Discriminative Training of Finite State Decoding Graphs

Shiuan-Sung LIN, Frangois YVON

GET/ENST and CNRS/LTCI, UMR 5141

lin@tsi.enst.fr,

Abstract

Automatic Speech Recognition systems integrate three main
knowledge sources: acoustic models, pronunciation dictionary
and language models. In contrast to common practices, where
each source is optimized independently, then combined in a
finite-state search space, we investigate here a training
procedure which attempts to adjust (some of) the parameters
after, rather than before, combination. To this end, we adapted
a discriminative training procedure originally devised for
language models to the more general case of arbitrary finite-
state graphs. Preliminary experiments performed on a simple
name recognition task demonstrate the potential of this
approach and suggest possible improvements.

1. Introduction

Large-vocabulary automatic speech recognition (ASR)
systems integrate three main resources: a set of acoustic
models, a pronunciation dictionary, and a statistical language
model. Acoustic models, usually based on the Hidden Markov
Model (HMM) formalism, match a stream of acoustic
parameters and predefined statistical models of acoustic units.
The dictionary contains a deterministic or probabilistic
mapping between sequences of acoustic units and words. The
language model defines a probability distribution over word
sequences, which encodes the most common local syntactic
regularities. A major breakthrough has been the development
of a methodology for combining these resources in a unified
framework, based on the formalism of Weighted Finite-State
Transducers (WFSTs, see e.g. [1] and the reference therein).
In this formalism, decoding is performed using standard
heuristic search procedures in an optimized finite-state
transducer, yielding fast and accurate decoders.

One issue remains unsettled though, which relates to the
specification of these knowledge sources. Each resource
involves the estimation of myriad of parameters, which,
according to common practices, are estimated in isolation,
using separate training corpora. This means, for instance, that
the definition of dictionary entries is performed independently
from the acoustic modeling and the same goes for language
models. As a result, many “small” decisions made during
specification of these sources, regarding, for instance, the
number and topology of HMMs, the modeling of
pronunciation variants and the complexity of the language
model, have to be experimentally validated, yielding a
significant tuning overhead every time a system has to be set
up. Another downside of this approach is that it yields
unnecessarily large graphs, which are yet difficult to prune.
We contend that a better integration of resources is needed
during the model estimation step and propose a discriminative
training methodology to achieve this goal.

Discriminative training (DT) is a general estimation technique
which aims at setting model parameters so as to directly
optimize the performance of a model or a function thereof,
rather than the likelihood of training data. The availability of

yvon@infres.enst.fr

very-fast (sub real-time) decoders makes this learning strategy
feasible. In the context of ASR, this methodology has been
successfully applied to the estimation of acoustic [2,3] and
linguistic models [3,4,5].

In this paper, we try to take the idea of DT one step further,
and apply this methodology to adjust the various parameters
of the integrated decoding graph. By working directly on a
representation that includes all the knowledge sources, we
expect to eventually come up with a set of parameters which
will play its role better, i.e. improve the efficiency of the
search procedure. Another benefit of this approach is to build
search graphs which are beyond the reach of the standard
combination procedure: for instance graphs where the
probability of pronunciation variants depends on the language
model history.

The integrated decoding graph contains all the resource
parameters, and many more: trying to simultaneously
optimize all of them may well prove infeasible. In this paper,
we thus make the simplifying assumption that acoustic model
parameters are fixed and we only attempt to optimize the arc
transition weights adjusting the graph to increase the
discrimination capacity of the network in areas where the
acoustic confusability is high. Starting with an initial graph
configuration, our algorithm iteratively updates the graph
parameter so as to increase the recognition rate, until
convergence is reached.

This paper is organized as follows: we first introduce our
discriminative training procedure, based on the minimum
classification error (MCE) criterion and detail our own
implementation. We then describe the task used to test this
methodology and report experimental results. We finally
discuss some open issues and draw perspectives for future
work.

2. Discriminative training

2.1. The MCE model

In the MCE approach, the estimation of the model parameters
aims at optimizing a function of the classification error rate
[2]. Since the resulting optimization program does not lend
itself to an analytical resolution, estimation is performed
through an iterative parameter optimization procedure. In this
section, we present this model, which extends the ideas
originally introduced in [5], and from which we borrow the
notations.

