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ABSTRACT

In this article, we investigate the use of a simple probabilis-
tic model for unsupervised document clustering in large col-
lections of texts. The model consists of a mixture of multi-
nomial distributions over the word counts, each component
corresponding to a different theme. The Expectation-Maxi-
mization (EM) algorithm is the basic tool used for inference.

After introducing the model and experimental frame-
work (corpus and evaluation measures), we discuss the im-
portance of initialization and illustrate the difficulty caused
by the lack of supervision information. We propose some
ideas to solve this problem, one of the most efficient method
being based on vocabulary reduction, and finally compare
those heuristics with other inference processes, such as
Gibbs Sampling.

1. INTRODUCTION

Due to the wide availability of huge collections of text do-
cuments (news corpora, e-mails, web pages, scientific arti-
cles...), unsupervised clustering has emerged as an impor-
tant text mining task. Several probabilistic models, per-
forming a non-deterministic clustering of the data, such as
Probabilistic Latent Semantic Analysis [1] or Latent Dirich-
let Allocation [2], have been introduced for that purpose.
In this contribution, we study the simpler model [3, 4] in
which the corpus is represented by a mixture of multinomial
distributions, each component corresponding to a different
“theme”. Dirichlet priors are set on the parameters and we
use the Expectation-Maximization (EM) algorithm to obtain
maximuma posteriori(MAP) estimates of the parameters.

To start with, we introduce the model and notations used
throughout the paper. We then describe our evaluation frame-
work and highlight, in first round of experiments, the impor-
tance of the initialization step in the EM algorithm. Looking
for ways to overstep the limitations of EM by incremental
learning, we present a hierarchical algorithm and other ideas
based on variations in the size of the vocabulary. We finally
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present a comparison with the clustering induced when es-
timating the parameters by Gibbs Sampling.

2. THE MODEL

We denote bynD, nW and nT , respectively, the number
of documents, the size of the vocabulary and the number
of themes (that is, the number of components of the mix-
ture model). Since we use a bag-of-words representation of
each document, the corpus is fully determined by the count
matrix C = (Cd(w))d=1...nD,w=1...nW

, where the notation
Cd is used to refer to the word count vector of a specific
documentd. The multinomial mixture model is such that:

P(Cd;α, β) =
nT∑
t=1

αt
ld!∏nW

w=1 Cd(w)!

nW∏
w=1

β
Cd(w)
wt (1)

which corresponds to the following probabilistic generative
mechanism:

1. sample a themet in {1, . . . , nT } with probabilities
α = (α1, α2, . . . , αnT

)

2. sampleld (which denotes the length of documentd)
words from a multinomial distribution with parameter
(ld; β1t, β2t, . . . , βnW t)

The notationβ is used to denote the collection of theme-
specific word probabilities. Note that the document length
itself is taken as an exogenous variable and its distribution
is not accounted for in the model. As all documents are
assumed to be independent, the corpus log-likelihoodL is
given by

∑nD

d=1 log P(Cd;α, β).
To estimate the model parameters, we use the Expecta-

tion-Maximization (EM) algorithm with independent non-
informative Dirichlet priors onα (with hyperparameterθα)
and on the columnsβ•t, for t = 1, . . . , nT , (with hyper-
parameterθβ). Denoting the current estimates of the para-
meters byα′ andβ′ and the latent (unobservable) theme of
documentd by Td, it is straightforward to check that each
iteration of the EM algorithm updates the parameters ac-



cording to:

P(Td = t|C;α′, β′) =
α′

t

∏nW

w=1 β
′Cd(w)
wt∑nT

t′=1 α′
t′

∏nW

w=1 β
′Cd(w)
wt′

(2)

αt ∝ θα − 1 +
nD∑
d=1

P(Td = t|C;α′, β′) (3)

βwt ∝ θβ − 1 +
nD∑
d=1

Cd(w) P(Td = t|C;α′, β′) (4)

where the normalization factors are determined by the con-
straints

∑nT

t=1 αt = 1 and
∑nW

w=1 βwt = 1, for t in
{1, . . . , nT }. In experiments presented in [5], we observed
that changing the values ofθα − 1 andθβ − 1 did not make
the most important differences in the results. Thus, in the
rest of this article, we set them respectively to0 and0.1.

