Efficient Query Processing in P2P Networks of
Taxonomy-based Sources

Jean-Marc Saglio', Michel Scholl?, Tuan-Anh Ta'

! Département Informatique & Réseaux, ENST, 46 rue Barrault, 75013 Paris
{saglio, ta} @enst.fr
2 Cedric/CNAM, 292 rue St Martin, 75141Paris Cedex03
scholl@cnam.fr

Abstract. In this paper we focus on RDF knowledge bases distributed in a peer-
to-peer (P2P) network. We rely on a taxonomy-based model for indexing
documents of a given peer. Metadata is modeled as an isA hierarchy of terms.
Between hierarchies of two “neighbor” peers, related terms are connected
through an isA semantics as well. Our contribution is threefold: we show i) that
querying such RDF knowledge bases can be done with the help of RQL; ii) how
to optimize the fixpoint evaluation of network queries by eliminating redundant
calls to neighbor peers and show that by using labeling schemes network
queries can efficiently be expressed in SQL; iii) we report on a preliminary
evaluation of this optimization performed with a simulation of the P2P network
by an Oracle database implementation on real metadata from the ODP
hierarchies.

1 Introduction

Building community web portals is one among many web applications that have used
the Resource Description Framework (RDF) to define metadata for indexing
documents. A central repository is commonly used to manage RDF metadata and
support querying and browsing documents in the portal as well [4]. However, there
exist applications such as the Web of people [16, 18] that require a distribution of
metadata among several sites. In this application each person relates to an RDF
knowledge base in order to index the documents he/she has collected and wants to be
shared with other persons of the network. It has been advocated that peer-to-peer
(P2P) networks [1, 2, 5, 6, 10, 15, 17] are scalable and appropriate solutions for such
distributed applications.

In this paper we focus on RDF knowledge bases distributed in a P2P network. We
rely on a simple model [19, 20] for indexing documents of a given peer. Metadata is
modeled as a hierarchy of terms with an is4 semantics. Related terms of hierarchies of
two “neighbor” peers are connected through an is4 semantics as well. We follow the
model of [20] which shows that network queries, i.e. queries that recursively query
neighbor peers, can be expressed by a simple fixpoint. Our contribution is threefold:
we show 1) that querying such RDF knowledge bases can be done with the help of
query languages such as RQL [12]; ii) how to optimize the fixpoint evaluation of such

recursive network queries by eliminating redundant calls to neighbor peers and show
that by using some labeling schemes for coding the terms of a hierarchy, such
network queries can efficiently be expressed in SQL; iii) we report on a preliminary
evaluation of this optimization performed with a simulation of the P2P network by an
Oracle database implementation on real metadata from the ODP hierarchies
(dmoz.org). The remaining of the paper is organized as follows: in section 2 we
choose as an example a knowledge base, drawn from categories of the ODP portal
(dmoz.org) and expressed in RDF. Queries against such a knowledge base are
expressed in RQL. Section 3 specifies the model and the evaluation of network
queries. The query evaluation can be optimized by the elimination of redundant
evaluations. Section 4 gives a translation in SQL for the RQL queries of section 2,
choosing a Dewey labeling scheme [8] for coding the hierarchies in order to
efficiently traverse hierarchies of terms. Section 5 describes our experiment. In
section 6 we survey some related work.

2 An example of P2P architecture of knowledge bases

Peer 1 Peer2
.7 - crcated o 20040402 RN .
| Software > Internet \
: - \
: . ‘Software for e
* / \ » ternet” .- - / \ \ \‘
Graphics Intemet-Soft = w o o o == 7 Protocoles - EBmil
7N PN /\ 4 S
N B gecti

bitp://wwwsearchrocket,con i oo U Neodert Hipu/searchtools contiobs
"WickSource” 20040001 | | PP searhing
"A p2p prograne with web search engire. . ' | resourceRef "New prograns for seaching onthe b, . "
Tttp:/wwwwidesource. conmy

