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Abstract. Consider a N × n matrix Zn = (Zn
j1j2

) where the individual entries are a

realization of a properly rescaled stationary gaussian random field:

Zn
j1j2

=
1
√

n

∑
(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where h ∈ `1(Z2) is a deterministic complex summable sequence and (U(j1, j2); (j1, j2) ∈ Z2)
is a sequence of independent complex gaussian random variables with mean zero and unit

variance.
The purpose of this article is to study the limiting empirical distribution of the eigen-

values of Gram random matrices such as ZnZ∗n and (Zn + An)(Zn + An)∗ where An

is a deterministic matrix with appropriate assumptions in the case where n → ∞ and
N
n
→ c ∈ (0,∞).

The proof relies on related results for matrices with independent but not identically
distributed entries and substantially differs from related works in the literature (Boutet
de Monvel et al. [3], Girko [7], etc.).
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1. Introduction

The model. Let Zn = (Znj1j2 , 0 ≤ j1 < N, 0 ≤ j2 < n) be a N × n random matrix with
entries

Znj1j2 =
1√
n

∑
(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (U(j1, j2), (j1, j2) ∈ Z2) is a sequence of independent complex Gaussian random
variables (r.v.) such that EU(j1, j2) = 0, EU(j1, j2)2 = 0 and E |U(j1, j2)|2 = 1, and
(h(k1, k2), (k1, k2) ∈ Z2) is a deterministic complex sequence satisfying∑

(k1,k2)∈Z2

|h(k1, k2)| <∞ .

The bidimensional process Znj1j2 is a stationary gaussian field. Indeed, cov(Znj1j2 , Z
n
j′1j

′
2
) =

n−1C(j1 − j′1, j2 − j′2) where

C(j1, j2) =
∑

(k1,k2)∈Z2

h(k1, k2)h∗(k1 − j1, k2 − j2) (1.1)
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(we denote by a∗ the complex conjugate of a ∈ C - we also denote by A∗ the hermitian
adjoint of matrix A).

The main results. The purpose of this article is to establish the convergence of the empirical
distribution of the eigenvalues of various Gram matrices based on Zn. More precisely, we
shall study the convergence of the spectral distribution of ZnZ∗n and (Zn + An)(Zn + An)∗

where An is a deterministic matrix with a given structure. In particular, if Zn is square,
we take An to be Toeplitz. The contribution of this article is to provide a new method to
study Gram matrices based on Gaussian fields. The main idea is to approximate the matrix
Zn by a matrix Z̃n unitarily congruent to a matrix with independent but not identically
distributed entries. This method will allow us to revisit the centered case ZnZ∗n, already
studied by Boutet de Monvel et al. in [3] and to establish the limiting spectral distribution
of the non-centered case (Zn +An)(Zn +An)∗ for some deterministic matrix An.

Motivations. The motivations for such a work are twofold. First of all, we believe that this
line of proof is new. Let us briefly describe the three main elements of it.

The first one is a periodization scheme popular in signal processing and described as
follows:

Z̃n = (Z̃nj1j2) where Z̃nj1j2 =
1√
n

∑
(k1,k2)∈Z2

h(k1, k2)U ((j1 − k1) mod N, (j2 − k2) mod n) ,

where mod denotes modulo.
The second element is an inequality due to Bai [1] involving the Lévy distance L between

distribution functions:

L4(FAA
∗
, FBB

∗
) ≤ 2

N2
Tr(A−B)(A−B)∗Tr(AA∗ +BB∗),

where FAA
∗

denotes the empirical distribution function of the eigenvalues of the matrix AA∗

and Tr(X) denotes the trace of matrix X. With the help of this inequality, we shall prove
that ZnZ∗n and Z̃nZ̃∗n have the same limiting spectral distribution.

The third element comes from the advantage of considering Z̃n. In fact, Z̃n is congruent
(via Fourier unitary transforms) to a random matrix with independent but not identically
distributed entries. Therefore, we can (and will) rely on results established in [8] for Gram
matrices with independent but not identically distributed entries.

The second motivation comes from the field of wireless communications. In a communica-
tion system employing antenna arrays at the transmitter and at the receiver sides, random
matrices extracted from Gaussian fields are often good models for representing the radio
communication channel. In this course, the stationary model as considered above is often
a realistic channel model. The computations of popular receiver performance indexes such
as Signal to Interference plus Noise Ratio or Shannon channel capacity heavily rely on the
knowledge of the limiting spectral distribution of matrices of the type ZnZ∗n (see [5],[10] and
also the tutorial [11] for further references).

About the literature. Various Gram matrices based on Gaussian fields have already been
studied in the literature. The study of the general case (Zn + An)(Zn + An)∗ has been
undertaken by Girko in [7]. Since no assumptions are done on the structure of An, there
might not be any limiting spectral distribution. Girko finds asymptotic approximations of
the Stieltjes transform of (Zn+An)(Zn+An)∗. The method developed in [7] is based on an
exhaustive study of each entry of the resolvent ((Zn +An)(Zn +An)∗ − zI)−1 added to the
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property that sufficiently remote entries are asymptotically independent.
Boutet de Monvel et al. [3] have also studied Gram matrices based on stationary Gaussian

fields in the case where the matrix has the form Vn+ZnZ∗n, Vn being a deterministic Toeplitz
matrix. Their line of proof is based on a direct study of the resolvent, taking advantage of
the gaussianity of the entries.