3. EXPERIMENTAL FRAMEWORK

We selected 1,600 texts1 from the 2000 Reuters Corpus,
from four well-defined categories (sports, health, disasters,
employment). All experiments are performed using four-
fold cross-validation (with 4 random splits of the corpus).
As will be seen below, initialization of the EM algorithm
does play a very important role in obtaining meaningful
document clusters. To evaluate the performance of the mo-
del, one option is to look at the value of the log-likelihood
at the end of the learning phase. However, this measure is
available only on the training data and does not tell us any-
thing about the generalization abilities of the model. In the
context of language processing, its counterpart on the test
data is generally expressed in terms ofperplexity:

P̂? = exp[− 1
l?

n?
D∑

d=1

log(
nT∑
t=1

αt

nW∏
w=1

β
C?

d (w)
wt )] ,

which quantifies how much the model is able to predict new
data, generically denoted by the star superscript. The nor-
malization by the total number of word occurrencesl? in
the test corpusC? is conventional and used to allow com-
parison with simpler models such as the unigram model,
which ignores the document level. A second indicator, also
computable on the test data, is themutual informationbe-
tween the clustering produced by the model and the Reuters
categories, which is more directly related to our ability to
accurately cluster the data, or at least to recover the original

1This relatively small size is dictated by the need to conduct a large
number of iterations to get meaningful results with Gibbs sampling.

clustering. It is defined as:

M̂I
?

=
nC∑
c=1

nT∑
t=1

(
1

n?
D

n?
D∑

d=1

P(Γc = c|C?
d) P(Td = t|C?

d))

× log
n?

D

∑n?
D

d=1 P(Γc = c|C?
d)p(Td = t|C?

d)

(
∑n?

D

d=1 P(Γc = c|C?
d))(

∑n?
D

d=1 P(Td = t|C?
d))

whereP(Γc = c|Cd) is the “probability” that documentd
belongs to categoryc (usually 0 or 1, as most documents
belong to a unique Reuters category) andP(Td = t|Cd)
is the output of the model (probability that the documentd
belongs to themet). The estimated mutual information is
then normalized, respectively, by the marginal entropies of
the themes and categories. The harmonic average of those
scores (between 0 and 1) is referred to as the(MI) F-Score.

4. IMPORTANCE OF INITIALIZATION

After a bit of experimentation, we found that a good option
is to make sure that, initially, all clusters overlap signifi-
cantly and that none of the theme-dependent word probabi-
lities is too small. The Dirichlet initialization thus consists
in sampling an initial (fictitious) configuration of posterior
probabilities in (2) which is close to equiprobability2.

To get an idea about the best achievable performance,
we also used the Reuters categories as initialization. We es-
tablish a one-to-one mapping between the mixture compo-
nents and the Reuters categories, setting for every document
the initial posterior probability in (2) to 1 for a given theme.
Figure 1 displays the corresponding training data likelihood
and test data perplexity as functions of the number of itera-
tions. As the results are averaged over several folds and
runs, we plot here the mean over the different experiments
and the values of the mean plus or minus the standard de-
viation (respectively with downward and upward triangles).
The first striking observation is that the gap between both
initializations is huge. With the Dirichlet initialization, we
are able to predict the word distribution more accurately
than with the unigram model but much worse than with the
somewhat ideal initialization. This gap is also patent for
the training data log-likelihood and the Mutual Information
F-Score, not shown here, but with a final value of 0.87 for
the Reuters initialization and an average around 0.25 for the
Dirichlet initialization. To get an idea of the signification of
these numbers, we randomly perturbated a certain amount
of the Reuters tags and computed the MI F-Score with the
original categorization. Proceeding this way, perturbing (re-
spectively) 5%, 15% and 50% of the document labels gives

2It is not possible to start with exact equiprobability, or, else, it can be
seen from the update equations that all word distributions remain similar
and the clusters never separate from one another. Hence, we sample from
a Dirichlet distribution with the same parameter for all words, so that word
probabilities area priori distributed from an exchangeable distribution.