Fig. 1: A distributed hierarchy of computer topics

Fig. 1 displays a forest of terms distributed among two peers. Each peer manages
an autonomous local knowledge base on a given subject (e.g. Computer software,
Internet) independently of the other peers. The knowledge base is a hierarchy of
terms, each term representing a topic of interest. The interpretation of term z is the set

of user documents (called posts in the web of people [18]) indexed by 7. Fig. 1
features a post &/ on Search software with four attributes: a date of creation, a title, a
resource reference and a full text description. Terms are connected through an is4
link. As an example, Clients and Servers are sub categories of Internet-Soft. Terms
come with attributes as well (in this example terms have two attributes: date of
creation and title). Last, each peer can take advantage of the existence of other peers
on related topics. A simple protocol allows two peers p and p'to agree that one term ¢
of peer p is in relation is4 with a term ¢’ of peer p’. As an example, Peer 2 declares
that term Internet-Soft in Peer 1 is in relation is4 with local term Internet (dotted
arrow in Fig. 1).

Fig. 2 displays an RDF schema for the example of Fig. 1. The multi-instanciation
of a post (dashed arrows) is noteworthy. Terms are implemented as classes. The is4
semantics is expressed by the subclass relation between classes whether the superclass
and the subclass belong to the same peer or not. A post instance is an instance (link
rdf-type) of the class Post and of a topic class. Two peers are modeled as two
instances of class Peer. A post belongs to a peer according to the peer of the topic
class (attribute sasPeer) it is an instance of. Note that topic classes are instances of a
metaclass Topic with two attributes title and created.

Meta-class ﬁv

s,

http:/searchtools.comirobots

"WideSource” "New progran for seaching on the web. .
"A p2p programe with web search engire. . resourceRef — rdf:subClassOf
hitp:/Awwwewidesource. cont ----p- rfitype

Fig. 2: An RDF schema for the distributed knowledge base

We now give several queries on this knowledge base. Among the various proposals
for querying RDF data (see [14]) we chose RQL [12], because it brings the
declarative power of database query languages to a kernel of the RDF language and
because its syntax allows for a simple formulation of transitive closures of the relation
subclassOf. Although tailored for the Web of people application the following queries
illustrate the power of RQL to express queries in a number of other applications
relying on metadata indexing.

Q1. Posts under Searching? (we look for the posts instances of topic Searching as
well as instances of its subtopics in the whole network)
select x from Searching{x}

Searching{x} is a path expression starting from class Searching and ending at an
instance x. The interpretation of such a path is that x is an instance of Searching or of
any of its subclasses.

Q2. Local posts under Searching? (we look for the posts instances of Searching and

of all the terms below Searching in the hierarchy of peer &p2)

select x from Searching{x}, “$t{x}, Topic{t}.hasPeer{p} where $t=t and p=&p2
The from clause includes three path expressions where (i) in the second path

expression "$t{x} denotes there exists a class $z, x is a direct instance of (“*”’stands

for direct); (ii) the third path expresses ¢ being a topic (an instance of metaclass Topic)

and having p as its peer.

Q3. Posts under Searching created since 2004?
select x from Searching{x}.created{d} where d>=2004-01-01
The path {x}.created{d} gives the creation date of post x.

Q4. Local sons (one hop descendent) of topic Searching? (we look only for topics in
peer &p2)

select t from Topic(t}.hasPeer{p}

where p=&p2 and t in subclassOf(Searching)

3 Network query model and evaluation optimization

For network queries that require a recursive traversal of several peers, we assume a
decentralized evaluation process on hierarchies of terms distributed over peers. The
model follows that of [19, 20]. A network query sent to a peer p is rewritten into the
union of its local answer with the result of network queries sent to other peers for
evaluation. When evaluating a network query one or several redundant paths may be
followed. In other words a term ¢’ in peer p’ may be found as a descendent of a term ¢
in peer p several times, by following several paths. We present an optimization of
network queries evaluation avoiding redundant computations.

Definition 1 [19,20,21]: Each peer p owns a term hierarchy (7,,<) where 7, is a
finite, non empty set of terms; <is a partial order modeling isA4 relations between
terms. Let / be the set of posts declared as instances of a term ¢ or of any of its
successors ¢’ (¢<1t') in the hierarchy; so if a post poel(t") then poel(f). In the
following, we call I(¢), for short, the interpretation of 7.

Definition 2: Let te7), and #'e T), be two terms. With the authorization of peer p’, peer
p can declare ¢ as "linked" to . Let Link,, denote the finite set of such links [¢, #']
between peer p and peer p'.

