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Abstract

We treat the problem of bounding components of the possible dis-
tance distributions of codes given the knowledge of their size and pos-
sibly minimum distance. Using the Beckner inequality from Harmonic
Analysis we derive upper bounds on distance distribution components
which are sometimes better than earlier ones due to Ashikhmin, Barg
and Litsyn. We use an alternative approach to derive upper bounds
on distance distributions in linear codes. As an application of the
suggested estimates we get an upper bound on the undetected error
probability for an arbitrary code of given size. We also use the new
bounds to derive better upper estimates on the covering radius, as
well as a lower bound on the error-probability threshold, as a function
of the code’s size and minimum distance.
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1 Introduction

An interest in the distance distributions of codes is due to the fact that they
play an important role in estimating decoding error probabilities. In most
recent studies bounds on the distance distributions are derived when the
minimum distance or/and the dual distance of the code are known. These
estimates prove reasonably tight when the size of the code is close to or
satisfies linear programming bounds relating the minimum distance and the
rate. In this paper we tackle a different problem, namely, we wish to bound
the distance distribution of codes given their size and minimum distance.
Thus the parameters of the considered codes may be essentially worse than
those given by the known upper bounds on the rate of code as a function of
minimum distance. However, as it will be demonstrated, this case is also of
relevance in several problems of information and coding theory.

Let F™ be the space of binary vectors of length n endowed with the
Hamming metric d(-, -), for x = (21, ..., Zn), ¥ = (Y1, -, Yn), X,y € F",

d(x,y) = [{i -z # yi}l-
Let the (Hamming) weight of x € F™ be
wt(x) = [{i:z; = 1}

i.e. the number of ones in x. Let B(x,r) C F™ stand for the ball of radius r

centered at x,
~(n
Vi)=Y (z)

=0
being its volume. Let C' C F™ be a code of rate

1
R(C)=R= ﬁlog2 |C.

Assume that the minimum distance d(C) of the code,

dC)=d= i d

( ) 61,022%1,21#02 (CI’ C2)’

is d = 6(C)n, where § = 6(C) is the relative distance of the code. Denote
by B(C) = (Bo(C) = 1, B;(C), ..., B,(C)) the distance distribution of the
code, i.e.

1

(©) ]

|{C1,C2 1 C1,Co € C, d(Cl,Cz) = Z}| .



For c € C let
Af(c) = Ai(c) = |{c; € C : d(c,c;) = i}|. (1)

Notice that

1
B; = ?ZAi(C). (2)
‘ | ceC
Whenever we deal with a linear code (i.e. a code closed under component-
wise modulo 2 sum) then for every ¢ € C we have A;(c) = B;.
We will also be using the exponents b¢(C) of B¢y, (C'), namely,

1
be(C) = be = - log; Bien

We are interested in the problem of bounding possible distance distribu-
tions knowing the size of the code and, perhaps, its minimum distance.

Problem statement: Given R, §, and &, suchthat0 < R<1,0<6 <1/2,
and § < & <1, we wish to estimate

be(R, 0) := lim sup max b (C) (3)
n—oo c

where the mazimum is taken over all codes C of length n, rate at most R and
minimum distance at least on.

When ¢ = 0 we sometimes omit the second index and write b¢(R).

Among others, we address the following very simply stated, but appar-
ently non-trivial, question: Is it possible that in a code of size exponentially
smaller than 2™ there is an indexr i such that B; has the same exponential
order as (’:) ¢ In what follows, among other results, we resolve this question
negatively by providing upper bounds on the distance distribution compo-
nents (see Corollary 2). The possible distance distributions are even more
restricted if the minimum distance is given (see Theorem 7).

The bounds we derive are applied to three problems (though we believe
that there are quite a few others where they can be efficiently used).

The first one is related to estimation of the undetected error probability,
i.e. the average (over the code) probability that a codeword transmitted
over a binary symmetric channel (BSC) is distorted in such a way that the



received word, though different from the transmitted one, also belongs to the
code. This probability for a code C' is expressed as

Pu(C,p) = Z Bip'(1— p)" ", (4)

where p, 0 < p < 1/2, is the BSC bit transition probability. We are inter-
ested in bounding the undetected error probability from above, i.e. trying
to answer the following question: Given the BSC transition probability and
the code size, what is the largest possible undetected error probability? An
answer is presented in Theorem 3. For earlier known bounds consult [11]
and references therein.

