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High resolution spectral analysis of mixtures of
complex exponentials modulated by polynomials

Roland Badeau,Member, IEEE, Bertrand David, and Gaël Richard,Member, IEEE

Abstract— High resolution methods such as the ESPRIT al-
gorithm are of major interest for estimating discrete spectra,
since they overcome the resolution limit of the Fourier transform
and provide very accurate estimates of the signal parameters.
In signal processing literature, most contributions focus on
the estimation of exponentially modulated sinusoids in a noisy
signal. In this paper, we introduce a more general class of
signals, involving both amplitude and frequency modulations.
We show that this Polynomial Amplitude Complex Exponentials
(PACE) model is the most general model tractable by high
resolution methods. We develop a generalized ESPRIT algorithm
for estimating the signal parameters, and we show that this model
can be characterized by means of a geometrical criterion.

Index Terms— high resolution, rotational invariance property,
ESPRIT, polynomial modulation, multiple eigenvalues

I. I NTRODUCTION

T He foundation of high resolution methods dates back
from the work by Prony [1] published in 1795, which

aims at estimating a sum of exponentials via linear prediction
techniques. More recently, this approach was further investi-
gated by Pisarenko [2] for estimating sinusoids in noise. Onthe
other hand, modern high resolution methods rely on subspace-
based signal analysis. This is the case of the MUltiple SIgnal
Classification (MUSIC) algorithm [3] and its variant root-
MUSIC [4], the Toeplitz Approximation Method (TAM) [5],
the Estimation of Signal Parameters via Rotational Invariance
Techniques (LS-ESPRIT) [6] and its variants TLS-ESPRIT [7]
and PRO-ESPRIT [8]. In fact, all these estimation methods
are also suitable for the more general Exponential Sinusoidal
Model (ESM), which was successfully applied in the field of
audio signal processing for example [9]–[11]. Additionally,
specific estimation techniques were designed for the ESM,
such as the Minimum-Norm (KT) method [12], the Matrix
Pencil method [13] and the modified KT (MKT) method [14].
A survey of subspace-based signal analysis can be found
in [15]. A different approach for estimating the parameters
of the ESM is based on matching pursuit algorithms [16].

In signal processing literature, the ESM is generally consid-
ered as the general model tractable by high resolution methods.
However, it can be shown that this model is restricted to
signals which only contain single poles. Conversely, the more
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general Polynomial Amplitude Complex Exponentials (PACE)
model proposed in this paper encompasses the multiple poles
case. It describes a more general class of signals, involving
both amplitude and frequency modulations, and leads to an
alternative interpretation of the frequency estimates obtained
by means of high resolution methods. A physical example
of the PACE model is the critically damped simple harmonic
motion of the spring / mass system, which involves a double
pole. Below, a complete estimation scheme is proposed, based
either on linear prediction or on the ESPRIT algorithm.

The paper is organized as follows. In section II, the solution
to general homogeneous linear recursions is discussed, anda
full parameterization is proposed. Then, it is demonstrated in
section III that a Hankel data matrix containing successive
samples of the signal is rank deficient and that its range
space, known as thesignal subspace, is spanned by a so-called
Pascal-Vandermondematrix. In section IV, the generalized
ESPRIT method for estimating the PACE signal model is
presented, and its performance regarding the estimation of
amplitude and frequency modulated sinusoids is illustrated in
section VI. Finally, the main conclusions of this paper are
summarized in section VII, and some theoretical results are
presented in the appendix.

II. D ISCRETE SIGNAL MODEL

A. Homogeneous linear recursions

High resolution methods are historically linked to linear
prediction techniques [1], [2], [12]. Indeed, all of them rely
on the following discrete signal model:

s(t) =

K−1∑

k=0

αkzk
t (1)

where K ∈ N
∗, ∀k ∈ {0 . . . K − 1} αk ∈ C, and all the

poleszk ∈ C
∗ are distinct. It is well known that such a signal

satisfies an homogeneous linear recursion of the form

s(t) + p1 s(t − 1) + . . . + pK s(t − K) = 0

wherep1, . . . , pK , are the coefficients of the polynomial

P [z] =

K−1∏

k=0

(z − zk) (2)

written in the formP [z] =
K∑

k=0

p(K−k)z
k, wherep0 = 1 and

pK 6= 0. Based on this observation, the estimation methods
proposed in [1], [2], [12] consist in estimating the prediction
polynomialP [z] from the samples of the signal, whose roots
form the estimated poles.
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If the signal is modeled as a sum of real or complex sinu-
soids, the poles are supposed to belong to the unit circle [1],
[2]. Thus each polezk can be written in the formzk = ei2πfk

where fk ∈ R is the frequency of thekth sinusoid. More
generally, if the signal is modeled as a sum of exponentially
modulated sinusoids (ESM), the poles can be anywhere in the
complex plane except zero [12]. In this case, each polezk can
be written in the formzk = eδk ei2πfk whereδk ∈ R is the
damping factor of thekth sinusoid. In particular, poles with
the same polar angle and different radii are associated to the
same frequency.