As in [19, 20], we model a link [z, #'] as an is4 relation: =<', with the usual
semantics that is if a post published in peer p'is in the interpretation of ¢’ then it is in
the interpretation of ¢.

Proposition 1 (redundant crossing links): Given two peers p and p’, if there exists [#,
th], [t2, t']€ Link,,, and t', t, € T,,t'1 <t on the one hand, and t,, &, € T,,, t; <, on
the other hand, then link [#,, #,] is redundant.

As illustrated in Fig. 3(a), ¢ is in the interpretation of # by transitivity, since ¢’ is

a successor of 'y which is linked to £, a successor of #,. Crossing links can definitely
be deleted (see section 4). Note that such links can as well be detected upon insertion.

th

(a) crossing links (b) runtime redundant links

Fig. 3: Example of redundant links

Definition 3: Let L(p, t, p"y = {t'| t'eT, A3 t1,eT,(t=<t; A [t), t'] € Link,,)} denote
the set of terms in a peer p’ that can be reached from a term ¢ or any of its successors
in peer p by following a link. We call neighbor peer of peer p a peer p’ for which
there exists at least one link between a term ¢’ in p’ and a term ¢ in p. Let N(p) denote
the set of neighbor peers of p. Let /,(f) denote the interpretation of ¢ without taking
into account the links with neighbors. 1,(7) is the set of posts declared in p as instances
of ¢ or of any of its successors. Let /(¢) denote the interpretation of ¢, including the
posts declared in other peers under successors of 7 through terms linked to terms of p.
Then we have:

I()=1,(tH)v Uz (1)

t'eL(p.t,p;),p;eN(p)

Definition 4: Let O(p, t) denote the query issued at peer p asking for all posts under a
term ¢. Then the answer to ¢ is precisely /(7). O(p,) is called a network query since it
is translated into a local query Q,(f) which computes /,(¢) and a set of queries sent to
neighbors. From equation (1), we have:

o(p.)=0,(Ov Uow:.r) 2

t'eL(pt.p;)p;N(p)

As an example, consider the network query Q(p,) in Fig. 3(b). It implies the
evaluation of O(p’, t5), O(p', t3), O(p', t's) and O(p’, t's) which correspond to the four
links between successors of ¢ in p and terms of p'. Observe that for answering this
query only links (7, ¢>] and [#,, t%] are of interest. Links [#4, 4] and [#;, #'s] are not
necessary (and therefore redundant) for this query; indeed, #; and #s and their
successors are anyway reached by following the link [#, #3]. Similarly, for query O(p,
1), link [#;, t's] is redundant.

Proposition 2: Let L.i.(p, t, p") = {t'| t'e L(p, t, p") A 3 thelp, t,p):th=<t'}, we
have:

O(p.)=0,(0v Uow.t) 3)

t'€Ly (pit,p;), P €N(p)

The proof is straightforward from the aforementioned observation on Fig. 3(b).
Links in L(p,t,p") and not in L;,(p,t,p") are redundant. L,,(p,z,p") must be calculated
at run time, i.e. upon answering the query. Algorithm A computes L.,(p, ¢, p") (for
short L,,;,) from L(p, ¢, p") (for short L). In section 4 we give an efficient algorithm for
computing L.

Algorithm A —naive L,,;, computation
Input: L
Output: Ly,
(1) Lmin =0
2) for each #;in L
3) if not exists £ in L such that ¢; < f; then Ly = Liin U {£;}
4) return L,

Once Ly, has been calculated there exist a number of strategies [20] to evaluate a
network query (equation (3)). The knowledge at a given peer of the data existing in
another peer is central to the choice of a strategy for evaluating network queries. In
this paper we assume a totally distributed peer to peer architecture in which each peer
acts independently of the others and has no knowledge of the term hierarchies of the
other peers except for the Link(z, t') table. However for inserting a link between peer p
and peer p', peer p’ must provide to peer p in a read mode its term hierarchy 7,. We
further assume that no cycle exists when following a link from peer p to peer p’. In
other words, there exists no isA4 path starting from ¢ in p coming back to ¢' in p such
that ¢’ is an ancestor of . We assume cycles are detected upon a link insertion.

The two following strategies differ in the way answers to a network query are
forwarded to the user.