Disclaimer. In this paper, we study in detail the case where the entries of matrix Zn are
complex. In the real case, the general framework of the proof works as well if one considers
the real counterpart of the Fourier unitary transforms, however the computations are more
involved. We provide some details in Section 5.

2. Assumptions and useful results

2.1. Notations, Assumptions, Stieltjes transforms and Stieltjes kernels. Let N =
N(n) be a sequence of integers such that

lim
n→∞

N(n)
n

= c.

We denote by i the complex number
√
−1, by 1A(x) the indicator function over set A and

by δx0(x) the Dirac measure at point x0. A sum will be equivalently written as
∑n
k=1 or∑

k=1:n. We denote by CN (0, 1) the distribution of the Gaussian complex random variable
U satisfying EU = 0, EU2 = 0, and E |U |2 = 1 (equivalently, U = A + iB where A and B
are real independent Gaussian r.v.’s with mean 0 and standard deviation 1√

2
each).

Assumption A-1. The entries (Znj1j2 , 0 ≤ j1 < N, 0 ≤ j2 < n , n ≥ 1) of the N × n
matrix Zn are random variables defined as:

Znj1j2 =
1√
n

∑
(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (h(k1, k2), (k1, k2) ∈ Z2) is a deterministic complex sequence satisfying

hmax
4
=

∑
(k1,k2)∈Z2

|h(k1, k2)| <∞

and (U(j1, j2), (j1, j2) ∈ Z2) is a sequence of independent random variables with distribution
CN (0, 1).

Remark 2.1. Assumption (A-1) is a bit more restrictive than the related assumption [3],
which only relies on the summability of the covariance function of the stationary process.

For every matrix A, we denote by FAA
∗
, the empirical distribution function of the eigen-

values of AA∗. Since we will study at the same time the limiting spectrum of the matrices
ZnZ

∗
n (resp. (Zn +An)(Zn +An)∗) and Z∗nZn (resp. (Zn +An)∗(Zn +An)), we can assume

without loss of generality that c ≤ 1. We also assume for simplicity that N ≤ n.

When dealing with vectors, the norm ‖ · ‖ will denote the Euclidean norm. In the case of
matrices, the norm ‖ · ‖ will refer to the spectral norm. Denote by C+ the set C+ = {z ∈
C, Im(z) > 0} and by C(X ) the set of bounded continuous functions over a given topological
space X endowed with the supremum norm ‖ · ‖∞.
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Let µ be a probability measure over R. Its Stieltjes transform f is defined by:

f(z) =
∫

R

µ(dλ)
λ− z

, z ∈ C+.

We list below the main properties of the Stieltjes transforms that will be needed in the
sequel.

Proposition 2.1. The following properties hold true:

(1) Let f be the Stieltjes transform of µ, then
- the function f is analytic over C+,
- the function f satisfies: |f(z)| ≤ 1

Im(z) ,
- if z ∈ C+ then f(z) ∈ C+,
- if µ(−∞, 0) = 0 then z ∈ C+ implies z f(z) ∈ C+.

(2) Conversely, let f be a function analytic over C+ such that f(z) ∈ C+ if z ∈ C+

and |f(z)||Im(z)| bounded on C+. If limy→+∞−iy f(iy) = 1, then f is the Stieltjes
transform of a probability measure µ and the following inversion formula holds:

µ([a, b]) = lim
η→0+

1
π

∫ b

a

Imf(ξ + iη) dξ,

where a and b are continuity points of µ. If moreover zf(z) ∈ C+ if z ∈ C+ then,
µ(R−) = 0.

(3) Let Pn and P be probability measures over R and denote by fn and f their Stieltjes
transforms. Then(

∀z ∈ C+, fn(z) −−−−→
n→∞

f(z)
)

⇒ Pn
D−−−−→

n→∞
P.

Denote by MC(X ) the set of complex measures over the topological set X . In the sequel,
we will call Stieltjes kernel every application

π : C+ →MC(X )

either denoted π(z, dx) or πz(dx) and satisfying:

(1) ∀z ∈ C+, ∀g ∈ C(X ), ∣∣∣∣∫ g dπz

∣∣∣∣ ≤ ‖g‖∞
Im(z)

(2) ∀g ∈ C(X ),
∫
g dπz is analytic over C+,

(3) ∀z ∈ C+, ∀g ∈ C(X ) and g ≥ 0 then Im
(∫
g dπz

)
≥ 0,

(4) ∀z ∈ C+, ∀g ∈ C(X ) and g ≥ 0 then Im
(
z
∫
g dπz

)
≥ 0.

2.2. A quick review of the results for matrices with independent entries. In order
to establish the convergence of the empirical distribution of the eigenvalues, we will rely on
the results based on matrices with independent but not identically distributed entries. Let
us recall here those of interest (the assumptions and the statements are based on [8]).