Nevertheless, the ESM does not correspond to the general
solution of homogeneous linear recursions, since in the general
case a prediction polynomial can have multiple roots. To
handle this case, equation (2) must be replaced by

P [z] =
K−1∏

k=0

(z − zk)Mk (3)

where ∀k ∈ {0 . . . K − 1}, Mk ∈ N
∗ can be greater than

1, so that the degree ofP [z] is r =
K−1∑
k=0

Mk ≥ K. Thus

the prediction polynomial can be written in the formP [z] =
r∑

k=0

p(r−k)z
k, wherep0 = 1 andpr 6= 0. The general solution

to the corresponding linear recursion

s(t) + p1 s(t − 1) + . . . + pr s(t − r) = 0

is obtained by turning equation (1) into

s(t) =

K−1∑

k=0

αk[t] zk
t (4)

where∀k ∈ {0, . . . , K−1}, αk[t] is a complex polynomial of
order less or equal toMk −1 (see [17, pp. 33] for a proof). In
this paper, the signal model in equation (4) is referred to asthe
Polynomial Amplitude Complex Exponentials (PACE) model.
In particular, this model can associate several single poles to
a single frequency (as for the ESM), as well as multiple poles
(contrary to the ESM).

B. Full parameterization of the signal model

The signal model in equation (4) is not yet complete, since a
full parameterization would additionally require the choice of a
polynomial basis over whichαk[t] could be projected. Below,
we focus on a particular polynomial basis which satisfies a
simple linear recursion.

Definition II.1 (Falling factorial). For all m ∈ Z, the falling
factorial of orderm is the polynomial1

Fm[X] =






0 if m < 0
1 if m = 0

1
m!

m−1∏
m′=0

(X − m′) if m > 0

1Note that this definition does not exactly match the classicaldefinition
of the falling factorial [18], [19], from which the multiplicative factor 1

m!
is

missing.

The family{Fm[X]}m≥0 is a basis ofC[X] since the degree
of Fm[X] is m for all m ≥ 0. In addition, these polynomials
satisfy for allm ∈ Z the linear recursion

Fm[t + 1] = Fm[t] + Fm−1[t] ∀t ∈ Z. (5)

The polynomialsαk of order Mk − 1 can be decomposed
into the basis{Fm[X]}m≥0: ∀k ∈ {0 . . . K − 1},

αk[X] =

Mk−1∑

m=0

α′
(k,m)Fm[X]

where∀m ∈ {0 . . . Mk − 1}, α′
(k,m) ∈ C, so that equation (4)

can be rewritten in the form2

s(t) =

K−1∑

k=0

Mk−1∑

m=0

α(k,m)Fm[t] zk
t−m (6)

where ∀k ∈ {0 . . . K − 1}, ∀m ∈ {0,Mk − 1}, α(k,m) =
α′

k,m zk
m is a complex amplitude.

This signal model can be extended by introducing an
additive noise. More precisely, the observed signalx(t) can
be modeled as the sum of the deterministic signals(t) defined
in equation (6), plus an additive white noisew(t) of variance
σ2: x(t) = s(t) + w(t).

Therefore, the parameters of the complete model are:
• the orderK and the multiplicities{Mk}k∈{0...K−1},
• the K complex poleszk,
• the r complex amplitudesα(k,m),
• the varianceσ2.
High resolution methods based on linear prediction, such

as [1], [2], [12], can be used directly to estimate the parame-
ters K, Mk and zk, which are completely characterized by
the prediction polynomial. However, in a noisy context, the
estimated prediction polynomial does not have multiple roots.
This problem will be discussed in section V-A.

Remark.The modeling order for both the ESM and the PACE
model is the order of the prediction polynomialP [z]. Thus it
would be interesting to compare the numbers of parameters
involved by the two models for a same modeling orderr.
Indeed, the PACE model is interesting for coding applications
because all the poleszk of multiplicity Mk > 1 only need to be
coded one time. However, the multiplicities{Mk}k∈{0...Mk−1}

also have to be coded, which is not the case for the ESM,
which only contains single poles. More precisely, the PACE
model involvesK+1 integers, plus2K+2r+1 real numbers.
As a comparison, the ESM model involves 1 integer (the model
order), plus4r + 1 real numbers. We can conclude that the
PACE model involves less parameters than the ESM when
K ≤ 2

3 r. Besides, integers can be coded with less bits than
real numbers, which suggests that the PACE model can also
be interesting even if this inequality is not satisfied.

III. M ATRIX MODEL

As opposed to linear prediction techniques, modern high
resolution methods (e.g. [3], [6], [13]) rely on matrix analysis
(more precisely on the particular structure of the data matrix).

2The intentional introduction of the time shiftt−m will be self-explanatory
in the following developments.
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A. Definition and range space of the data matrix

The samples of a discrete signals(t) can be arranged into
a Hankel data matrix withn ∈ N

∗ rows andl ∈ N
∗ columns:

S(t) =

2664 s(t − l + 1) · · · s(t − 1) s(t)
s(t − l + 2) · · · s(t) s(t + 1)

... · · ·

...
...

s(t − l + n) · · · s(t + n − 2) s(t + n − 1)

3775
(7)

The following theorem shows that if the matrixS(t) has a
deficient rankr < min(n, l) then the observed signal satisfies
the noiseless model (6) under a simple condition.

