ∩ D is a finite or empty set. Let us suppose that this does

not hold. By (C-4), it implies that with positive probability, there exists j such that

νD(xj +∂Xj) > 0. Thus EνD{∪j(xj +∂Xj)} > 0. Without loss of generality, we let D

be the first coordinate axis. By Fubini’s theorem and translation invariance, we obtain

Eν

⋃
j

(xj + ∂Xj)

 =
∫
y∈Rd−1

EνDy

⋃
j

(xj + ∂Xj)

 dy > 0,
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where, for any y = (y2, . . . , yd), Dy is the line parallel to D going through the

point (0, y2, . . . , yd). Thus, a.s., there exists j such that Eν(∂Xj) > 0, which is in

contradiction with (C-4).

We let u be a unit vector colinear to D, denote by [0, xu] the segment {λxu, λ ∈

[0, 1]} and define, for all x ≥ 0,

L(x) = P([0, xu] ⊂ IntVi for some i ∈ N) = Q(1)([0, xu]) =
Eν(IntX	[0,−xu])
Eν(X ⊕ [0,−xu])

, (17)

where Q(1) is defined above in Section 4.1 and the last equality follows from (8).

From now on we denote by N` =
∑

i δyi
the simple point process defined in Lemma 3,

with points in R, write PN`
for its law and P0

N`
for its associated Palm distribution.

We index N` such that {yi} is increasing and y0 < 0 < y1. The following lemma links

the Palm distribution of N` to L.

Lemma 4. Let N` =
∑

i δyi
be the simple stationary point process defined above. Then

L(x) is absolutely continuous, has a negative right derivative L′(0) at x = 0 and, almost

everywhere,

P0
N`

(y1 > x) =
L′(x)
L′(0)

. (18)

Proof. Observe that L(x) = PN`
(y1 > x) for all non-negative x. Let λ be the

intensity of N`. The inversion formula (see for example [3]) gives, for all x ≥ 0,

L(x) = PN`
(y1 > x) = λ

∫ ∞

x

P0
N`

(y1 > t) dt.

By derivating we obtain that L′(x) = −λP0
N`

(y1 > x). Observing that P0
N`

(y1 = 0) = 0,

we obtain the differentiability of L at the origin and L′(0) = −λ < 0.

We end this section by considering the case of an a.s. convex X. First, we introduce

the geometric covariogram γX of X, defined for x ≥ 0 by

γX(x) := ν(X ∩ (xu⊕X)).
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Note that the covariogram is usually defined on Rd, but that here we only take interest

in a half-line. Let pu⊥ denote the orthogonal projection on the hyperplane orthogonal to

u and νu⊥ denote the (d−1)-dimensional Lebesgue measure on this hyperplane. If X is

convex, then γX is a convex function on [0,Wu), where Wu is the width of X in direction

u, and is identically zero outside this interval. Moreover, it is continuously differentiable

on [0,Wu) with derivative γ′X(x) = −νu⊥ [pu⊥(X ∩ (xu ⊕ X))] ≥ −νu⊥(pu⊥(X)),

see [19]. From (C-1) and (C-2), we have Eνu⊥(pu⊥(X)) < ∞. Hence, EγX is

absolutely continuous with derivative E (γ′X(x)) almost everywhere; from now on we

simply write Eγ′X(x) for E (γ′X(x)). Moreover γ′X(x) is right continuous at x = 0 and

so is Eγ′X(x) by dominated convergence, so that EγX(x) has the right-hand derivative

Eγ′X(0) = −Eνu⊥(pu⊥(X)) at x = 0.

Definition 5. The intercept distribution (in the direction u) of X is defined as

FX(x) =
EγX

′(x)
EγX

′(0)
, x ≥ 0. (19)

Remark 6. The term intercept distribution refers to the fact that γX
′(x)/γX

′(0) is

the probability distribution of the length of the intersection of X with lines having

direction u uniformly distributed among those hitting X, see [24].

Proposition 8. Let M be a dead leaves model associated to a RACS X which is convex

with intercept distribution FX a.s. and let P0
N`

and y1 be defined as above. Then, for

all x ≥ 0, ∫ ∞

x

P0
N`

(y1 > t) dt =
1
2
(1 + Kx)−1

∫ +∞

x

FX(t) dt, (20)

where K = −EγX
′(0)/EγX(0).

Proof. It can be shown that, when X is convex, ν(X	 [0,−xu]) = γX(x) and ν(X⊕

[0,−xu]) = γX(0) + xνu⊥(pu⊥(X)). Since νu⊥(pu⊥(X)) = −EγX
′(0), Relation (17)

yields

L(x) =
EγX(x)

EγX(0)− xEγX
′(0)

,
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and the result then follows from (18) and (19) through easy calculations.

Let us finally notice that P0
N`

(y1 > x) may be seen (as in section 2.2) as the length

distribution of the “typical cell” of the tessellation D∩M :=
∑

i 11{Vi ∩D 6= ∅} δVi∩D,

and thus as the intercept distribution of the typical cell of M (which is not convex).

Notice also that by taking x = 0 in formula (20), we obtain

E0
N`

(y1) =
1
2

∫ +∞

0

FX(t) dt,

which says (see Remark 6) that, for a convex X, the mean intercept in any direction

is divided by two as a result of occlusion.

5. Conclusion

Various generalizations of this model are possible. Non homogeneous point processes

could be considered, or the independence assumption between time and objects could

be broken (see [12]), enabling perspective laws to be taken into account. In the

homogeneous and independent case, many open problems remain, in particular for

computing typical cell properties given the distribution of the leaf X. The computation

of the mean perimeter and area of typical cells, as done in [5] for the connected

components of visible parts, is an interesting direction for further work.
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