Consider a N × n random matrix Yn where the entries are given by

Y nj1j2 =
Φ(j1/N, j2/n)√

n
Xn
j1j2
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where Xn
j1j2

and Φ are defined below.

Assumption A-2. The complex random variables (Xn
j1j2

; 0 ≤ j1 < N, 0 ≤ j2 < n , n ≥ 1)
are independent and identically distributed (i.i.d.). They are centered with E|Xn

j1j2
|2 = 1 and

there exists ε > 0 such that E|Xn
j1j2

|4+ε <∞.

Assumption A-3. The function Φ : [0, 1] × [0, 1] → C is such that |Φ|2 is continuous and
therefore there exist a non-negative constant Φmax such that

∀(t1, t2) ∈ [0, 1]2, 0 ≤ |Φ(t1, t2)|2 ≤ Φ2
max <∞. (2.1)

Theorem 2.2 (independent entries, the centered case [6]). Assume that (A-2) and (A-
3) hold. Then the empirical distribution of the eigenvalues of the matrix Yn Y ∗n converges
a.s. to a non-random probability measure µ whose Stieltjes transform f is given by f(z) =∫
[0,1]

πz(dx), where πz is the unique Stieljes kernel with support included in [0, 1] and satis-
fying

∀g ∈ C([0, 1]),
∫
g dπz =

∫ 1

0

g(u)

−z +
∫ 1

0
|Φ|2(u,t)

1+c
∫ 1
0 |Φ|2(x,t)πz(dx)

dt
du. (2.2)

If one adds a deterministic pseudo-diagonal matrix Λn to the matrix Yn, the limiting
equation is modified and in fact becomes a system of equations.

Assumption A-4. Let Λn = (Λnij) be a complex deterministic N × n matrix whose non-
diagonal entries are zero. We assume moreover that there exists a probability measure
H( du, dλ) over the set [0, 1]× R with compact support H such that

1
N

N∑
i=1

δ( i
N , |Λn

ii|2
)(du, dλ) D−−−−→

n→∞
H( du, dλ). (2.3)

Denote by Hc the support of the image of probability measure H under the application
(u, λ) → (cu, λ) and by R the support of the measure 1[c,1](du) ⊗ δ0(dλ) where ⊗ denotes
the product of measure. The set H̃ = Hc ∪ R will be of importance in the sequel (see also
Remarks 2.4 and 2.5 in [8] for more information).

Theorem 2.3 (independent entries, the non-centered case [8]). Assume that (A-2), (A-
3) and (A-4) hold. Then the empirical distributions of the eigenvalues of matrices (Yn +
Λn)(Yn + Λn)∗ and (Yn + Λn)∗(Yn + Λn) converge a.s. to non-random probability measures
µ and µ̃ whose Stieltjes transforms f and f̃ are given by

f(z) =
∫
H
πz(dx) and f̃(z) =

∫
H̃
π̃z(dx)

where πz and π̃z are the unique Stieljes kernels with supports included in H and H̃ and
satisfying∫

g dπz =
∫

g(u, λ)
−z(1 +

∫
|Φ|2(u, t)π̃(z, dt, dζ)) + λ

1+c
∫
|Φ|2(t,cu)π(z,dt,dζ)

H(du, dλ) (2.4)
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g dπ̃z = c

∫
g(cu, λ)

−z(1 + c
∫
|Φ|2(t, cu)π(z, dt, dζ)) + λ

1+
∫
|Φ|2(u,t)π̃(z,dt,dζ)

H(du, dλ)

+ (1− c)
∫ 1

c

g(u, 0)
−z(1 + c

∫
|Φ|2(t, u)π(z, dt, dζ))

du

(2.5)

where (2.4) and (2.5) hold for every g ∈ C(H)

3. The limiting distribution in the centered stationary case

We first introduce the following complex-valued function Φ : [0, 1]× [0, 1] → C defined by:

Φ(t1, t2) =
∑

(l1,l2)∈Z2

h(l1, l2)e2πi(l1t1−l2t2) (3.1)

We also introduce the p× p Fourier matrix Fp = (F pj1,j2)0≤j1,j2<p defined by:

F pj1,j2 =
1
√
p

exp 2iπ
(
j1j2
p

)
. (3.2)

Note that matrix Fp is a unitary matrix.

Theorem 3.1 (stationary entries, the centered case [3, 7]). Let Zn be a N × n matrix
satisfying (A-1). Then the empirical distribution of the eigenvalues of the matrix ZnZ

∗
n

converges in probability to the non-random probability measure µ defined in Theorem 2.2.

3.1. Proof of Theorem 3.1. Recall that

Znj1j2 =
1√
n

∑
(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2).

We introduce the N × n matrix Z̃n whose entries are defined by

Z̃nj1j2 =
1√
n

∑
(k1,k2)∈Z2

h(k1, k2)U(j1 − k1 mod N, j2 − k2 mod n).

For simplicity, we shall write Ũn(j1, j2) instead of U(j1 mod N, j2 mod n). Recall that L
stands for the Lévy distance between distribution functions. The main interest in dealing
with matrix Z̃n lies in the following two lemmas.