We assume that G is an integrated finite-state decoding graph,
devised according to the procedures introduced in [1]. G
contains two kinds of parameters: acoustic model parameters,
associated with HMMs states Gaussian densities, and state
transitions weights.

Given a word string W, a set of acoustic models 4, a set of
transition weights /7 and an observation sequence X, the

" The language model weight, the word insertion penalty...

conditional likelihood of X is approximated as the score of the
best path in G for input X and output . This score combines
the individual acoustic likelihoods and transition weights
according to:

g(X. W, AT)=a(X,W,N)+b(W,I) (1)
where a(X, W,I’) is a sum of acoustic likelihoods and b(W,I’) is
a sum of transition weights. Speech decoding consists in
finding the word sequence /#; maximizing g over all possible
word sequences.

If W) is the known correct word sequence, the performance of
the recognizer can thus be expressed as a function of the
difference between the score of the correct sequence and that
of the best hypothesis. For a given input vector, we thus define
the misclassification function as:
df(XaAar)=_g(X7W03AaF)+g(X9VVI7A7F) (2)

An erroneous recognition hypothesis thus simply translates
into a strictly positive value for d, meaning that the correct
word sequence is not the top ranking one according to g. To
formulate an optimization procedure based on the mis-
classification error function /, the differentiable class loss
function is introduced as:

1,(X,A,T) =I(d (X,A,T)) = !

1+exp(—d (X, A, T') +6)
where y and 0 are parameters which control respectively the
slope and the shift factor of the sigmoid function. A standard
iterative gradient procedure can then be defined, based on the
following update rule for the set of transition weights:
Lio=Ti-eVI (X,AI))

If we consider that acoustic model parameters are fixed, the
loss function needs only be differentiated with respect to the
weight transition probabilities. Given that b(W,I) is a mere
sum of transition weights, the mathematical derivation exactly
follows that of [5], yielding:

Vi (X. AT = b 0 (X AT .
ody or
where o = U(dr(X)(1-U(dr (X))
ody

We continue to work out the mathematics by taking partial
derivatives of the term d(X, W,I’) with respect to the transition
weight vector I', finally yielding:

w =—I(Wo,s)+1(W,,s) (6)
where [(W,s) represents the number of occurrences of the
transition weight s on the best decoding path for W. This
procedure can further be generalized by considering the N-
best hypotheses, rather than the single best one (again, refer to
[5] for the details).

Altogether, the training procedure consists in iteratively
scanning the training corpus until convergence, using for each
training sentence the update rule in (5).

2.2. Implementation

The training data only contains the correct output word
sequence: the corresponding reference path is computed using
a forced alignment procedure. If a transition is more frequent
in the reference path than in the hypothesis path, its weight is
increased; otherwise, it has to be decreased. For transitions
which exist with the same frequency in the reference and in
the hypothesized path, no update is performed.

Based on this general principle, many training regimes
can be considered: in the experiments reported above, we

made the following choices: (i) in all cases, the HMM internal
transitions are frozen and are not updated: this allowed us to
limit the graph expansion at the phone level; (ii) amongst the
remaining transitions, we only update the ones whose output
label is not empty. Two different update strategies were
considered: in the first one, we do not update transitions
which appear (albeit with different counts) in the reference
and hypothesis path. In the second one, we update all the
transitions having a different frequency, according to the
update rule of equation (6).

All the experiments reported above were performed using
our own decoder: a full search (involving no pruning) runs in
about 0.8RT on a 3.0 GHz Pentium IV. The decoding graphs
were prepared using the FSM Toolkit [7].

3. Experiments

The preliminary experiments reported hereafter were carried
out on a simple name recognition task. Our main purpose was
to get a better grasp of the behavior of the training procedure
and of the influence of the various parameters on a well-
understood task, using a relatively simple decoding graph.
We first present the task and the database, before reporting
the results of these experiments.

3.1. Task and database

The task consists in recognizing isolated sequences consisting
of a proper name followed by its spelling, as illustrated by:
frana F-R-A-N-A

The recognizer’s output is accordingly composed of two
parts: a sequence of phone labels, followed by a sequence of
letter labels. No dictionary look-up is performed to match the
output with existing names; performance (WER) is simply
computed as a function of the number of corrected recognized
symbols (phones and letters) in the output. The main
motivation for experimenting with this small vocabulary tasks
was (i) to assess the influence of the various parameters
involved in the procedure and (ii) to be able to analyze the
output decoding graph and get a better understanding of the
benefits of this training procedure.