Another problem deals with bounding the covering radius of a linear code
of given size and dual distance. The covering radius of a code C is

R(C) = max mind(v,c).

vEF™ ceC

The dual distance is the minimum distance of the code C*, dual to C,

Ct={ct:Vce C,Zcﬁci = 0 mod 2}.

i=1

It is well-known that codes with large dual distance have small covering radii.
Using the obtained bound along with an inequality relating the value of the
covering radius of the code to the distance distribution of its dual, we derive
a better upper bound on the covering radius. It is given in Theorem 11, and
improves on the earlier known bounds, see [3, 5, 7].

The third problem consists in finding the threshold for maximum- likeli-
hood decoding error probability in a BSC as a function of code’s minimum
distance and size. Given a received distorted vector, such decoding outputs
the closest (in the sense of Hamming distance) codeword. The error prob-
ability thus is the probability that the result of the decoding differs from
the initial codeword. As it was proved in [18], for every code there exists a
threshold @ of the BSC transition probability p such that the decoding error
probability is close to 0 if p < 6, and is close to 1 if p > 6. The problem is
to locate # given the parameters of the code. We give a lower bound on the
threshold in Theorem 12. It is in many cases better than the corresponding
estimates derived by Tillich and Zémor [18], see also [19, 20].
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Our results provide also an upper bound on m(n,k,w), the maximum
number of vectors of constant weight w belonging to a k-dimensional subspace
of F™. In Subsection 4 we extend results of Linial and Samorodnitsky [14],
and provide another bound on the distance distributions of linear codes given
their dimension and minimum distance, sometimes better than the general
one. We discuss the tightness of our results in view of a conjecture due to
Khachatrian [10]. For results and references on an analogous problem when
the subspaces are picked from the Euclidean space, see e.g. [1].

Throughout the paper all logarithms are to the base 2, and

H(z)=—zlogz — (1 —z)log(l — )

is the binary entropy.

The results of this paper extend and generalize those of the previous paper
[8] of the last three authors, where mainly the case of unrestricted minimal
distance was treated.

2 Basic inequalities

We use the Beckner inequality [6] (sometimes attributed to Bonami). The
particular form of the inequality we use appears in [2, 9.
Let f be a real-valued function defined on F™. For a real positive s, the

s-norm of f is /
1/s
1
141l = (2— > \f(V)IS> .

vern

For € € (0,1), let T. = T.(f) be the function defined on F" as

T.(v) =Y f(u) (1;5>n—d(u,v) (1;€)d(u,v)'

uckFn

Theorem 1 (Beckner) For any real-valued function f on F™ and any € €
(0,1),
1TEll2 < 1 f 12



Let A(n,d,w) be the maximal possible number of binary n-vectors of
weight w, being at Hamming distance at least d one from another, and
A(n,d, < w) stand for the corresponding quantity when the weight of the
codewords is at most w. Clearly, A(n,d, < w) < (w+1) max;—1,_, A(n,d, 7).
Thus known upper bounds on A(n, d, w) can be used to estimate A(n, d, < w).
All the known upper bounds are monotone in i (for w < n/2), so the maxi-
mum is achieved when 7 = w. Let

R(4,7) := limsup = log, A(n, on, < yn).

n—oo I

The following summarizes the best known upper bounds on R(4, 7).

Lemma 1 a)

R(6,7) < Ri(6,7) := H (% (1 —~ \/1 — (VA1 =) =52 -0) - 5)2))
(

5)
where 0 < 6 < 2y(1 — 7).
b) Let
= in 1— H(a) + Ry(6, @),
o= A8 (1—\/1—351)/250451/2 () 10,0)
Then for v < v < 1/2

R(67 7) < H(V) - H(’YO) + Rl (57 /YO) (6)

The first inequality (5) is the linear-programming bound [16], which is
the best known bound for large distances. The second bound is due to a
recurrence relation developed by Levenshtein [13] and is given here in the
form suggested by Samorodnitsky [17].

Now we are in a position to state the basic inequality.

Theorem 2 For any code C of length n, minimum distance d, and param-
eters p € [0,1/2], g € [0,%], g being an integer, the following inequality
holds:

S B> b -9 < (VA md, < ) (1)

2n
i=0
where

h(i,€) = [{(u1,u3) : u; € B(0", g),uy € B(w,g) : wt(w) = i,d(uy, ug) = £}|.