Strategy 1. Upon receiving a query Q(p,), peer p sends queries Q(p', t') to its
neighbor peers. Peer p evaluates its local query Q,(¢) and waits for all answers of
neighbor peers. Upon receiving an answer to query Q(p’, t') peer p makes the union
with the current set of solutions. Once all peers have answered, peer p either sends
back its answer to the user or to the peer that issued the query.

Algorithm 1 - Q(p, ?)
Input: a peer p, aterm¢,
Output: Q a set of posts

(1) 0 =0,

2) for each p' € N(p)

3) foreacht' € Lyu(p, t, p")
“4) 0=0v0pP.1)

%) return QO

N(p) denotes the set of neighbour peers of p. For evaluating the set of local posts
0,(?) all successors of ¢ in p have to be scanned and for each of them the set of
instances (posts) have to be collected. We give in the following section an efficient
algorithm for this evaluation.

Strategy 2. Peers send queries to their neighbors, but do not wait for the answers. The
latter are directly sent to peer py, which the initial query was issued to. The rationale
behind this strategy is that it might take less time to send the answer back directly to
po instead of transferring the answer through a long chain of intermediary peers. The
evaluation and comparison of these two strategies imply a network cost
model/evaluation and is beyond the scope of this paper. Strategy 2 needs two
procedures: (i) O(p, t, py), a query for the posts under term ¢ sent to peer p and whose
answer should be sent back to peer py. (i) Send(R, po) which sends the result set of
posts in R to peer py.

Algorithm 2

Q(pa t, Po)

Input: p the peer to which the query is issued, ¢ a term, p, the peer to which the
answer is forwarded

Output: updating the set of posts Q if p=p,

(D R=0,0

2) if p=pythen Q =Q UR

3) else Send(R, py)

4) for each p' € N(p)

(5) for each ¢’ € Lyin(p, £, p')
(6) o@', 1, po)
Send(R, po)

Input: R a set of posts, po peer to which R is sent back

Output: updating the set of posts Q
e) 0=0UR

The query evaluation may be further optimized as follows. For a given query, a
peer can receive several queries for a same term, coming from different peers. For
example, peer p” in Fig. 4 receives two queries on terms ¢”; and ¢",, coming from p
and p’ respectively. Clearly, the evaluation of ¢", is redundant if ¢", is evaluated
before. In order to avoid such a redundancy, we keep track of the queries processed so
far. The optimization is illustrated in the following for strategy 1 (Algorithm 1bis).

P t

)

Fig. 4: Other type of redundant links at run time

Algorithm 1bis - O(p, 1, q)
Input: p the peer to which the query is issued, ¢ a term, ¢ the query id of the initial

query
Output: Q a set of posts
(©) Q=09
2) if not exists [g,, ;] in Trace such that g=¢ and #;< ¢ then
3) Trace = Trace U {[q, t]}
4) 0 =0,
(5) for each p' € N(p)
(6) for each t' € Lyn(p, t, p")
(7 Q=0v0p,1
(8) end if
) return Q

4 Efficient implementation of RQL queries in SQL

In this section we exhibit a relational implementation of the P2P knowledge base and
of network queries. One outcome of this section is that the RQL queries of section 2
can be translated into SQL and efficiently answered, provided that each peer be
equipped with any SQL engine.

We assume that each peer stores metadata satisfying a relational schema given in
Fig. 5(a). Table Topic stores the term hierarchy local to a peer. turi is the address
identifying the term, title and created are the topic title and creation date. The Link
table stores links between term addresses of the peer and term addresses of other
peers. The posts are stored in the Post table. puri identifies the post; title, created
respectively denote the title and creation date of the post. In order to simplify the
expression of RQL queries into SQL, the following schema is only a reduced
translation of the general RDF schema in Fig. 2. Without loss of generality, we
assume in the local term hierarchy that a term has at most one parent (represented by
attribute parent in Topic). A post is indexed by only one term as well.

4.1 Coding terms with a labeling scheme

Another relational schema for peer metadata is proposed in Fig. 5(b) in which
terms (topics) are coded by a labeling scheme. Numerous labeling schemes have been
proposed in the literature for coding hierarchies of terms and XML documents (see
for example [3, 9, 11, 13]). We show in the following how labeling schemes allow for
an efficient implementation of the queries of section 2 and more specifically of
network queries. More generally, labeling schemes allow for a significant speed up of
ancestor/descendent queries: a labeling function / is such that if # is an ancestor of #'
(t<1t) then [(f) < [(¢"). Then a time consuming ancestor/successor query can be
translated into an efficient SQL interval query. This allows for an efficient
implementation of queries on metadata involving transitive closures of the is4
relation.