Theorem III.1 (Equivalence of the low-rank Hankel structure
and the signal model). Let n ≥ 2, l ≥ 2, and r an integer
such thatr < n and r < l. Let S(t)↓ be the matrix extracted
from S(t) by deleting the last row. Similarly, letS(t)↑ be
the matrix extracted fromS(t) by deleting the first row. The
following statements are equivalent:

1) The matrixS(t) has rankr, and the extracted matrices
S(t)↓ and S(t)↑ also have rankr.

2) The signals(t) can be written in the form(6) on the
interval [t− l+1 . . . t+n−1], and∀k ∈ {0 . . . K −1},
α(k,Mk−1) 6= 0.

The proof of this theorem is quite complex and can be found
in [20].

Below, we only assume thats(t) can be written in the
form (6) on the interval[t − l + 1 . . . t + n − 1], without
supposing that∀k ∈ {0 . . . K − 1}, α(k,Mk−1) 6= 0. In order
to characterize the range space ofS(t), we need to introduce
the so-calledgeneralized PascalandPascal-Vandermondema-
trices. First, generalized Pascal matrices form a generalization
of the well known lower triangular Pascal matrices3, whose
definition can be found in [21].

Definition III.2 (Generalized Pascal matrices). Let z ∈ C and
M ∈ N

∗. The generalized Pascal matrix denotedC
n
M (z) is a

n×M matrix whose coefficients are4
C

n
M (z)(i,j) = Fj [i] z

i−j

for all i ∈ {0 . . . n − 1} and j ∈ {0 . . . M − 1}.

ExampleIII.3. If M = 3 andn = 7,

C
7
3(z) =




1 0 0
z 1 0
z2 2 z 1
z3 3 z2 3 z

z4 4 z3 6 z2

z5 5 z4 10 z3

z6 6 z5 15 z4




A Pascal-Vandermonde matrix is formed by concatenating
several generalized Pascal matrices. Thus the following defin-
ition generalizes the classical Vandermonde structure [22, pp.
29]. It can also be found in [23].

3A lower triangular Pascal matrix is a square generalized Pascal matrix for
which z = 1.

4If z = 0, we defineCn
M (0)(i,i) = 1 ∀i, and∀i 6= j, C

n
M (0)(i,j) = 0.

Definition III.4 (Pascal-Vandermonde matrices). Let K ∈ N
∗.

For all k ∈ {0 . . . K − 1}, let zk ∈ C and Mk ∈ N
∗.

Let r ,
K−1∑
k=0

Mk. The Pascal-Vandermonde matrix is the

n × r matrix formed by concatenating the generalized Pascal
matricesCn

Mk
(zk) :

V
n =

[
C

n
M0

(z0), . . . , C
n
MK−1

(z(K−1))
]
.

ExampleIII.5. If K = 4, {M0, M1, M2, M3} = {1, 3, 1, 2},
andn = r = 7,

V
7 =




1 1 0 0 1 1 0
z0 z1 1 0 z2 z3 1

z0
2 z1

2 2 z1 1 z2
2 z3

2 2 z3

z0
3 z1

3 3 z1
2 3 z1 z2

3 z3
3 3 z3

2

z0
4 z1

4 4 z1
3 6 z1

2 z2
4 z3

4 4 z3
3

z0
5 z1

5 5 z1
4 10 z1

3 z2
5 z3

5 5 z3
4

z0
6 z1

6 6 z1
5 15 z1

4 z2
6 z3

6 6 z3
5




The following proposition generalizes a classical result
about the determinant of Vandermonde matrices [22, pp. 29].

Proposition III.6 (Determinant and rank of Pascal-Vander-
monde matrices). The determinant of the square Pascal-
Vandermonde matrixV r is

K−1∏

k1, k2 = 0
k1 < k2

(zk2
− zk1

)
Mk1

Mk2

As a result, then × r Pascal-Vandermonde matrixV n (with
n ≥ r) has rank r if and only if the K parameters
z0, . . . , zK−1 are distinct.

The proof of this proposition can be found in [20].

B. Factorization of the data matrix

Based on the above definitions, a factorization of the Hankel
data matrix is proposed in this section5. Proposition III.7 is a
generalization of the result presented in [13] to the multiple
poles case.

Proposition III.7 (Factorization of the data matrix). A n × l

Hankel matrixS(t) of the form(7) wheres(t) is the signal
defined in equation(6) can be factorized in the form

S(t) = V
n

D(t)V
lT (8)

whereD(t) is ther × r block-diagonal matrix

D(t) =




H0(t) 0 · · · 0

0 H1(t)
. . .

...
...

. . .
. . . 0

0 · · · 0 H(K−1)(t)




(9)

5Such a factorization was already established by Vandevoorde and Boley
in [23], [24]. However, the developments presented here relyon different
concepts. Moreover, they lead to an explicit formulation of the block-diagonal
factor D(t) (see proposition III.7).
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whosekth blockHk(t) is theMk ×Mk upper anti-triangular
Hankel matrix

Hk(t) =

266664 β(k,0)(t) β(k,1)(t) · · · β(k,Mk−1)(t)

β(k,1)(t) . .
.

. .
.

0
... . .

.
. .