F-Score of 0.9, 0.7 and 0.25. Hence 0.25 corresponds to a
rather poor performance.
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Fig. 1. Evolution of Log-likelihood and Perplexity over the
EM iterations.

As the Dirichlet initialization involves random sampling,
it may be of interest to check how the performance changes
from one run to another. We report the values of log-likeli-
hood and MI F-Score for various runs, without averaging
them, in Figure 2. Although the differences from one run
to another are striking in terms either of log-likelihood or of
quality of the clustering produced, we are always much be-
low the performance obtained with the Reuters categories
initialization. In the rest of this article, we represent log-
likelihood on the training data and mutual information F-
Score on the test data for different experiments. We do not
represent perplexity curves, even though they are commonly
used in textual data analysis, since the MI F-Score evaluates
more directly the model performance for the task we are ul-
timately interested in. Depending on the readability of the
results, we either plot all runs, as in Figure 2, or their aver-
age and standard deviation, as in Figure 1.

5. HIERARCHICAL CLUSTERING

Faced to a clustering problem where the final number of
components is unknown, it is common to try first to find
the most meaningful few clusters and then iteratively per-
turb the groups obtained to split them into several new clus-
ters. This “divide-and-conquer” approach intends to treat
the problem step by step in order to make the whole process
easier.

In our case, one way to do that is to use the possibility
to initialize the algorithm on the posterior probabilities of a
document to belong to a theme. In our case, there are only
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Fig. 2. Evolution of Log-likelihood and MI F-Score over
the EM iterations for different Dirichlet initializations.

two rounds of iterations since the final number of themes is
4. We start with two themes, with the initialization Dirichlet
and get two posterior probabilities distributions on the docu-
ments, one for each theme. In the next rounds, 4 themes are
used, theme 1 and 2 being initialized from a Dirichlet sam-
pling from the distribution of the first theme of the previous
round and theme 3 and 4 deriving similarly from the second
theme of the previous round. Since they involve a random
initialization, the experiments are repeated 10 times on each
fold. We plot all runs in Figure 3. The graph clearly shows
when the split is performed (after the 25th iteration of the
EM algorithm).
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Fig. 3. Evolution of Log-likelihood and MI F-Score over
the EM iterations with hierarchical clustering.



The results are disappointing but this experiment is above
all interesting because of the disagreement between the train-
ing data log-likelihood and test data MI F-Score. Hierarchi-
cal clustering does perform similarly to Dirichlet initializa-
tion in terms of log-likelihood (leftmost graph in Figure 3
to be compared with corresponding plot in Figure 2). How-
ever, when looking at the Mutual Information on the test
data, most results are below 0.3, which indeed corresponds
to a very unsatisfactory clustering as discussed above. The
performance is thus worse than with the basic approach.

The basic idea behind the use of hierarchical cluster-
ing is that reducing the number of parameters should im-
prove the quality of the inference. However, reducing the
number of themes does not make the matrixβ significantly
smaller in our case, as the word dimension is, by far, the
largest one. In addition the hierarchical approach may have
the drawback that it forces unnatural groupings in the ini-
tial phase when only two clusters are used. We now turn
to another (more drastic) way to reduce the size of the pro-
blem by looking at the other dimension ofβ: the number of
words in vocabulary.

6. INFLUENCE OF THE VOCABULARY SIZE

In the experiments conducted to assess the influence of the
smoothing parameterθβ [5], we observed that more smoo-
thing slightly improved the results with the Dirichlet ini-
tialization but not with the Reuters categories initialization.
We analyzed this fact as a hint that the rarest words were
helpful only when properly initialized3. Hence, an interes-
ting experiment is to check how the algorithm behaves with
the Dirichlet initialization and with only the most frequent
words.