Topic (turi, parent, title, created) Topic (turi, label, title, created)
Link (turi, targetpeer, targetturi) Link (label, targetpeer, targetlabel)
Post (puri, turi, title, created, resourceRef) Post (puri, label, title, created, resourceRef)

(a) no labeling scheme (b) using a labeling scheme

Fig. 5: Relational schema representation of peer metadata

To illustrate the mechanism, we chose a Dewey code [8]. In the schema of Fig.
5(b) attribute parent has been replaced by the label (Dewey code) of the term.
Attribute turi (targetturi) has been replaced by the term label (targetlabel) in tables
Link and Post. We are now ready to express the RQL queries in SQL with the
schema given in Fig. 5(b).

4.2 Query evaluation

We give an execution plan for the network query Q1 (posts under Searching)
successively for strategy 1 and strategy 2. The term Searching is identified by a

Dewey code / in the execution plan. Previously, in any peer p crossing links can be
eliminated (Proposition 1) by the following SQL command:

delete from Link r1 where

exists (select * from Link 12 where rl.peer = r2.peer and
not (rl.label = r2.1abel and r1.targetlabel = r2.targetlabel) and
r2.]abel >=r1.label and r2.label < rl.label | | 'XFF' and
rl.targetlabel>=r2.targetlabel and rl.targetlabel<r2.targetlabel | |'XFF")

where || denotes string concatenation and label || 'XFF' is the greatest Dewey code
> label (see [7] for a discussion on SQL implementation with labeling schemes).

Execution Plan Q1(p, /), strategy 1

(1) 0 :=select puri, title, created, resourceRef from Post
where label >=[and label <1 | | 'xFF'
(2) N = select distinct targetpeer from Link

where label >=[and label <[| | 'xFF'
3) for each fp in N

4) L = select distinct targetlabel from Link
where label >=1 and label <[| | 'xFF' and targetpeer = tp
(5) Lmin = Mll’l(L)
(6) for each #/ in L,
(7) 0:=00U Ql(p,)
(8) end for
) return Q

Min(L) is a function calculating L., from L based on one of the following
algorithms 1bis and Iter which take advantage of the order on labeling schemes: ¢ is
an ancestor of ¢"if /() is a prefix of /(¢); then in lexicographic order /(£)<I(t’).

Algorithm A1
Input: L
Output: Ly,
(1) Lmin =
2) min = "XFF'
3) fori:=1.|L| do

4) if — prefix(min, L[i]) then
%) min = L[i]

(6) Liin = Lipin U {mm}

(7) end if

(8) return L,

Algorithm A1 is linear in the cardinality of L. prefix(l, I') is a boolean function that
returns true if / is a prefix of /. Link is assumed to be initially sorted on the target

label and the SQL computation of L is assumed to keep the target labels sorted.
Algorithm A2 which does not assume any sorting on labels in L is quadratic in |L|.

Algorithm A2
Input: L
Output: Ly
(l) Lmin =
(2) fori:=1.|L| do

3) min = L[i]

4) forj:=1.|L] do

5) if prefix(L[j], min) then min := L[j]
(6) if min = L[i] then Ly, := Ly Y {min}
(7) end for

() return Ly,

Note that L, can be computed by the following SQL query, but the execution of
this SQL query is less efficient than the direct implementation of Algorithm A2.

L. = select targetlabel from Link rl
where rl.]label >=/ and rl.]label <! || 'XFF' and r.targetpeer = tp and
not exists (select * from Link r2
where r2.targetpeer = tp and r2.label >=[and r2.label <!/ | | 'xFF' and
r2.targetlabel > rl.targetlabel and r2targetlabel < r1.targetlabel | |'xFF")

Execution plan Q1(p, /, p,), strategy 2
(1) R :=select puri, title, created, resourceRef from Post
where label >=[and label <[| | 'xFF'
(2) ifp=pothen Q:=QUR
(3) else Send(R, py)
(4) N :=select distinct targetpeer from Link
where label >=[and label <[| | 'xFF'
(5) foreachtpin N
(6) L :=select distinct targetlabel from Link
where label >=1 and label <[| | 'xFF' and targetpeer = tp
(7) Luin := Min(L)
(®) for each #/ in Ly,