Proof Define
fo(v) =|{ce C:d(v,c) < g}
Clearly, for every v € F™,
fo(v) < A(n,d, < g) .
Let
{c,v};={(c,v):ceC,veBlcg)}.
Notice that

Y fov) = e, vl =CIV(9) .

Thus the maximum of

> (v)

is achieved when |C|V(g9)/A(n,d,< g) summands in the last sum assume
their maximum value of A(n,d, < g), while the rest of the summands are 0,
and this maximum is

C[V(9)A~ (n,d, < g).

Therefore,

2 1/(1+€?)
Uilhon < (1CV©47 (04 < 9
glll+4e? = 2n -

This gives an estimate to the right-hand side of the Beckner inequality. To
estimate the left-hand side, denote p = (1 — ¢)/2. Then

T.(v) = Z F,(u) plV) (1 — p)n-dav)

uckFn”
and
2
Z Tg?(v) — Z Z pd(u,v)(l - p)n—d(u,v)
verm® veF™ \ {c,u}y

— Z Z pd(ul,v)—l—d(uz,v)(l . p)Qn—d(ul,v)—d(uz,v)

vEF™ {c1,u1}g,{c2,u2}g

— Z Z pd(u1,v)+d(u2,v)(1 _ p)2n—d(u1,v)—d(u2,v)

{cl,ul}g,{cz,uz}g veFrn

= Z G(uy, uy).

{Cl,Ul}g,{Cz,u2}g



Now we calculate G(u;, uy) defined by the previous equality. Clearly it de-
pends only on the distance between u; and uy. Let d(uj,uy) = ¢, and
without loss of generality assume that u; = 0", uy = 10" ¢. Then

)2
G('I.ll, UQ) = Z

= (Zj; (f) Pl - p)‘q) (nz;é (n ]_ £> p7(1— p)Q”‘”‘Zj)

= (2o(1 =) (p* + (1= p)*)""

Denote p = 2p(1 — p), then 1 —p = p? + (1 — p)? and p € [0, 1/2] whenever
p €[0,1]. Thus
G(ul, 112) — pd(ul,u2)(1 o p)n—d(ul,u2)

Continuing the previous computation and using definition (1), we conclude

that
DTV =YY Aie) Yy hli, Opf(1—p)"
=0

veFn ceC =0
where h(i,/) has been defined in Theorem 2. Now noticing that 1 + &2 =
2(1 — p), €2 = 1 — 2p, applying the Beckner inequality, and using (2), we
obtain the claimed result. o

The function h(i,l) appearing in the statement of the theorem will be
calculated later (in Lemma 3). However, choosing g small enough we may
consider a particular case where this function is essentially absent.

Corollary 1 With the above notation, for any p € [0,1/2], and 0 < v <

Y )
ZB Zh i, Op'(1—p)"t < Vﬁ(q/n)n”‘ 1¢] ﬂ.
1=0 a 2"

Here o 1s a non-negative constant depending on . o

Proof If v satisfies the inequality
1 1
0<y<;-5V1-25,

then, by Elias (see e.g. [15]), for every v € F", f,,(v) < n%, for some
constant « = a(7y) > 0. o



3 Estimates

In this section we use Theorem 2 to estimate components of distance distri-
butions of codes. We start with the most straightforward application of the
theorem to the problem of bounding the undetected error probability.

3.1 Undetected error probability in codes of given size

Theorem 3 FEvery code C used on a BSC channel with transition probability
p € [0,1] satisfies:

Pue(C,p) < (%) o (1=p)"

Proof Set d =1 and choose g = 0 in Theorem 2. Then the balls B(c, g) are
just codewords of C. Obviously V(0) =1 and A(n,1, < 0) = 1. It is easy to
see that h(i,£) = 0 unless ¢+ = £, in which case h(i, ) = 1. Therefore, by the
definition of P,., we have

Pu(Crp) = Y Bip'(1=p)"”

VAN
—
=
+
VRS
1\9‘_
§ [
N——
1
h~Y

Since for every code

Cl—-1 C 1\"

the bound of the theorem is tight at p = 1/2.
When n grows we consider the undetected error exponent depending on
R and p,

. 1
pue(Ra p) = lim Sup(__ CaX 10g2 Pue(ca p))a

n—00 n

where the maximum is taken over all codes of rate at most R.