Lemma 3.2. Consider the N × n matrix Yn = FN Z̃nF
∗
n . Then the entries Y nl1l2 of Yn can

be written

Y nl1l2 =
1√
n

Φ
(
l1
N
,
l2
n

)
Xn
l1l2

where Φ is defined in (3.1) and the complex random variables {Xn
l1l2

, 0 ≤ l1 < N, 0 ≤ l2 < n}
are independent with distribution CN (0, 1).
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Proof of Lemma 3.2. We first compute the individual entries of matrix Yn = FN Z̃nF
∗
n :

Y nl1l2 =
∑

j1 = 0 : N − 1
j2 = 0 : n− 1

e2iπ(
j1l1

N − j2l2
n )

√
Nn

Z̃nj1j2

=
1√
n

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

e2iπ(
j1l1

N − j2l2
n )

√
Nn

∑
(k1,k2)∈Z2

h(k1, k2)Ũn(j1 − k1, j2 − k2)

=
1√
n

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

e2iπ(
j1l1

N − j2l2
n )

√
Nn

∑
m1 = 0 : N − 1
m2 = 0 : n− 1

U(m1,m2)

×
∑

(k1,k2)∈Z2

h(j1 −m1 + k1N, j2 −m2 + k2n)

=
1√
n

Φ
(
l1
N
,
l2
n

) ∑
m1 = 0 : N − 1
m2 = 0 : n− 1

U(m1,m2)
e2iπ(

m1l1
N −m2l2

n )
√
Nn

.

Let Xn
l1l2

be the random variable defined as

Xn
l1l2 =

∑
m1 = 0 : N − 1
m2 = 0 : n− 1

U(m1,m2)
e2iπ(

m1l1
N −m2l2

n )
√
Nn

for 0 ≤ l1 ≤ N − 1 and 0 ≤ l2 ≤ n − 1. Denoting by Xn and Un the N × n ma-
trices with entries Xn

l1l2
and U(l1, l2) respectively, we then have Xn = FNUnF

∗
n . Define

vec(A) to be the vector obtained by stacking the columns of matrix A. Then the Nn × 1
vectors X = vec(Xn) and U = vec(Un) are related by the equation X = (F ∗n ⊗ FN )U
(Lemma 4.3.1 in [9]), where ⊗ denotes the Kronecker product of matrices. The vector
X is a complex Gaussian random vector that satisfies EX = (F ∗n ⊗ FN ) EU = 0 and
EXXT = (F ∗n ⊗ FN ) EUUT (F ∗n ⊗ FN ) = 0. After noticing that the matrix (F ∗n ⊗ FN ) is
unitary, we furthermore have EXX∗ = (F ∗n ⊗ FN ) EUU∗ (F ∗n ⊗ FN )∗ = InN where Ip is the
p× p identity matrix. In short, the entries of Xn are independent and have the distribution
CN (0, 1). Lemma 3.2 is proved. �

Lemma 3.3. Let Bn be a N × n deterministic matrix such that the sequence 1
nTrBnB∗n is

bounded. Then

L
(
F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗

)
P−−−−→

n→∞
0,

where P−→ denotes convergence in probability.

Proof of Lemma 3.3. Bai’s inequality yields:

L4(F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗) ≤ 2
n2

Tr(Zn − Z̃n)(Zn − Z̃n)∗

× Tr
(
(Zn +Bn)(Zn +Bn)∗ + (Z̃n +Bn)(Z̃n +Bn)∗

)
(3.3)
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We introduce the following notations:

αn =
1
n

Tr(Zn − Z̃n)(Zn − Z̃n)∗,

βn =
1
n

Tr(Zn +Bn)(Zn +Bn)∗, β̃n =
1
n

Tr(Z̃n +Bn)(Z̃n +Bn)∗.

With these notations, Inequality (3.3) becomes:

L4
(
F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗

)
≤ 2αn(βn + β̃n).

In order to prove that L(F (Zn+Bn)(Zn+Bn)∗ , F (Z̃n+Bn)(Z̃n+Bn)∗) P−→ 0, it is sufficient to prove
that αn(βn + β̃n)

P−→ 0, which follows from αn
P−→ 0 and βn and β̃n being tight. Indeed,

P{αn(βn + β̃n) ≥ ε} ≤ P{αnβn ≥ ε/2}+ P{αnβ̃n ≥ ε/2}

≤ P
{
αn ≥

ε

2K

}
+ P{βn ≥ 2K}+ P

{
αn ≥

ε

2K̃

}
+ P{β̃n ≥ 2K̃}.

Let us first prove that

αn
P−→ 0. (3.4)

Since αn is non-negative, it is sufficient by Markov’s inequality to prove that Eαn → 0.