Data for this task was extracted from the ‘spelled word’
category of the Swiss-French Polyphone database [8]. After
cleaning invalid® entries, the database was randomly split into
a discriminative training set (8427 names) and a testing set
(1150 names), representing respectively 14.16 and 1.95 hours
of recordings. Performance measurement being based on a
phonetic match between hypotheses and references, each
orthographic name was automatically converted into a
sequence of phones, using a pronunciation dictionary
whenever applicable and automatic pronunciation procedures
otherwise.

For these tasks, acoustic models of varying sizes were
estimated using the ‘phonetic-rich’ category of Polyphone
(totaling 49.79 hours of speech): for each of our 39+2
phonetic units, context-independent models containing from
16 to 64 Gaussian mixtures per HMM state were considered.
The initial decoding graph was set up as follows: two
language models were separately trained, one for phone
sequences and one for letter sequences. The former was
trained using automatic phonetic transcript of the ‘phonetic-
rich’ category items in Polyphone: this yielded a phone-based
language model encoding a general distribution of possible

Entries for which one subpart is missing or which contain non-
conventional spelling directives.

phone sequences. In contrast, due to lack of data, the letter
language model was built using the same dataset that is used
for discriminative training, i.e. spellings extracted from the
‘spelled-name”’ category: this model already integrates some
knowledge regarding the typical sequences of letters that
occur in names. Each of these models was trained
conventionally, using Maximum Likelihood estimation and
standard smoothing procedures. Table 1 gives a quantitative
description of the phone and letter language models,
including the total corpus size used for estimation, their
number of parameters and perplexity (PP).

Bigram Trigram
Copus —— gize PP Size PP
Phone 1,411,699 1237 29.69 16865 10.77
Letter 77,185 1078 13.33 5027 9.51

Table 1: Phone and letter language models

Each language model is then turned into a weighted finite
state acceptor (WFSA). The letter WFSA is then composed
with a FST mapping letters to their spelling. The resulting
WEST s further determinized® and concatenated with the
phone WFSA to produce a phone-based decoding graph. This
construction is illustrated on Figure 1. The bigram graph
contains 516 states and 2,198* arcs; for the trigram graph
these numbers are respectively 8,154 and 32,467.

phone LM letter LM
v v
phone FSA letter FSA dictionary FST
Composition
VY

concatenation

Figure I: Baseline graph construction

3.2. Parameters selection

Before experimenting with the discriminative training
procedure, we performed a number of experiments aiming at
setting two parameters of the procedures: y, which controls
the slope of the sigmoid function, and &, which is the
increment parameter of the gradient descent. For the purpose
of this study, we assumed that a, the language model weight,
and the word insertion penalty, J, are fixed, taking values o =
0.23, & = 0.6 for the phone part and & = 0.4 for the letter part.
We also set 6=0.

The rationale for finding a reasonable parameter set is based
on the following remarks. When the difference d between
reference and hypothesis scores is large, the loss function
tends to one, and the corresponding update tends to zero (see
equation (5). A first decision was made to set an upper bound
on the value of this difference: sentences whose
misclassification score exceed this threshold are not
considered during training. Based on an analysis of the
distribution of for d, in the training data, this upper bound
was fixed so as reject only a small portion of the training data

3 Control experiments were ran without determinization and show no
significant difference on this task.

* The fully expanded network would thus include about three times
more states: the graph is here only expanded at the level of phones.

(about 3% of the sentences). Given the range of possible
values for for dj;, we then choosed y = 0.01 so as to control
the value of the gradient. We finally set =10 to get a total
increment factor of 0.1 for the gradient descent. With these
parameters, the update factor for a transition lies between
0.011 and 0.025 on a log scale.

Choosing a smaller value for y would have the effect of
increasing the average update factor, yielding a faster
convergence of the procedure, at the risk however of
rendering the process unstable. While more experimental
work is required to fine tune these parameters, the values used
for our experiments seemed to yield a reasonable
convergence rate.

3.3. Results

Baseline results are obtained with the 32-mixture acoustic
models before starting the discriminative training procedure.
After each training iteration, the graph is dumped on disk and
used for testing. For each of our experiments, 5 training
iterations were performed.