We now adjust the vocabulary size by removing rare
words. The results in Figure 4 suggest that, on the best
runs, we can substantially improve the performance of the
model with the Dirichlet initialization. We believe this is
an effect of the so called “curse-of-dimensionality” phe-
nomenon: with full vocabulary, the size of the vector space
(≈25,000 words) seems too large with respect to the num-
ber of training documents (1,200). Figure 5 shows that the
somewhat optimal number of words, as far as the (MI) F-
Score is concerned, seems to be precisely 500.

7. A HEURISTIC INFERENCE METHOD

The experiments previously described brought up two im-
portant points:

• Log-likelihood at the end of the training phase is a
reasonable indicator of the quality of the clustering

3In effect, increasing the smoothing parameter leads to homogenize the
way we deal with rare words, regardless of the number of times they occur
in the training data.
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Fig. 4. Evolution of Log-likelihood and MI F-Score over
the EM iterations with a vocabulary of size 500.
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Fig. 5. Mutual Information after the last EM iteration, as a
function of the vocabulary size.

in terms of mutual information. Now, unlike the log-
likelihood, which we are able to compute as soon as
we have the count matrix and an estimate of the pa-
rameters, the MI F-Score is not accessible in a real-
world problem since we obviously ignore what is the
best clustering. Therefore, it is particularly interest-
ing to have an approximate correlation between a mea-
sure available at training phase and the final result we
are ultimately interested in.

• Learning parameters on smaller vocabularies yields
better results, in the sense of reducing the gap with
the ideal initialization, than using all the words from
the start. After several EM iterations, we thus have
values for posterior probabilities of a text to belong
to a given theme, from equation 2, and we know from
Section 6 that they induce a good clustering on the
corpus.

The main idea of our heuristic inference method is to
obtain “good” posterior probabilities with a small vocabula-
ry and to use them as initialization for a new round of EM



iterations, with a larger vocabulary. Thus we avoid the pro-
blem of not knowing how to initialize theβ parameters cor-
responding to rare words since we start from the other step
of the algorithm (the “M” step). When the vocabulary size
is increased, the probabilities associated with new words are
thus implicitly initialized on their average count in the cor-
pus, weighted by the current posterior probabilities.

To sum up, the pseudo-code for the algorithm is:

vocabsizes = [500 1500 5000 10000 25775]
postprob = group of nD x nT stochastic

matrices initialized on the
constant matrix of general
term 1/nT

for i = 1 to length(vocabsizes)
vocabulary = most frequent

vocabsizes(i) words
for j = 1 to number of runs

initprob = sample Dirichlet variables
centered on the distri-
butions in postprob

run iterations of the EM algorithm
starting from initprob

save final posterior probabilities
and corresponding log-likelihood

end
postprob = keep new posterior proba-

bilities yielding the best
likelihoods

end

The initial size of vocabulary (500) was chosen accor-
ding to the results reported in Figure 5. The other sizes
were set to get an increase approximately regular in the total
number of occurrences in the count matrix from one step to
the next. We do not describe here the other parameters (size
of the group postprob, number of runs and so on) and the
details of the algorithm (such as the sampling from one of
the distributions in postprob).