αn =
1
n

Tr(Zn − Z̃n)(Zn − Z̃n)∗

=
1
n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∣∣∣Znj1,j2 − Z̃nj1,j2

∣∣∣2

=
1
n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∣∣∣ ∑
(k1,k2)∈Z2

h(k1, k2)V (j1 − k1, j2 − k2)
∣∣∣2,

where V (j1, j2) stands for U(j1, j2)− Ũn(j1, j2). Thus

Eαn =
1
n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∑
(k1, k2) ∈ Z2

(k′1, k′2) ∈ Z2

h(k1, k2)h∗(k′1, k
′
2)EV (j1−k1, j2−k2)V ∗(j1−k′1, j2−k′2)

Introduce the set J = {0, · · · , N − 1} × {0, · · · , n− 1}. Then

EV (l1, l2)V ∗(l′1, l
′
2) = 1Z2−J (l1, l2) 1Z2−J (l′1, l

′
2)

×

 1(l1,l2)(l
′
1, l

′
2) +

∑
(m1,m2)∈Z2

1(l1,l2)(l
′
1 +m1N, l

′
2 +m2n)
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and Eαn becomes Eαn = Eαn,1 + Eαn,2 where

Eαn,1 =
1
n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∑
(k1,k2)∈Z2

|h(k1, k2)|2 1Z2−J (j1 − k1, j2 − k2),

Eαn,2 =
1
n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∑
(k1, k2) ∈ Z2

(k′1, k′2) ∈ Z2

h(k1, k2)h∗(k′1, k
′
2) 1Z2−J (j1 − k1, j2 − k2)

× 1Z2−J (j1 − k′1, j2 − k′2)
∑

(m1,m2)∈Z2

1(k1,k2)(k
′
1 +m1N, k

′
2 +m2n)

Let us first deal with Eαn,2.

Eαn,2 ≤
1
n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∑
(k1,k2)∈Z2

|h(k1, k2)| 1Z2−J (j1 − k1, j2 − k2)

×
∑

(k′1,k
′
2)∈Z2

|h(k′1, k′2)| 1Z2−J (j1 − k′1, j2 − k′2)

×
∑

(m1,m2)∈Z2

1(k1,k2)(k
′
1 +m1N, k

′
2 +m2n).

Since h is summable over Z2 by (A-1),∑
(k′1,k

′
2)∈Z2

|h(k′1, k′2)| 1Z2−J (j1 − k′1, j2 − k′2)
∑

(m1,m2)∈Z2

1(k1,k2)(k
′
1 +m1N, k

′
2 +m2n)

is bounded by hmax and

Eαn,2 ≤
hmax

n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∑
(k1,k2)∈Z2

|h(k1, k2)| 1Z2−J (j1 − k1, j2 − k2). (3.5)

Since

1Z2−J (j1 − k1, j2 − k2) = 1 ⇔
{
j1 − k1 < 0 or j1 − k1 ≥ N,
j2 − k2 < 0 or j2 − k2 ≥ n

we get: ∑
(k1,k2)∈Z2

|h(k1, k2)| 1Z2−J (j1 − k1, j2 − k2)

=
∑

k1 = −∞ : j1 −N ;
k2 = −∞ : j2 − n

|h(k1, k2)|+
∑

k1 = −∞ : j1 −N ;
k2 = j2 + 1 : ∞

|h(k1, k2)|

+
∑

k1 = j1 + 1 : ∞;
k2 = −∞ : j2 − n

|h(k1, k2)|+
∑

k1 = j1 + 1 : ∞;
k2 = j2 + 1 : ∞

|h(k1, k2)|.

The changes of variable
{
j′1 = N − 1− j1
k′1 = −k1

and
{
j′2 = n− 1− j2
k′2 = −k2

yield∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∑
k1 = −∞ : j1 −N ;
k2 = −∞ : j2 − n

|h(k1, k2)| =
∑

j′1 = 0 : N − 1
j′2 = 0 : n− 1

∑
k′1 = j1 + 1 : ∞;
k′2 = j2 + 1 : ∞

|h(−k′1,−k′2)|.
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By performing similar changes of variables, one gets:∑
j1 = 0 : N − 1
j2 = 0 : n− 1

∑
(k1,k2)∈Z2

|h(k1, k2)| 1Z2−J (j1 − k1, j2 − k2)

=
∑

j1 = 0 : N − 1
j2 = 0 : n− 1

∑
k1 = j1 + 1 : ∞;
k2 = j2 + 1 : ∞

|h(−k1,−k2)|+ |h(−k1, k2)|+ |h(k1,−k2)|+ |h(k1, k2)|

︸ ︷︷ ︸
S(j1,j2)

.

In order to check that
1
n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

S(j1, j2) −−−−−−−−−−→
n→∞ ; N/n→c

0, (3.6)

we introduce T (j) =
∑
k1+k2≥j+2 |h(−k1,−k2)|+ |h(−k1, k2)|+ |h(k1,−k2)|+ |h(k1, k2)|. Is

is straightforward to check that T (j) −−−→
j→∞

0 and that S(j1, j2) ≤ T (j1 + j2). We prove

(3.6) by a Césaro-like argument: Let n0 ≤ N be such that T (n0 + 1) ≤ ε. We have

1
n2

∑
j1 = 0 : N − 1
j2 = 0 : n− 1

S(j1, j2) =
1
n2

∑
0≤j1+j2≤n0

S(j1, j2) +
1
n2

∑
n0 + 1 ≤ j1 + j2;
j1 ≤ N − 1, j2 ≤ n− 1

S(j1, j2).