Lemma 2 For p € [0,1/2],
pue(R7 /0) = pue(R7 1- p)

Proof Given a code C with distance components B,,(C) we construct a
new code C' of size at most 2|C| by “symmetrizing” it, i.e. adding to the
code C' whenever possible the binary complements of codewords. The new
code C' has symmetric distance distribution with respect to n/2: B,,(C') =
Ba_pyn(C'), and, asymptotically, the same rate as C. For a code C' with
symmetric distance distribution, it is immediate to check that:
Pue(C'yp) + (1 = p)" = Pue(C', 1 — p) + p".
Since the term (1—p)™ is exponentially small in comparison with P,.(C", p),
we have
) 1 ) 1
lim —=logy(Pue(C', p) + (1 — p)*) = lim ——log, P,.(C', p),

n—oc N n—oc N
and any upper bound on p,.(R, p) is also valid for p,.(R,1 — p). o

For a lower bound consider the following code of given size |C|. Determine
the maximum w satisfying () < |C|. The code consisting of all vectors of
weight w has the distance distribution

m=(9)(157)

and its probability of undetected error is

raco =3 (V) ("7 ") - o ®

i=1
Theorem 4 For the constant weight code consisting of all vectors of weight
w and p € [0,1/2],

1Tpp(1 - R) > pue(R7 ,0) = pue(Ra I- /0) >
- (wH <§) +(1-w)H (%) +2¢logp+ (1 —26) log(1 — p)) ,
where
w=H(R),
i PV —Aw(l - w)(2p—1)
B 2(2p — 1) '

10



Pue (0.5, p)
0.5

0.4
0.3

0.2

001 0.2 0.3 0.4 o0.5"

Figure 1: Lower and upper bounds on the probability of undetected error for
R=0.5

Proof The upper bound comes from the previous theorem. Optimizing (7)
in w we get the expression for the lower bound. Notice that the distance
distribution of the defined constant weight code has its maximum at i =
|w(n — w)/n]. However, it is possible to show that {n is always less than
this 1. o

Figure 1 shows the upper and lower bounds on exponent of the probability
of undetected error for the case R = 0.5. One can see that the bounds are
quite tight.

3.2 Distance distributions (g = 0)

We start the analysis of distance distributions from the particular case of
g = 0 in Theorem 2. Although the derived bounds are not always the best
possible, they are given by explicit expressions.

Theorem 5 If0 < R< 1, and

0<pu<1l-2y/(1-R)In24+In2—-RIn2,

then

*

p

< —
h(R) <~

(1 - R) — plogp® — (1 — p)log(1 —p*) +o(1), (8)

11



where

P = % (1+u—1n2+Rln2— V= (1+,u—1n2—|—R1n2)2> .
Otherwise, the trivial bound holds:
bu(R)<R.
The same bounds are valid also for by_,(R).

Proof Setting g = 0 in Theorem 2, we obtain

C .
(U) > Zsz )7 > Bp(1 - p)"™, m € [0,n].

B<<WU L
on pm(l _ p)n—m

Optimization in p gives the claim.
To see that the bounds are symmetric for y and 1 — 4 we use the same
argument as in the previous section. o

Thus

Corollary 2 For any u € (0,0.5)

u(R) = biy(B) < =5 (1= ) + H(p) + o(1).

Proof Notice that (8) is valid for any p and any other value substituted
instead of p*. Plugging in p* = u we get the sought result. o

In particular, it is easily seen from the corollary that for any code of rate
R < 1 every distance distribution component B; is exponentially smaller
than the binomial coefficient (7:)

Let us now consider the code C of even length n and consisting of all
vectors of weight w and their complements. The size of this code is 2(;) and
its distance distribution is

o= ()07

B2i = Bn—2i

12



0.4

0.3

0.2

0.1

0.05 0.1 0.15 0.2

Figure 2: Lower and upper bounds on b, for R = 0.5

Theorem 6 Let w = H '(R). For any 0 < p < 2w(1 — w)
7 7
=b_ > wH {— 1—wH| ———| .
b (B) = () 2 ot (L) 40— (5 )
Otherwise, for p < 0.5,
() = bi_u(R) = R

Proof The first estimate follows from the construction. For the second one,
consider a random constant weight code of size |C| and weight w*, where w*
satisfies 2w*(1 — w*) = pn. Its average distance distribution is

m= (07

Considering the union of the code and its complement, we conclude that the
maximum of its distance distribution is attained when 2; = |2w(1 —w)| and
is of order 2fn{1—e(1), o

On Figure 2 the upper and lower bounds are presented for the distance
distributions of codes of rate 0.5.