) Q1(tp, 1, po)
(10) end for

One can design an execution plan for other network queries. As an example, Q3’s
plan resembles Q1°s plan, but the local answer is replaced by the following command
Q :=select puri, title, created, resourceRef from Post

where label >=1 and label <! | | 'xFF' and created >=2004-01-01

Queries evaluated on a single peer are straightforward as well. For example:

Q2. Local posts under Searching ? (/ is the label of Searching)
select purij, title, created, resourceRef from Post
where label >=[and label <[| | 'xFF'

Q4. Local sons (one hop descendent) topics of Searching?
select turi, title, created from Topic
where label >=1 and label </ | | 'xFF' and length(label) = length(l) + 1

S Implementation and preliminary experimentation

In section 4 we showed that the fixpoint query evaluation could be optimized by
eliminating redundant retrievals of the same posts when calling neighbor peers. The
objective of this section is to assess this through an experiment, by evaluating the
saving in number of (redundant) calls to neighbors as well as the saving in number of
(redundant) posts returned to the user, through an experiment on real life metadata,
namely 5 ODP (dmoz.org) hierarchies for which there exist links between terms of
separate hierarchies. Table 1 gathers statistics on the ODP hierarchies. For instance,
the “Software” hierarchy includes 2316 terms. The average depth of a leaf term is
4.79 and the maximal depth is 9. The average (maximal) number of subtopics of a
given topic is 4.44 (62). The average number of posts attached to a topic is 17.9
(41472 posts in the whole hierarchy). The number of links to neighbor peers is 124:
5.3 percent of topics in the hierarchy have a link.

Categories Topics Posts Links
Depth Fan-out # Post/topic # Link/topic
avg. avg. avg. (max) in avg.
(max) (max)
Internet 1087 | 4.41(8) | 5.10(65) | 18307 16.8 (254) 73 0.067
Software [2316 | 4.79(9) | 4.44(62) | 41472 17.9 (469) | 124 0.053
Hardware | 226 | 3.71(6) | 4.26(17) | 6372 | 28.2(255) 39 0.172
Systems 535 | 4.68(8) | 5.24(51) | 4642 8.7.(92) 38 0.071
Computer | 190 | 4.18(5) | 6.78 (51) | 1906 10 (121) 8 0.042
Science
Total 4354 | 435(9) | 5.16 (65) | 72699 16.7 (469) | 282 0.065

Table 1: Statistics on 5 ODP hierarchies

For this preliminary experiment, we made the following implementation choices:
1) Without loss of generality we choose query plan Q1 as a query the
performance of which is evaluated.
2) Provided that terms are coded according to some scheme (see section 4),
interval SQL queries efficiently implement ancestor/descendent queries,

central to metadata querying in our context. It was shown in [7] that such term
coding provides a very significant gain.

3) 5 peers (one per ODP hierarchy) were implemented by a single Oracle
database whose schema obeys that of figure 6b, in which an attribute with
name peer is added to each table. The recursive network query Q1(p, /) is
implemented by a PL/SQL query. The same result, the same calls and same
number of calls are obtained with this implementation as with that in which
each of the 5 peers would have been implemented in a separate database.

4) As far as strategy is concerned, depending on the network traffic and topology,
one among the two strategies 1 and 2 might be more efficient. As
aforementioned, evaluating the impact of traffic and topology on the strategy
choice is left as future work. Without loss of generality, strategy 1 was chosen.

5) We compare three implementations of the query plan. In variant (1), all links
are followed. No redundant links are eliminated. In other words each link in
the set called L is followed (L, is not calculated: see section 4.2, execution of
Q1, strategy 1). In the second implementation (variant (2)), the computation of
Lyyin 1s done according to Algorithm A2 (the Oracle implementation does not
allow L to be sorted and thus to use algorithm Al). Last, variant (3)
implements Algorithm 1bis and thus saves other redundant calls as illustrated
in Fig. 4.

6) We run queries with topics at different depths (levels). The queries were issued
in all hierarchies and the number of queries per level is equal to the number of
terms in the hierarchy at this level. Queries that do not require to follow a link
(local queries) are discarded from the evaluation. For each networked query,
we counted the number of calls to neighbor peers and the number of posts
returned in each of the three variants. A query is optimizable whenever at least
a redundant link would be eliminated by the evaluation in variant (3). 24
redundant links (among 282) were eliminated prior to running the queries
(Proposition 1).