(3.7)
If n is large enough, then the first part of the right handside of (3.7) is lower than ε. Moreover,

1
n2

∑
n0 + 1 ≤ j1 + j2;
j1 ≤ N − 1, j2 ≤ n− 1

S(j1, j2) ≤
1
n2

∑
n0 + 1 ≤ j1 + j2;
j1 ≤ N − 1, j2 ≤ n− 1

T (n0 + 1) ≤ ε

and (3.6) is proved. By pluging (3.6) into (3.5), we prove that Eαn,2 → 0. Using the same

kind of arguments, one proves that Eαn,1 → 0. Finally, (3.4) is proved: αn
P−→ 0.

Let us now check that

∃K > 0, Eβn ≤ K and ∃ K̃ > 0, E β̃n ≤ K̃. (3.8)

This will imply the tightness of βn and β̃n.
Recall that by assumption there exists Bmax such that supn

1
nTrBnB∗n ≤ Bmax. Consider

now:

1
n

Tr(Zn +Bn)(Zn +Bn)∗ ≤

((
1
n

TrZn Z∗n

) 1
2

+
(

1
n

TrBnB∗n

) 1
2
)2

≤

((
1
n

TrZn Z∗n

) 1
2

+B
1
2
max

)2

In particular,

E
Tr(Zn +Bn)(Zn +Bn)∗

n
≤ E

TrZnZ∗n
n

+ 2B
1
2
maxE

(
TrZnZ∗n

n

) 1
2

+Bmax

(a)

≤ E
TrZnZ∗n

n
+ 2B

1
2
max

(
E
(

TrZnZ∗n
n

)) 1
2

+Bmax (3.9)
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where (a) follows from Jensen’s inequality. Notice that (3.9) still holds if one replaces Zn by
Z̃n. Therefore in order to prove (3.8), it is sufficient to prove that:

∃ K ′ > 0, E
(

TrZnZ∗n
n

)
≤ K ′ and ∃ K̃ ′ > 0, E

(
TrZ̃nZ̃∗n

n

)
≤ K̃ ′.

Consider

E
(

TrZnZ∗n
n

)
=

1
n

∑
j1 = 1 : N
j2 = 1 : n

E|Znj1j2 |
2 = NE|Zn11|2 =

N

n
C(0, 0),

where C is defined by (1.1). This quantity is asymptotically bounded. From lemma 3.2, we
have

E

(
TrZ̃nZ̃∗n

n

)
= E

(
TrYnY ∗n

n

)
=

1
n2

∑
j1 = 1 : N
j2 = 1 : n

∣∣∣∣Φ( j1N ,
j2
n

)∣∣∣∣2 E|Xn
j1j2 |

2 ≤ N

n
Φ2

max,

which is also asymptotically bounded. Eq. (3.8) is proved and so is Lemma 3.3. �

Proof of Theorem 3.1. Lemma 3.3 implies that

P
{
L
(
FZnZ

∗
n , F Z̃nZ̃

∗
n

)
≥ ε
}
−−−−→
n→∞

0 for every ε > 0. (3.10)

By lemma 3.2, FN Z̃nZ̃∗nF
∗
N = YnY

∗
n . Since FN is unitary, Z̃nZ̃∗n and YnY

∗
n have the same

eigenvalues. Moreover, matrix Yn fulfills (A-2) and the variance profile Φ defined in (3.1)
satisfies (A-3) since (h(k1, k2) ∈ (k1, k2)Z2) is summable; therefore one can apply Theorem
2.2. In particular,

F Z̃nZ̃
∗
n −−−−→

n→∞
µ a.s. =⇒ ∀ε > 0, P

{
L
(
F Z̃nZ̃

∗
n , µ

)
≥ ε
}
−−−−→
n→∞

0 (3.11)

where µ is the probability distribution defined in Theorem 2.2. Eq. (3.10) together with
(3.11) imply that FZnZ

∗
n

P−→ µ and Theorem 3.1 is proved. �

4. The limiting distribution in the non-centered stationary case

Recall the definitions of function Φ and matrix Fp (respectively defined in (3.1) and (3.2)).

Theorem 4.1 (stationary entries, the non-centered case). Let Zn be a N × n matrix
satisfying (A-1); let An be a N × n matrix such that Λn = FNAnF

∗
n is N × n pseudo-

diagonal and satisfies (A-4). Then the empirical distributions of the eigenvalues of matrices
(Zn + An)(Zn + An)∗ and (Zn + An)∗(Zn + An) converge in probability to the non-random
probability measures µ and µ̃ defined in Theorem 2.3.