. ...
β(k,Mk−1)(t) 0 · · · 0

377775
whose coefficients are, for allk ∈ {0 . . . K − 1} and m′ ∈
{0 . . . Mk − 1},

βk,m′ (t) =

Mk−1X
m=m′

α(k,m)Fm−m′ [t − l + 1]zk
t−l+1−(m−m′) (10)

The proof of proposition III.7 is presented in appendix A.
The following corollary is the foundation of the estimation
technique presented in section IV.

Corollary III.8 (Rank of the data matrix). A n × l Hankel
matrix S(t) of the form(7), wheres(t) is the signal defined
in equation(6), has rankr if and only if

∀k ∈ {0 . . . K − 1}, α(k,Mk−1) 6= 0. (11)

The proof of corollary III.8 can be found in appendix A.
In section IV, it is always supposed that condition (11) is
satisfied. This condition means that∀k ∈ {0, . . . , K − 1}, the
polynomialαk[t] in equation (4) is of orderMk − 1.

IV. ESTIMATION OF THE MODEL PARAMETERS

Below, the generalized ESPRIT algorithm for estimating the
poles independently from the complex amplitudes is presented.
Then methods for estimating the model orderr and the
complex amplitudes are briefly reviewed in section IV-D.

A. Low-rank structure of the correlation matrix

Subspace-based methods rely on the particular structure of
the correlation matrix of the signals(t), which is defined as
follows :

Rss(t) =
1

l
S(t)S(t)H . (12)

Substituting equation (8) into equation (12) yields the follow-
ing factorization ofRss(t):

Rss(t) = V
n

P (t)V
nH (13)

whereP (t) is ther × r time-varying positive definite matrix

P (t) =
1

l
D(t)V

lT
V

l∗
D(t)H .

In particular, equation (13) shows that then × r matrix V
n

spans ther-dimensional range space ofRss(t), which is called
signal subspacein the literature. SinceRss(t) is a positive
semidefinite matrix, it is diagonalizable in an orthonormal
basis, and its eigenvalues are non-negative. Moreover, since
Rss(t) has rankr < n, r of its eigenvalues are positive,
whereas then − r other ones are zero.

Similarly to equation (12), define then × n correlation
matrix of the noisy signalx(t):

R̂xx(t) =
1

l
X(t)X(t)H (14)

where the data matrixX(t) is defined from the noisy signal
x(t) in the same way asS(t) in equation (7). Since the
additive noisew(t) is white and centered, of varianceσ2, the
expectation matrixRxx(t) = E[R̂xx(t)] satisfies

Rxx(t) = Rss(t) + σ2
In.

This last equation shows that all the eigenvectors ofRss(t) are
eigenvectors ofRxx(t), and that the eigenvalues ofRxx(t) are
equal to those ofRss(t) plus σ2. Therefore, the range space
Rxx(t) (called signal subspace) is also ther-dimensional
principal subspace ofRxx(t), i.e. the eigensubspace ofRxx(t)
associated to ther eigenvalues of magnitude strictly higher
thanσ2 (the n − r other ones being equal toσ2).

B. Rotational Invariance Property

The ESPRIT estimation method relies on a particular
property of Vandermonde matrices known as therotational
invariance [6], which reflects the invariance of the signal
subspace to time shifts. Theorem IV.1 generalizes this property
to Pascal-Vandermonde matrices.

Theorem IV.1 (Rotational Invariance Property of Pascal-Van-
dermonde matrices). Suppose thatn ≥ 2. Let V

n
↓ be the

matrix extracted fromV
n by deleting the last row. Similarly,

let V
n
↑ be the matrix extracted fromV n by deleting the first

row. ThenV
n
↓ and V

n
↑ span the same subspace, and

V
n
↑ = V

n
↓ J (15)

whereJ is ther × r block-diagonal matrix

J =




JM0
(z0) 0 . . . 0

0 JM1
(z1)

. . .
...

...
. . .

. . . 0
0 . . . 0 JM(K−1)

(z(K−1))




(16)
whosekth block JMk

(zk) is theMk × Mk Jordan block

JMk
(zk) =




zk 1 0 . . . 0

0 zk 1
. . .

...

0 0 zk

. . . 0
...

. . .
. . .

. . . 1
0 . . . 0 0 zk




.

Theorem IV.1 is a corollary of lemma B.1, presented in
appendix B. The interesting fact in theorem IV.1 is that
equation (15) involves a Jordan matrixJ , which characterizes
the poleszk and their multiplicityMk. As shown below, the
generalized ESPRIT algorithm consists in computingJ as a
by-product of the Jordan canonical decomposition6 of a so-
calledspectral matrix.

6See [22, pp. 121–142] for a definition of the Jordan canonicaldecompo-
sition.
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C. The generalized ESPRIT method

In practice, the Pascal-Vandermonde matrixV
n is un-

known, but an×r matrix W (t) spanning the signal subspace
can be estimated by computing the eigenvalue decomposition
of R̂xx(t), or the singular value decomposition ofX(t), or by
means of subspace tracking techniques [25]–[27]. SinceW (t)
andV

n span the same subspace, there is a non-singular matrix
G(t) of dimensionr × r such that

V
n = W (t)G(t). (17)

Substituting equation (17) into equation (15) shows thatW (t)
satisfies an equation similar to equation (15):

W (t)↑ = W (t)↓ Φ(t)

whereΦ(t), herein called thespectral matrix, is defined by
its Jordan canonical decomposition:

Φ(t) , G(t)J G(t)−1. (18)

Finally, the generalized ESPRIT algorithm consists of the
following steps:

• estimate a basiŝW (t) of the signal subspace,
• compute an estimator̂Φ(t) of the spectral matrix, using

a LS7 or TLS8 technique.
• compute the eigenvalues of̂Φ(t) from which the esti-

mated poles and their multiplicities can be extracted.