The results are shown in Figure 6 in terms of mean and
standard deviation4 at the end of the last EM iteration. We
represent the different steps (or equivalently the different
sizes of vocabulary since we add new terms at every step)
along the horizontal axis. We note a major improvement in
terms of log-likelihood, managing to outperform slightly the
reference Reuters Categories initialization (in the figure, the
curves are almost superposed), reaching a level far above
the initial random Dirichlet sampling on the full vocabu-
lary in Figure 2. If we now turn to the extrinsic application
which consists in recovering the (human made) clustering
that comes with Reuters database, as measured by the MI
F-Score, the algorithm does not outperform the ideal initia-
lization but its performance is much better than before, the

4As in the previous experiments, to make up for the effects of random
initializations, several runs were conducted for each fold. However, the re-
sults with this method seem much more stable than with the initial Dirichlet
initialization.

mean being around 0.85, to compare with the average of
Figure 2, around 0.25. From these experiments, the bene-
fit of learning the values of the parameters corresponding to
different parts of the vocabulary incrementally is clear.
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Fig. 6. Evolution of Log-likelihood and MI F-Score over
the different steps of a heuristic algorithm.

8. GIBBS SAMPLING

In this last section, we experiment with an MCMC inference
method, Gibbs Sampling, which has been successfully ap-
plied to LDA, for instance in [6]. We repeatedly:

• sample a theme indicator in{1, . . . , nT } for each docu-
ment from a multinomial distribution whose parameter
is given by the posterior probability that the document
belongs to each of the themes;

• sample values forα, β which, conditionally upon the
theme indicators, follow Dirichlet distributions;

• compute new posterior probabilities according to (2).

Unfortunately, the number of iterations typically needed
to guarantee a good exploration of the space is much larger
than with the EM algorithm. Therefore, we only ran the
algorithm five times on fold 1. In Figure 7 we report only
the first 20,000 iterations as running the algorithm longer
brought no substantial improvement. The performance is
varying a lot from one run to another and, occasionally,
large changes occur during a particular run with striking
consequences on both the log-likelihood and the MI F-Score.
This behavior clearly shows that, in this context, the Gibbs
sampler does not really attain its objective as it gets trapped,
as the EM algorithm, in local modes. Hence, one does



not really simulate from the actual posterior distribution but
rather from the posterior restricted to a rather “small” subset
of the space of latent variables and parameters. It is interest-
ing to note that, while the results in terms of log-likelihood
are in the same range as with the EM algorithm (Figure 2),
the values obtained for mutual information are much bet-
ter. Regarding all measures, the performance is anyway
several levels below the one obtained with the ad-hoc in-
ference method of Section 7.

0 0.5 1 1.5 2

x 10
4

−2.42

−2.4

−2.38

−2.36

−2.34

−2.32

−2.3

−2.28

−2.26

−2.24
x 10

6

Gibbs iterations

Lo
g−

lik
el

ih
oo

d

Training data

Reuters categories (EM)
Gibbs sampling

0 0.5 1 1.5 2

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gibbs iterations

M
I F

−
S

co
re

Test data

Reuters categories (EM)
Gibbs sampling

Fig. 7. Evolution of Log-likelihood and MI F-Score over
the Gibbs Sampling iterations with full vocabulary.

9. CONCLUSION

In this article, we have presented several methods for the
inference of the parameters of a simple mixture of multi-
nomial models for text mining. An evaluation framework
based on several measures allowed us to understand the dis-
crepancy between the performance typically obtained with
a single run of the EM algorithm and the best scores we
could possibly attain when initializing on a somewhat ideal
clustering.

We tried various methods to reduce this gap, from hi-
erarchical clustering to Gibbs sampling and other heuristic
ideas based on the specificity of the problem, such as lear-
ning different parts of the vocabulary incrementally. Redu-
cing the number of words as well as inferring with Gibbs
sampling lead to an improvement in comparison to the most
straightforward application of the EM algorithm. The best
option consists in running several different trials with vari-
ous initializations, keeping the best ones according to their
log-likelihood and incrementally increasing the size of vo-
cabulary.
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“Evaluation of a probabilistic method for unsupervised
text clustering,” inInternational Symposium on Applied
Stochastic Models and Data Analysis (ASMDA), 2005.

[6] Thomas L. Griffiths and Mark Steyvers, “A probabilis-
tic approach to semantic representation,” inProceed-
ings of the 24th Annual Conference of the Cognitive
Science Society, 2002.