Proof of Theorem 4.1. We denote by Fn = F (Zn+An)(Zn+An)∗ and F̃n = F (Z̃n+An)(Z̃n+An)∗ .
Since Λn satisfies (A-4), 1

nTrAnA∗n = 1
nTrΛnΛ∗n is bounded and Lemma 3.3 implies that

P
{
|L(Fn, F̃n)| ≥ ε

}
−−−−→
n→∞

0 for every ε > 0. (4.1)

By lemma 3.2 and the assumption over An,

(Z̃n +An)(Z̃n +An)∗ = FN (Yn + Λn)(Yn + Λn)∗F ∗N .
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Since the Fourier matrix FN is unitary, (Z̃n+An)(Z̃n+An)∗ and (Yn+Λn)(Yn+Λn)∗ have
the same eigenvalues. Since Φ defined in (3.1) satisfies (A-3), the matrices Yn and Λn fulfill
assumptions (A-2), (A-3) and (A-4) therefore one can apply Theorem 2.3. In particular,

F̃n −−−−→
n→∞

µ a.s. =⇒ ∀ε > 0, P
{
|L(F̃n, µ)| ≥ ε

}
−−−−→
n→∞

0 (4.2)

where µ is the probability distribution defined in Theorem 2.3. Eq. (4.1) together with (4.2)
imply that Fn

µ−→ P and Theorem 4.1 is proved. �

In the square case n× n, we can deal with slightly more general matrices An.

Assumption A-5. The n × n matrix An is a Toeplitz matrix defined as An = (a(j1 −
j2))0≤j1,j2<n where (a(j))j∈Z is a deterministic sequence of complex numbers satisfying:∑

j∈Z
|a(j)| <∞.

Let ψ : [0, 1] 7→ C be the so called symbol of An defined as

ψ(t) =
∑
j∈Z

a(j)e2iπjt. (4.3)

Due to (A-5), ψ is bounded and continuous.

Theorem 4.2 (stationary entries, the non-centered square case). Let Zn be a n× n matrix
satisfying (A-1); let An be a n×n matrix satisfying (A-5). Then the empirical distributions
of the eigenvalues of matrices (Zn + An)(Zn + An)∗ and (Zn + An)∗(Zn + An) converge in
probability to non-random probability measures µ and µ̃ whose Stieltjes transforms f and f̃
are given by

f(z) =
∫

[0,1]

πz(dx) and f̃(z) =
∫

[0,1]

π̃z(dx)

where πz and π̃z are the unique Stieltjes kernels with supports included in [0, 1] and satisfying
the system of equations:∫

g dπz =
∫ 1

0

g(u)

−z(1 +
∫
|Φ(u, ·)|2dπ̃z) + |ψ(u)|2

1+
∫
|Φ(·,u)|2dπz

du (4.4)

∫
g dπ̃z =

∫ 1

0

g(u)

−z(1 +
∫
|Φ(·, u)|2dπz) + |ψ(u)|2

1+
∫
|Φ(u,·)|2dπ̃z

du (4.5)

for every function g ∈ C([0, 1]).

Proof. The proof is based on the fact that a Toeplitz matrix An is very close to a Toeplitz
circulant matrix Ãn defined in such a way that the diagonal matrix Λn = FnÃnF

∗
n satisfies

assumption (A-4). Denoting by ψn the truncated function ψn(t) =
∑n
j=−n a(j)e

2iπjt, we
choose Ãn to be the matrix whose entries are defined by

ãnj1j2 =
1
n

n−1∑
k=0

ψn

(
k

n

)
exp

(
−2πik(j1 − j2)

n

)
.

Notice that in this case, Λn = FnÃnF
∗
n is given by Λn = diag

([
ψn(0), ψn( 1

n ), . . . , ψn(n−1
n )
])

where diag(v) is the diagonal matrix bearing the entries of the vector v on its diagonal.
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One can also prove that the complex number ãn(j1 − j2) = ãnj1j2 satisfies ãn(0) = a(0) +
a(n) + a(−n) and

ãn(j) =
{
a(j) + a(j − n) if n− 1 ≥ j > 0,
a(j) + a(j + n) if − n+ 1 ≤ j < 0.

We denote by Fn and F̆n the distribution functions Fn = F (Zn+An)(Zn+An)∗ and F̆n =
F (Zn+Ãn)(Zn+Ãn)∗ . We shall prove that L(Fn, F̆n) → 0 as n→∞.
Bai’s inequality yields:

L4(Fn, F̆n) ≤ 2
n2

Tr(An − Ãn)(An − Ãn)∗Tr(AnA∗n + ÃnÃ
∗
n). (4.6)

We first prove that n−1Tr(AnA∗n) and n−1Tr(ÃnÃ∗n) are bounded:

1
n

TrAnA∗n =
1
n

n−1∑
j1,j2=0

|a(j1 − j2)|2 =
n−1∑

j=−n+1

|a(j)|2
(

1− |j|
n

)
≤
(∑
j∈Z

|a(j)|
)2

. (4.7)

Moreover,
1
n

TrÃnÃ∗n =
1
n

TrΛnΛ∗n =
1
n

n−1∑
j=0

∣∣∣∣ψn( jn
)∣∣∣∣2 ≤ (∑

j∈Z
|a(j)|

)2

. (4.8)

We now prove that
1
n

Tr(An − Ãn)(An − Ãn)∗ −−−−→
n→∞

0. (4.9)