Note that in a noisy context, the estimated spectral matrix
does not have multiple eigenvalues in practice, and the gen-
eralized ESPRIT algorithm cannot be applied as it is. This
problem will be discussed in section V-B.

D. Estimation of the other parameters

We now focus on the estimation of the model orderr and
the complex amplitudesαk,m.

1) Estimation of the modeling order:In the above discus-
sion, the model order is supposed to be known, which is not the
case in practice. Many methods were proposed in the literature
for estimating the number of sinusoids in white noise. The
most classical ones are the maximum likelihood method [28]
and the information theoretic criteria, among which the Akaike
Information Criterion (AIC) and the Maximum Description
length (MDL) [29], and their generalization known as the
Efficient Detection Criterion [30]. In [31], [32], we proposed
a conceptually different approach which minimizes the fre-
quency estimation bias. This method can be applied directly
for estimating the order of the PACE signal model.

2) Estimation of the complex amplitudes:The Least
Squares (LS) and Weighted Least Squares (WLS) are very
classical methods for estimating the amplitudes of sinusoids
of known frequencies corrupted by noise. A good survey of
such techniques was proposed in [33]. Again, these methods
can be adapted in a straight manner for estimating the complex
amplitudes of the PACE signal model.

7The classical LS-ESPRIT method [6] computesbΦ(t) = W(t)†
↓
W(t)↑

(where the symbol† denotes the Moore-Penrose pseudo-inverse).
8The TLS-ESPRIT algorithm estimatesbΦ(t) as the solution of a Total

Least Squares (TLS) minimization problem [7].

V. PERTURBATION ANALYSIS

In this section, we illustrate how sensitive single and
multiple poles are to perturbations. Linear prediction-based
high resolution methods are analyzed in section V-A, and the
generalized ESPRIT method is analyzed in section V-B.

A. Perturbation of the prediction polynomial

As mentioned in section II-B, high resolution methods
based on linear prediction, such as [1], [2], [12], estimate
the parametersK, Mk and zk by computing the roots of the
prediction polynomialP [t].

In practice, contrary toP [t], the estimated prediction poly-
nomial does not have multiple roots. Indeed, the additive noise
w(t) perturbs the estimated coefficients, so that each multiple
root ofP [t] is scattered into several single roots. The estimated
prediction polynomial is denotedPε[z] = P [z] + ε∆P [z],
where ∆P [z] is a polynomial of order lower thanr, and ε

is supposed to be small. In practice, the deviationε∆P [z]
depends both on the noisew(t) and on the particular method
used to estimate the prediction polynomial, such as [1], [2],
[12].

Proposition V.1. Let zk be a root of multiplicityMk ∈ N
∗

of the rth order polynomialP [z]. For all ε > 0, let Pε[z] =
P [z] + ε∆P [z], where∆P [z] is a polynomial of order lower
than r. Suppose that∆P [zk] 6= 0. Then there exists a positive
ε0 such that for allε < ε0 there are exactlyMk roots ofPε[z],
denoted

{
z(k,m)(ε)

}
m∈{0...Mk−1}

, which admit the first-order
fractional expansion

z(k,m)(ε) = zk + ε
1

Mk ∆zk e
i2π m

Mk + O
(
ε

2
Mk

)
(19)

where∆zk is an arbitrary Mk
th root of the complex number

(∆zk)Mk = −
∆P [zk]

1
Mk! P (Mk)[zk]

.

This proposition is related to a classical result about alge-
braic functions [34, pp. 64–66]. Note that in equation (19) the
first order perturbation ofzk is homogeneous and isotropic,
so that theMk perturbed roots form the vertices of aMk

th

order regular polygon in the complex plane. This may be a way
of discriminating between several perturbed single poles and a
single perturbed multiple pole (whenMk ≥ 3). Multiple poles
appear to be more sensitive to perturbations than single poles,
since the first order term in equation (19) isε

1
Mk . In fact,

this apparent sensitivity can be circumvented by taking the
multiplicity structure of the polynomialP [z] in equation (3)
into account [35].

B. Perturbation of the spectral matrix

In the case of the generalized ESPRIT method, the poles are
obtained by computing the eigenvalues of the spectral matrix
Φ(t). In practice, contrary toΦ(t), the estimated spectral
matrix does not have multiple eigenvalues. As mentioned
in section V-A in the case of linear prediction techniques,
the additive noisew(t) perturbs the estimation, so that each
multiple eigenvalue ofΦ(t) is scattered into several single
eigenvalues.
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The estimated spectral matrix is denotedΦε(t) = Φ(t) +
ε∆Φ(t), where∆Φ(t) is ar×r matrix, andε is supposed to
be small. In practice, the deviationε∆Φ(t) depends both on
the noisew(t) and on the particular method used to estimate
the spectral matrix, such as [6], [7].