3.3 Distance distributions (g > 0)

Let h(&,v) = £ logh(én,vn). The following lemma gives a lower bound for

A€, v).

13



Lemma 3 Let

B ‘v if ¢ +v—7<2Av,
o1 = (C—I—U _7)/2 OtheI'Wise,

- :{ (v=¢+8/2 #2601 -¢)>7-(+¢,
2 £(1-¢) otherwise.

Then for v € [€ — 27,& + 27]

01 v —01
A€, v) > max CH (?) +(1—c)H( ¢ ) +

o) =&+ o0
+&H (—) +(1-¢ H<7>
¢ (1-¢) T ¢
where the mazimum is taken over C in the interval from max{0,&—~y,v —~}
up to min{1,& + v,v + v}.
Proof See Appendix. o
Using Theorem 2 in the most general form and Lemma 3, we derive the

following bound.

Theorem 7

b.(R,5) < min {—%(1 ~R)+ l%pH(y) + 11__2;3(5, ")
— Bi(p,v) —vlogp — (1 —v)log(l —p)}, (9)

where R(0,7) is defined in Lemma 1, h(u,v) defined in Lemma 3, and the
minimum is taken for p € [0,1/2],7 € [3 — /% — $,1/2], and v € [0,1].

Proof It is an asymptotic form of Theorem 2 after we single out the corre-
sponding term on the left-hand side of the inequality, and g = yn and ¢ = vn.
o

It is also possible to substitute the derived bounds in the expression for
undetected error probability to obtain asymptotic upper bounds for this pa-
rameter as a function of rate and relative minimum distance. We omit details.

14



4 Distance distributions in linear codes

Below we present an upper bound on the distance distribution of linear codes.
The bound is based on an extension of arguments used in [14].

Let C be a linear code with relative minimum distance § and rate R,
and R*(0) any upper bound on R. We consider b,(R, ) defined by (3), the
maximum being taken now over all linear codes; the corresponding value
is denoted b%(R,d). Clearly b5(R,d) < b,(R,6), and the previous bounds
apply. However, better bounds can be derived.

Theorem 8 The distance distribution of C' is bounded from above as follows

ming<, aoRH (%= |+ (1—a)Ry, if 8" () >2u,
bE(R, ) < osost {aRH () + (1 - )R} / *( )> 2
R, if B*() < 2p,
(10)
where B*(«v) is the root of the equation

Proof Let {1,2,...,n} be the set of code coordinates of C, identified with
columns of a generator matrix. Consider the following partition

{1,2,...,n} = A UAU...UA UB,

where the A4;’s are disjoint subsets consisting of |«Rn| independent coor-
dinates (i.e. columns of the generator matrix of C') and B is a subset with
rank less than aRn. We assume that such a partition is obtained greedily;
we stop when no further A;,; is possible. Let D be the subcode of C' con-
sisting of codewords with supports belonging to A; U Ay U. ..U A;. Denote
by n' = atRn the length of D. Obviously n’ = fn for some 3 € [6,1]. It
follows from the definition that the rate R' and minimum distance §' of D
satisfy

B> (1-a)R

)
8> —.
z g5 > 3

).

Hence we have . R

=1

15



Since (1 — a)R < R*(6), (1 — a)R/26 > R*(§/26) = 0, and since the left
and the right hand sides of (11) are decreasing and increasing in 8 functions
respectively, the equation (11) has a root 5*(«) = 8* on the interval [24, 1].
Thus  must belong to the interval [5*,1].