Indeed,

1
n

Tr(An − Ãn)(An − Ãn)∗ =
1
n

n−1∑
j1,j2=0

|a(j1 − j2)− ãn(j1 − j2)|2

=
n−1∑

j=−(n−1)

|a(j)− ãn(j)|2
(

1− |j|
n

)

= |a(−n) + a(n)|2 +
n−1∑
j=1

(
|a(j − n)|2 + |a(n− j)|2

)(
1− j

n

)

= |a(−n) + a(n)|2 +
n−1∑
j=1

j

n

(
|a(j)|2 + |a(−j)|2

)

≤ |a(−n) + a(n)|2 +
1
n

J∑
j=1

j
(
|a(j)|2 + |a(−j)|2

)
+

∞∑
j=J+1

(
|a(j)|2 + |a(−j)|2

)
By first taking J large enough then n large enough, the claim is proved by a 2ε-argument.
Eq. (4.6) together with the arguments provided by (4.7), (4.8) and (4.9) imply that

L(Fn, F̆n) −−−−→
n→∞

0.

It remains to prove that F̆n converges towards the non random probability distribution
characterized by equations (4.4) and (4.5). As previously, the variance profile Φ defined in
(3.1) satisfies (A-3). Moreover, we have

1
n

n∑
i=1

δ( i
n ,|ψn( i−1

n )|2
) −−−−→

n→∞
H(du, dλ)



14 HACHEM ET AL.

where H(du, dλ) is the image of the Lebesgue measure over [0, 1] under u 7→ (u, |ψ(u)|2).
Therefore Λn satisfies (A-4) and Theorem 4.1 can be applied. This completes the proof of
Theorem 4.2. �

5. Remarks on the real case

In the case where the entries of matrix Zn are given by

Znj1j2 =
1√
n

∑
(k1,k2)∈Z2

h(k1, k2)U(j1 − k1, j2 − k2),

where (h(k1, k2), (k1, k2) ∈ Z2) is a deterministic real and summable sequence and where
U(j1, j2) are real standard independent gaussian r.v.’s, the conclusion of Lemma 3.2 is no
longer valid. In fact the entries of Yn = FN Z̃nF

∗
n are far from being independent since

straightforward computation yields:

Y nl1,l2 = Y n
∗

N−l1,n−l2 for 0 < l1 < N and 0 < l2 < n.

We introduce the p× p orthogonal matrix Qp = (QPj1j2)0≤j1,j2<p defined by:

Qp0,j2 =
1
√
p
, 0 ≤ j2 < p.

In the case where p is even, the entries Qp(j1, j2) (j1 ≥ 1) are defined by
Qp2j1−1,j2

=
√

2
p cos

(
2πj1j2
p

)
if 1 ≤ j1 ≤ p

2 − 1, 0 ≤ j2 < p;

Qp2j1,j2 =
√

2
p sin

(
2πj1j2
p

)
if 1 ≤ j1 ≤ p

2 − 1, 0 ≤ j2 < p;

Qpp−1,j2
= (−1)j2

√
p if 0 ≤ j2 < p.

In the case where p is odd, they are defined by Qp2j1−1,j2
=
√

2
p cos

(
2πj1j2
p

)
if 1 ≤ j1 ≤ p−1

2 , 0 ≤ j2 < p;

Qp2j1,j2 =
√

2
p sin

(
2πj1j2
p

)
if 1 ≤ j1 ≤ p−1

2 , 0 ≤ j2 < p.

In the sequel, bxc stands for the integer part of x. The following result is the counterpart of
Lemma 3.2 in the real case.

Lemma 5.1. Consider the N × n matrix Wn = QN Z̃nQ
T
n where AT is the transpose of

matrix A. Then the entries Wn
l1l2

of Wn can be written as

Wn
l1l2 =

1√
n

∣∣∣∣Φ( 1
N

⌊
l1 + 1

2

⌋
,
1
n

⌊
l2 + 1

2

⌋)∣∣∣∣Xn
l1l2

where Φ is defined in (3.1) and the real random variables {Xn
l1l2

, 0 ≤ l1 < N, 0 ≤ l2 < n}
are independent standard gaussian r.v.’s.

The proof is computationally more involved but similar in spirit to that of Lemma 3.2. It
is thus ommited.

As a consequence of this lemma, Theorems 3.1 and 4.1 remain true with the following
minor modification: In Eq. (2.2), (2.4) and (2.5), the quantity |Φ|2 must be replaced by Φ2

R

where
ΦR(u, v) = |Φ(u/2, v/2)| .
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Similarly, in the case where the Toeplitz matrix An introduced in (A-5) is real, Theorem 4.2
remains true if one replaces in (4.4) and (4.5) the quantities |Φ|2 and |ψ|2 by Φ2

R and ψ2
R

where
ψR(u) = |ψ(u/2)|.

The proof of Theorem 4.2 can be modified by replacing the Fourier matrices Fp by Qp (see
also [4], chap. 4 for elements about the pseudo-diagonalization of a real Toeplitz matrix via
real orthogonal matrices Qp).
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