Proposition V.2. Let zk be a non-derogatory9 eigenvalue of
multiplicity Mk ∈ N

∗ of ther× r matrix Φ(t), whose Jordan
canonical form isΦ(t) = G(t)J G(t)−1. For all ε > 0, let
Φε(t) = Φ(t) + ε∆Φ(t), where∆Φ(t) is an arbitrary r × r

matrix. Then define ther× r matrix ∆J = G(t)−1∆ΦG(t).
Let ∆Jk be the element of∆J which belongs to the row of

index
k−1∑
k′=0

Mk′ and the column of index
k∑

k′=0

Mk′ − 1.

Suppose that∆Jk 6= 0. Then there exists a positiveε0 such
that for all ε < ε0 there are exactlyMk eigenvalues ofΦε(t),
denoted

{
z(k,m)(ε)

}
m∈{0...Mk−1}

, which admit the first-order
fractional expansion

z(k,m)(ε) = zk + ε
1

Mk ∆zk e
i2π m

Mk + O
(
ε

2
Mk

)
(20)

where∆zk is an arbitrary Mk
th root of ∆Jk.

This proposition is a corollary of theorem 2.1 in [36], in
the particular case of non-derogatory eigenvalues. Its proof
can be found in [20]. IfMk > 1, the first order perturbation
of zk in equation (20) looks like that in equation (19) :
it is homogeneous and isotropic, so that theMk perturbed
eigenvalues form the vertices of aMk

th order regular polygon
in the complex plane. As mentioned in section V-A, multiple
poles appear to be more sensitive to perturbations than single
poles, since the first order term in equation (20) isε

1
Mk . In fact,

this apparent sensitivity can be circumvented by computing
the arithmetic mean of the estimated eigenvalues, as shown in
proposition V.3.

Proposition V.3. Let zk(ε) = 1
Mk

Mk∑
m=0

z(k,m)(ε). Let∆Jk be

the Mk × Mk matrix extracted from∆J , which corresponds

to the rows and columns of indices
k−1∑
k′=0

Mk′ to
k∑

k′=0

Mk′ − 1.

Suppose thattrace(∆Jk) 6= 0. Then for all ε < ε0, the
functionε 7→ zk(ε) admits the first order expansion

z(k,m)(ε) = zk + ε∆zk + O
(
ε2

)

where∆zk = 1
Mk

trace(∆Jk).

The proof of proposition V.3 can be found in [20]. This
proposition confirms that multiple poles are not more sensitive
to perturbations than single poles. Moreover, multiple poles
can be estimated by computing the arithmetic mean of the
scattered eigenvalues. Thus the generalized ESPRIT algorithm
presented in section IV-C can be simplified in the following
way :

• apply the classical ESPRIT algorithm for estimating the
eigenvalues of the spectral matrix,

9An eigenvalue is non-derogatory if and only if it appears in only one
Jordan block (seee.g. [36] for more details). Since the complex poles are
distinct, all the eigenvalues in the Jordan form (16) are non-derogatory.

• compute the arithmetic mean of the estimated eigenvalues
associated to multiple poles.

Since the computational complexity of the first step is much
higher than that of the second step, the overall complexity of
this generalized ESPRIT algorithm is the same as that of the
classical ESPRIT algorithm.

VI. SIMULATION RESULTS

In this section, the ESPRIT method is applied to real-
valued signals. The real-valued signal model is presented
in section VI-A. Then section VI-B illustrates a case of
polynomial amplitude modulation, and section VI-C illustrates
a case of both amplitude and frequency modulation.

A. Real valued signal model

In this section the signal model introduced in section II-A
is applied to the particular case of real-valued signals. Since
the prediction polynomial has real-valued coefficients, its roots
can be partitioned into real poles and complex conjugate pairs
of poles of same multiplicity. Thus, by grouping poles whose
polar angles have the same absolute value, equation (4) can
be rewritten in the form

s(t) =

P−1∑

p=0

ap(t) cos(2πfp t) + bp(t) sin(2πfp t) (21)

where P ≤ K is the number of distinct frequenciesfp ∈
[0, 1

2 ], and∀p ∈ {0, . . . , P − 1}, bothap(t) andbp(t) belong
to a class of parametric functions. More precisely, a function
g(t) of this class has the form

g(t) =

Q−1∑

q=0

Pq[t] exp(δq t)

where Q ∈ N
∗ is the number of poles of the same polar

angle, all the damping factorsδq ∈ R are distinct, and
∀q ∈ {0, . . . , Q − 1}, Pq is a polynomial with real valued
coefficients. Then equation (21) can be written in the form

s(t) =

P−1∑

p=0

Ap(t) cos (2πfp t + ϕp(t)) (22)

where the time-varying amplitudeAp(t) and phaseϕp(t) of
the pth sinusoid satisfy the equations

{
ap(t) = Ap(t) cos(ϕp(t))
bp(t) = −Ap(t) sin(ϕp(t))

(23)

whose solutions are10

{
Ap(t) =

√
ap(t)2 + bp(t)2

ϕp(t) = −2 arctan
(

bp(t)
Ap(t)+ap(t)

)
.