Let ¢ € C be a codeword of weight m. By the pigeon-hole principle,
there exists at least one set of coordinates A; on which ¢ has |m/t| or
less nonzero entries. Let’s say c is bad for 7. On the other hand, since
|A;| = rank(A;) = aRn, there are exactly

Lm/t]
§ : (CVRTL) 2(1—a)Rn
]

1=0

bad codewords for every ¢, and in total ¢ times this number of bad codewords.
Thus if [m/t| < aRn/2 we have

[m/t] aRn
B, <t o(l—a)kn
<ol % () ,

or equivalently

bL(R,6) < aRH (%) +(1—a)R. (12)

The condition |m/t| < aRn/2 is equivalent to 8 > 2u. Hence the worst
case in (12) is achieved:

- if B* > 2u, when 8 = *, giving the first part of the theorem;

- if 8* < 2u, when u/B = 1/2, giving the second part. o

Our previous considerations are relevant to the following combinatorial
problem. Let m(n, k, w) stand for the maximum number of vectors of weight
w in F™ belonging to a k-dimensional linear subspace. Khachatrian [10]
conjectured the following exact values.

Case 1: w < k < 2w, w is even, k is odd, then

k—
2k — 2 2k — 2 2w—k
o=+ (50 5 (") ()
2

S

k—w

Il
)

1

16



The non-zero part of the generator matrix is given by the following construc-
tion:

(1 ... 0]0 ... 01 ... 1
0 110 . 01 1
i 0 1 01 0
L 0 0|0 . 110 1
—_—— —— ——
2k—2w 2w—k 2w—k
Case 2: k> 2w

(k::)l), if w is even

m(n, k,w) =

(¥), ifwis odd

In the odd case the non-zero part of the generator matrix is the k x k identity
matrix. In the even case it is the identity matrix along with the all-one
column.

Clearly,

1
- log, m(n, k,w) = bﬁ(R)

where = w/n, and R = k/n.

Combining the lower bound from Khachatrian’s conjecture with simple
arguments on random codes on a subset of positions, and symmetrizing the
distance distribution by adding the all-one vector to the code, we arrive at
the following lower bound on bﬁ(R), conjectured to be the correct value:

RH (%) if p < R/2,
bi(R)> < R if R/2<pu<1-R/2, (13)
RH (Z£) if p>1—R/2.

I_%u
5 Comparison with known bounds

The best known bounds for the distance distribution components were de-
rived earlier only when assuming the minimum distance known. Let us quote
such a bound from [4].

17
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Figure 3: Lower and upper bounds on by,(0.5)

Theorem 9
. 1
bu(R,0) < min{H (5 —+/6(1 — 5)) +H(p)—1,R(5, 1)} (14)

Notice that the left-hand side of the inequality depends only on 6.

Figure 4 presents bounds from Theorem 9, Theorem 2 and Theorem 8 for
the case R = 0.4 and 6 = 0.1. One can see that on almost the entire interval
[0, 1/2] the bound (9) is significantly better than other bounds. At the same
time on a small interval around minimum distance, bounds from Theorem
9 are a little bit better than (9) and for sufficiently large p the bound from
Theorem 8 becomes the best one.

6 Applications

In this section we present some applications of the derived estimates on the
distance distribution components.

18
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0. 15[

Figure 4: Upper bounds on b, for R = 0.4 and d = 0.1, (a) is the best of
the bounds from Theorem 9, (b) is (9), and (c), which holds only for linear
codes, is (10).

6.1 Covering radius as function of the size and dual
distance of linear codes

Let C, C # F™, be a linear code of rate R. Let C* be its dual code, of rate
1 — R, with the (dual) distance distribution

B* = (By,Bi, ..., BY),

such that By = 1,Bf" = ... = Bjy | = 0,Bz > 0. Then d* is called the

dual distance of code C. The following theorem was proved in [7, Theorem
8.3.5].

Theorem 10 Let r be an integer and let
Blz) = Z,@z’Ki(ﬂU)a (15)
i=0
where K;(x) is the Krawtchouk polynomial of degree i. Let also
Bo > n max {ﬁijL}
j=l,..,n

and
B1) <0 fori=r+1,..,n.

Then C has covering radius R(C) < r. o
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We use the standard polynomial employed in the linear programming
bound on the minimum distance [16]:

B(z) = (Kig1 () + Kt(m))Q’

a—x

where K;(z) is the Krawtchouk polynomial of degree ¢ and a is the smallest
root of the numerator. Computing the coefficients ; of this polynomial and
substituting them into (15), we obtain the following theorem.