8 100% i 100 . 25000
S a0% g 80 @Plan (1) [g 20000 Bran () H
E 60% \ g_ 60 BPlan(2) || E’ 15000 ®Plan 2) |
£ \ - OPlan (3) P OPian (3)
S 0% 2 40 £ 10000
% oo S 20 & 5000
5] * o * 0 i
& 0%

1 2 3 4 5 12 3 4 5 12 3 45

Level Level Level
(a) (b) (c)

Fig. 6: Experimental results on the query evaluation

Fig. 6 displays for each level: (a) the percentage of optimizable queries, (b) the
average number of calls and (c) the average number of posts returned by an
optimizable query in each the three variants. From Fig. 6, the optimization of section
4 is worth only for queries with topics at small depth (level 1): most or all links are

followed and then more redundancies occur. This is confirmed by Table 2 that
displays for each level,
a) the total number of queries as well as those that required following at least a
link to another peer and those for which at least a redundant link exists
b) the number of calls to neighbor peers in each of the three variants
¢) the number of posts returned to the user in each of the variants.

Lev. Net. Queries Plan (1) Plan (2) Plan (3)
opt. #calls | #posts | #calls | #posts | #calls | #posts
1 5 5 (100%) 85 22987 47 20132 31 | 19121
2 57 | 14 (24.5%) 20 3620 15 3260 13 3196
3 88 | 12 (13.6%) 9 1144 8 1061 6 1018
4 55 7 (12.7%) 8 615 7 537 6 501
5 24 1 (4.1%) 5 177 5 177 4 93

Table 2: Experimental results on the query evaluation

6 Related work and conclusion

Managing RDF-based knowledge in P2P networks is a challenge toward combining
the Semantic Web and P2P technologies for novel applications. Several projects
follow different approaches to develop such P2P networks. Edutella [15] relies on a
hybrid architecture where the peers are connected to a super-peer. Super-peers help
routing a given query to the peers able to answer. SWAP [5] relies on an RDF
metadata model to define knowledge in peers and to relate them in a social metaphor
as a basis for semantic query routing. In contrast to the pure P2P approach, in the
InfoQuilt system [17] a centralized ontology allows for the mediation of distributed
queries over multiple peers. Last but not least, RDFPeers [6] is a scalable and
distributed RDF repository for storing, indexing and querying individual RDF triples.
It relies on a structured P2P network that stores metadata in self-organized nodes by
applying globally known hash functions.

Another approach has been recently exploited to build semantic interoperability
among data sources in a bottom-up manner. It relies on an architecture where
semantic mappings are locally defined and used in different peers. In other words,
data are organized and annotated according to local schemas without any global
agreement. Due to the existence of such local mappings between different (peer)
schemas, i.e., established in a P2P manner, queries could be translated and distributed
over peers connected through a semantic glue. Such a system significantly differs
from the aforementioned P2P networks where peers are only topologically connected.
Piazza [10] is known as a first project that aims at building semantic interoperability
among XML/RDF sources for semantic web applications.In the SomeWhere network
[2], simple ontologies modeled in description logic are used to describe data sources.
More generally, Chatty Web [1] allows for assessing the quality of semantic
mappings in a network (i.e., information-loss incurred through a transformation,
semantic similarity achieved through a cycle).

We have provided a P2P network that relies on a simple taxonomy model for
managing distributed RDF metadata. As proposed in [19, 20], articulations among
data sources in such a network are modeled with an isA semantics. In this paper, we
have illustrated the power of RQL for querying both data and metadata in the
network. Especially, we have exhibited two fully distributed and scalable strategies of
query evaluation. An optimization has been considered for the fixpoint evaluation.
Furthermore, we have applied in the network implementation an appropriate coding
of topics in order to speed up query evaluation [7]. Since no real life data was
available from applications such as the Web of people, we have assessed the
performance gain on ODP hierarchies. As a future work we intend to perform a more
thorough performance evaluation with larger real life or synthetic data sets, stored in a
large number of peers, including a network and traffic cost model in order to compare
the two evaluation strategies.