(24)

Note that the signal model in equation (22) looks like that
of McAulay and Quatieri [37]. However, in [37]Ap(t) and
ϕp(t) are non-parametric functions such thatAp(t) and dϕp

dt

10Note that arctan
�

−bp(t)

ap(t)

�
= ϕp(t) only if ϕp(t) ∈

�
−π

2
, π

2

�
.

Conversely, the proposed inversion formula is valid for allϕp(t) ∈ ]−π, π[.
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have slow variations andAp(t) is positive, whereas in our
modelAp(t) andϕp(t) are parametric functions.

Note that the variations of the instantaneous frequency
f i

p of the pth sinusoid can be calculated analytically, by
differentiating (23):

f i
p(t) = fp +

1

2π

dϕp

dt
= fp +

1

2π

dap

dt
bp(t) −

dbp

dt
ap(t)

ap(t)2 + bp(t)2
. (25)

Thus the PACE signal model consists of both amplitude and
frequency modulated sinusoids. Equations (24) and (25) show
that these amplitude and frequency modulations are closely
related.

B. Polynomial amplitude modulation
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Fig. 1. Polynomial amplitude modulation
(a) Test signal (solid line) and its envelope (dashed line)
(b) True pole (⋆), scattered eigenvalues (o) and their mean (+)

The test signal shown in figure 1-a is a noisy single sinu-
soid with polynomial amplitude modulation and no frequency
modulation (the dotted lines represent its envelope). More
precisely, this signal is that defined in equation (21) with
P = 1, f0 = 8.6×10−3, a0(t) = t2

25000−1 andb0(t) = 0, plus
an additive white noise whose variance was chosen so that
the Signal Noise Ratio (SNR) is 20 dB. The corresponding
complex model parameters areK = 2 and M0 = M1 = 3
(thusr = 6), and the observation window ist ∈ [−250, 250].

The ESPRIT algorithm was applied with parametersn =
l = 251. The three estimated eigenvalues with positive angles
are represented in figure 1-b, by means of ’O’ marks at the
vertices of the triangle. The true multiple polez0 = ei2πf0

is represented by a ’∗’ mark. As mentioned in section V-
B, it can be noticed that the first order perturbation ofz0

is approximately homogeneous and isotropic, so thatz0 is
close to the arithmetic mean of the three estimated eigenvalues
(represented by a + mark). The relative frequency deviation
between the true pole and the arithmetic mean of the estimated
eigenvalues is0.48%.
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Fig. 2. Both amplitude and frequency modulation
(a) Test signal (solid line) and its envelope (dashed line)
(b) True pole (⋆), scattered eigenvalues (o) and their mean (+)

C. Both amplitude and frequency modulation

The test signal shown in figure 2-a is that defined in
equation (21) withP = 1, f0 = 8.6 × 10−3, and

{
a0(t) , (1 + δ0t + 1

2δ2
0t2)

b0(t) , −π ∆f t2 a0(t)

whereδ0 = 4× 10−3, ∆f = 8× 10−6, plus an additive white
noise whose variance was chosen so that the SNR is 50 dB11.
The corresponding complex model parameters areK = 2 and
M0 = M1 = 5 (thus r = 10), and the observation window is
t ∈ [−500, 500]12.

Equations (24) and (25) yield the corresponding amplitude
and frequency modulations:





A0(t) =

√
1 + π2 ∆f2 t4 a0(t)

f i
0(t) = f0 +

∆f t

1 + π2 ∆f2 t4
.

In particular, the observation window of figure 2-a shows both
an amplitude and frequency increase.

The ESPRIT method was applied with parametersn =
l = 501. The five estimated eigenvalues with positive angles
are represented in figure 2-b, by means of ’O’ marks at the
vertices of the pentagon. The true multiple polez0 = ei2πf0

is represented by a ’∗’ mark. As mentioned in section V-
B, it can be noticed that the first order perturbation ofz0 is
approximately homogeneous and isotropic, so thatz0 is close
to the arithmetic mean of the five estimated eigenvalues. In
fact, the relative frequency deviation between the true pole and
the arithmetic mean of the estimated eigenvalues is0.23%.

VII. C ONCLUSIONS

In this paper we introduced the Polynomial Amplitude
Complex Exponentials (PACE) signal model as the general

11Since the multiplicity of the poles is higher than in section VI-B,
proposition V.2 shows that the scattering of the eigenvalues is emphasized.
Thus we chose a higher SNR to obtain a similar result (a SNR of 20dB is
not sufficient to obtain an homogeneous and isotropic scattering).

12Figure 2-a zooms in on the central part of the signal.
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solution to homogeneous linear recursions. This model extends
the well known Exponential Sinusoidal Model (ESM) to the
case of multiple poles, and represents the signal as a sum
of both amplitude and frequency modulated sinusoids. A
general factorization of Hankel matrices related to this model
was proposed, which involves Pascal-Vandermonde matrices.
Based on the rotational invariance property of such matrices, a
generalized ESPRIT algorithm for estimating the signal poles
was proposed, involving the Jordan canonical form of the
spectral matrix.