Theorem 11 [3] Let p be the minimal number such that

max {(1—¢&)H (P;ff) — H(p) + &+ be(R,67)} < 0.

sL<e<2p 1—
Then R(C)/n < p. o

Substitution of bounds from Theorem 9 into the theorem gives the best
currently known bounds on the covering radius for §+ < 0.273 [5],[12]. These
bounds are functions of the dual minimum distance only. One can consider
improvements of the bounds by using the code rate as an extra parameter. As
we have seen in Section 3.3 bounds on b¢ (R, 6+) from Theorems 2, 8, and 9 are
intersecting with each other when £ runs from §+ to 1. Hence it makes sense
to choose the best of them for each particular value of £. Substituting such
an estimate into Theorem 11 yields significant improvements. For instance
for 6+ = 0.25 the best of the bounds from [5],[12] equals 0.1291. The bounds
obtained as function of both R and §* are presented in the following table.

R 0.1 0.12 0.14 | 0.16 0.18
R/n | 0.0854 | 0.0985 | 0.110 | 0.1213 | 0.1288

6.2 A lower bound on the threshold probability

In [18, 19, 20] Zémor et al. formulated the asymptotic problem of locating
the threshold probability # given the rate R and relative distance ¢ of a code.
They obtained the following theorem, which we present here with a proof for
the sake of completeness.

Theorem 12
0>
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whenever

(1—a/2)Y
boy (R, 0 94+ (1—-ad)H | ————— < H(9).
Lo, + o+ (- anyr (=002 )
Proof Let the all-zero codeword 0 be transmitted. Consider the vectors of
weight w. If such a vector is at distance greater than w from any codeword,
it will be correctly decoded. To estimate the number of incorrectly decoded
vectors of weight w we apply the following argument. There are

Vo= 3 (#)()

vectors of weight w which are closer to a given codeword of weight aw than
to the zero word. Thus there are at most

Z Aaw(0)N(a, w)

such vectors of weight w. If this number is exponentially smaller than (Z),
then most vectors of weight w will be decoded correctly. Averaging over the
codewords, substituting bounds on the distance distribution components and
passing to asymptotics we obtain the result. o

The only previously known bounds were obtained with the help of up-
per estimates b as functions of the code minimum distance only (bounds
from Theorem 9). One can obtain better results constructing bounds on the
threshold probability as a function of both parameters - the code rate and
the minimum distance. Let, for instance, § = 0.25. The best bound on the
threshold probability as a function of the minimum distance equals 0.165. In
the following table we present lower bounds on the threshold probability de-
pending on the code rate and minimum distance. One can observe significant
improvements provided by the suggested method.

R |01 0.12 0.14 0.16 0.18
6 | 0.2204 | 0.2019 | 0.1866 | 0.1736 | 0.1626
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Appendix

Proof of Lemma 3: Calculation of h(i, ¢)

Remind ourselves that
h(i, £) = [{(u1,up) : u; € B(0", g),uy € B(1'0" %, g) : d(uy, uy) = £}].

In this section we provide an explicit expression for this function, which
counts the number of pairs of vectors being at distance ¢ and belonging to
two different Hamming balls of radius g with centers being at distance 4
apart. Then, we use a simple lower bound on A(z, £).
We accomplish the computation in two steps.

Step 1 For a given vector w = 190"/ let us find the number p(j, £) of
vectors being at distance ¢ from w and belonging to B(0",g) (or, which is
the same, having weight at most g). It is easy to verify that

U > ()

s=max{0,(j+£—g)/2}

and 1o
_ 0 if 29 > min{j, £}
> , ; 2 ’
p(4,4) > { () () otherwise
where ; ' j
it f ity < it
81:{j+?—g 2 vise
5 otherwise .

Step 2 We find the number of vectors ¢(i, j) of weight j in the ball B(1:0"~, g).
It is easy to check that

=0

s=max{0,i—j}
and .
- 0 if g — g5 > 9=+
q(i,j) > { N >
(;2) (j_n,- +Z52) otherwise

where

n 2
i(n—J)

gfgﬂ if i(n—j) > gjt
5y —
2 )
- otherwise
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Finally,

min{n,i+g}

hi, )= > p(,0q(, )

j=max{0,i—g}

. Nl
_ryg}cp(% )q(3,7),

where J = [max{0,i — g}, min{n,i + g}].

Denoting i = &n, g = yn, £ = vn, and A(§,v) = +logh(&n,vn), we

obtain the claim of Lemma 3.
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