Acknowledgements

Thanks go to Dimitris Plexousakis for helpful discussions on the evaluation
strategies and to the referees for their constructive comments

References

1. Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The chatty web: emergent semantics
through gossiping. In Proc. of the 12th International World Wide Web Conference: 197-
206, 2003.

2. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Somewhere in the
semantic web. LRI Technical Report, 2004.

3. Agrawal, R, Borgida, A., Jagadish, H.V.: Efficient management of transitive relationships
in large data and knowledge bases. In Proc. of the SIGMOD Inter. Conf. On Manag. Of
Data, pages 253--262, 1989.

4. Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: On Storing Voluminous
RDF Descriptions: The case of Web Portal Catalogs. In 4th International Workshop on
the Web and Databases, ACM SIGMOD/PODS, CA, 2001.

5. Broekstra, J., Ehrig, M., Haase, P., van Harmelen, F., Kampman, A., Sabou, M., Siebes, R.,
Staab, S., Stuckenschmidt, H., Tempich, C.: A metadata model for semantics-based peer-
to-peer systems. In Workshop on Semantics in Peer-to-Peer and Grid Computing,
WWW'03 Budapest, 2003.

6. Cai, M., Frank, M.: RDFPeers: A Scalable Distributed RDF Repository based on a
structured Peer-to-Peer network. In Proc. of the 13th International World Wide Web
Conference, WWW’04 New York, 2004.

7. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On Labeling Schemes for
the Semantic Web. In Proc. of the 12th International World Wide Web Conference,
WWW'03 Budapest, 2003.

8. Dewey, M.: Dewey Decimal Classification and Relative Index. In Forest Press, 20 edition,
1989.

9. Dietz, P. F.: Maintaining order in a linked list. In Proc. of the Fourteenth Annual ACM
Symposium on Theory of Computing (STOC'82), pages 122--127, 1982.

11.

12.

14.

15.

16.

18.

19.

20.

21.

. Halevy, A.Y., Ives, Z.G., Mork, P., Tatarinov, I.: Piazza: data management infrastructure

for semantic web applications. In Proc. of the Twelfth International World Wide Web
Conference, Budapest, 2003.
Kaplan, H., Milo, T., Shabo, R.: A comparison of labeling schemes for ancestor queries. In
Proc. of the Thirteen Annual Symposium on Discrete Algorithms (SODA'02), 2002.
Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A
Declarative Query Language for RDF. In Proc. of the 11th International World Wide
Web Conference, WWW'02 Hawaii, 2002.

. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions. In Proc. of

the 27th Inter. Conf. on Very Large Data Bases (VLDB'02), 2001.

Magkanaraki, A., Karvounarakis, G., Christophides, V., Plexousakis, D., Ta. T.: Ontology
Storage and Querying. Technical Report No 308, ICS-FORTH, April 2002.

Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmr, M.,
Risch, T.: Edutella: a p2p networking infrastructure based on rdf. In Proc. of the eleventh
international conference on World Wide Web, pages 604-615, ACM Press, 2002.

Plu, M., Agosto, L., Bellec, P., Van De Velde, W.: The Web of People: a dual view on the
WWW. In Proc. of the 12th International World Wide Web Conference, WWW’03
Budapest, 2003.

. Sheth, A., Thacker, S., Patel, S.: Complex relationships and knowledge discovery support

in the InfoQuilt system. In The VLDB Journal, Volume 12, Issue 1, May 2003.

Ta, T.A., Saglio, J.M., Plu, M.: An architecture based on semantic weblogs for exploring
the Web of People. In Workshop Application of Semantic Web Technologies to Web
Communities, ECAI’04 Valencia, 2004.

Tzitzikas, Y., Meghini, C., Spyratos N.: Taxonomy-based Conceptual Modeling for Peer-
to-Peer Networks. In Proc. of the 22th International Conference on Conceptual Modeling,
ER’2003, Chicago, 2003.

Tzitzikas, Y., Meghini, C.: Query evaluation in peer-to-peer networks of taxonomy-based
sources. In Proc. of the 10th International Conference on Cooperative Information
Systems, CoopIS’03. Sicily, 2003.

Tzitzikas, Y., Spyratos, N., Constantopoulos, P.: Mediators over taxonomy-based
information sources. In The VLDB Journal, Vol 15, No 1, 2005.