In presence of noise, the multiple poles are scattered into
several single eigenvalues, forming the vertices of a regular
polygon as a first order approximation. This phenomenon was
observed in our numerical simulations, which confirmed that
the arithmetic mean of the scattered eigenvalues is a good
approximation of the original multiple pole. Therefore the
PACE model leads to an alternative interpretation of a set
of estimated eigenvalues belonging to the same neighborhood
(several single eigenvalues can correspond to a single modu-
lated sinusoid).

In other respects, it can be noticed that the specific ampli-
tude and frequency modulations involved in the PACE model
are closely related. This might suggest that this model is not
appropriate for independent phase and envelope modulations.
In practice, we observed that single poles were generally
sufficient for representing chirps and sinusoidal modulations
(like tremolo and vibrato in music signals). However, it is well
known that complex polynomials can uniformly approximate
any continuous complex function in a closed and bounded
interval13. Thus the PACE model might be appropriate for
coding arbitrary frequency and amplitude modulations on short
time windows. Indeed, we found some audio signals (e.g.
violin vibratos and guitar attacks) which could be coded more
efficiently with multiples poles than single poles (i.e. more
precisely or with less parameters) on very short windows (5
ms), but most often the best results are obtained with single
poles only. As a conclusion, the PACE model offers interesting
outlooks for signal processing, but its application to audio
coding is not straightforward.

APPENDIX

A. Factorization of the data matrix

The following lemma, known as thebinomial identity[18],
[19], will be involved in the proof of proposition III.7 below.
It can be proved by induction overm [20].

Lemma A.1 (Binomial identity). For all m ∈ N, the falling
factorials satisfy the identity

Fm[X + Y ] =
m∑

m′=0

Fm′ [X]Fm−m′ [Y ].

Proof of proposition III.7.The coefficients of the matrixS(t)
are∀i ∈ {0 . . . n − 1}, ∀j ∈ {0 . . . l − 1}

S(t)(i,j) = s(t − l + 1 + i + j). (26)

13This result is known as the Weierstrass approximation theorem.

Substituting equation (6) into equation (26) yields

S(t) =

K−1∑

k=0

Sk(t) (27)

where the coefficients of then × l matrix Sk(t) are

Sk(t)(i,j) =

Mk−1X
m=0

α(k,m)Fm[t−l+1+i+j] zk
t−l+1+i+j−m

. (28)

Then lemma A.1 yields

Fm[t− l+1+i+j] =

m∑

m′=0

Fm′ [i+j]Fm−m′ [t− l+1]. (29)

Substituting equations (29) and (10) into equation (28)
shows that

Sk(t)(i,j) =

Mk−1∑

m′=0

βk,m′(t)Fm′ [i + j] zk
i+j−m′

. (30)

Applying lemma A.1 again yields

Fm′ [i + j] =
m′∑

m′′=0

Fm′′ [i]Fm′−m′′ [j]. (31)

Then substituting equation (31) into equation (30) yields

Sk(t)(i,j) =
Mk−1∑
m′=0

βk,m′(t)
m′∑

m′′=0

C
n
Mk

(zk)(i,m′′) C
l
Mk

(zk)(j,m′−m′′)

which can be written as a product of matrices:

Sk(t) = C
n
Mk

(zk)Hk(t)C
l
Mk

(zk)T . (32)

Substituting equation (32) into equation (27) finally yields
factorization (8).

Proof of corollary III.8. Proposition III.6 shows that bothV n

andV
l have rankr. Consequently, factorization (8) shows that

S(t) has rankr if and only if ther × r matrix D(t) is non-
singular. Besides, equation (9) shows thatD(t) is non-singular
if and only if Hk(t) is non singular∀k ∈ {0 . . . K − 1}.
Since Hk(t) is upper anti-triangular with all anti-diagonal
coefficients equal toβ(k,Mk−1), Hk(t) is non-singular if and
only if β(k,Mk−1) 6= 0. Moreover, equation (10) shows that
∀k ∈ {0 . . . K − 1}, β(k,Mk−1) = α(k,Mk−1) zk

t−(l−1). It
follows thatD(t) is non-singular if and only ifα(k,Mk−1) 6= 0
∀k ∈ {0 . . . K − 1}.

B. Rotational Invariance Property of generalized Pascal ma-
trices

The following lemma is used to show the rotational invari-
ance property of Pascal-Vandermonde matrices in section IV.

Lemma B.1 (Rotational Invariance Property of generalized
Pascal matrices). Suppose thatn ≥ 2. Let C

n
M (z)↓ be

the matrix extracted fromC
n
M (z) by deleting the last row.

Similarly, let C
n
M (z)↑ be the matrix extracted fromCn

M (z)
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by deleting the first row. ThenCn
M (z)↓ andC

n
M (z)↑ span the

same subspace, and

C
n
M (z)↑ = C

n
M (z)↓ JM (z). (33)

Proof. The coefficients of the matrixCn
M (z)↑ are defined as

C
n
M (z)↑(i,j) = Fj [i + 1] z(i+1)−j . Moreover, equation (5)

shows thatFj [i + 1] = Fj [i] + F(j−1)[i]. Consequently,

C
n
M (z)↑(i,j) = z Fj [i] z

i−j + Fj−1[i] z
i−(j−1)

= z C
n
M (z)↓(i,j) + 1{j≥1} C

n
M (z)↓(i,j−1)

This last equation can be written in the form (33).
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