Figure 2 plots the evolution of recognition performance after
each training iteration for the first training regime (see
Section 2.2). Identical results were obtained with the second,
more costly, training regime. Additional control experiments
carried out with 16 and 64-mixture models also yielded a
similar decrease pattern.

—>— bigram —©— trigram

WER

Iteration

Figure 2: Evolution of the WER

For the bigram curve, most of the performance increase is
achieved after one iteration, and the remaining iterations only
bring a small improvement. Overall, the performance
increases by 6.5 points for the bigram model, by 4 points for
the trigram model. One iteration of training already brings a
very significant increase (4% absolute for the bigram graph)
in performance. The discriminatively trained bigram graph
significantly outperforms the baseline trigram graph, even
though it contains about ten times less parameters. This
illustrates the uselessness of many parameters in the trigram
baseline graph. After five iterations of training, the trigram
graph is still lagging behind. This may be explained by the
fact that this graph contains a larger number of parameters,
resulting in a slower convergence rate: after 5 iterations, the
performance continues to increase, albeit at a small pace.

Another perspective on the convergence of the algorithm is
given by a closer examination of the update pace: for the
bigram graph, after five iterations of training, the number of
updates stops its decrease: the number of updates per
iterations remains very high (about 120,000), suggesting that
the same weights are repeatedly increased and decreased.

This stabilization is not observed for the trigram graph.
Again, more experimental work is required to confirm these
preliminary observations.

To investigate in more details the effect of discriminative
training, we examined the 30 most frequent confusion pairs in
the bigram baseline system. This tracking was performed
independently on the phone part and on the letter part of the
decoded utterances. Figure 3 and 4 display the evolution of
the number of confusions for these pairs before and after
training. As clearly appears on these figures, discriminative
training manages to significantly reduce these frequently
occurring confusions. For the phone part, only a handful of
pairs show an increase in confusion. For most of the
remaining ones, we get an improvement, which is all the more
substantial as the related phones have a different
distributional pattern: this is the case, for instance, of the pairs
a/a, a/t, i/t... In contrast, some pairs which are both
acoustically and distributionally very similar remain difficult

to discriminate: the top remaining errors in the phone part are:
e/g; 0/3;0/0;b/d; t/p...

o— baseline 5th iteration

Number of
confusions

1 4 7 10 13 16 19 22 25 28

Phone pair index

Figure 3: Evolution of the top 30 phone confusion pairs.

The same pattern of improvement is observed for spelled
letters: some confusions are substantially reduced (e.g.
between E (/@/) and 2 (/d@/), or between A (/a/) and K

(/ka/); some pairs nonetheless remain difficult to

discriminate and continue to account for a large number of
errors: B (/be/) vs. D (/de/), L (/el/) vs. N (/en/), M (/fem/)
vs. N, S (/es/) vs. F (/ef/)...

—O— baseline —>¢— 5th iteration

number of confusions

1 4 7 10 13 16 19 22 25 28

Letter pair index

Figure 4: Evolution of the top 30 letter confusion pairs.

4. Conclusions

In this paper, we presented a discriminative training procedure
aiming at adjusting the various parameters of a decoding

graph so as to directly optimize the recognition performance.
Results obtained on a simple name recognition task
demonstrate the effectiveness of this methodology, illustrated
by a 6.5% absolute improvement of the word error rate on a
bigram graph. A close examination of the optimized graph
reveals that discriminative training has the expected effect of
facilitating, whenever possible, the discrimination between
acoustically confusable phone and letter pairs. We are
currently experimenting with alternative training regimes,
such as considering all the available transitions for update, or
taking the N-best recognition hypotheses into account. We are
also trying to revise the graph update procedure so as to
ensure that updates have a “local” impact: to see why this is
important, consider the situation when the updated transition
is a transition leaving a back-off state: its increase (or
decrease) will impact the score of many paths which should
not be changed. The idea is thus to introduce new states in the
graph so as to guarantee that updates only affect the score of
current reference and hypothesis paths. Additional
experiments using richer acoustic models and larger
vocabulary and language models are also required to assess
more precisely the benefits of this new training strategy.

5. References

[1] Mehryar Mohri, Fernando C. Pereira and Michael Riley,
“"Weighted Finite-State Transducers in Speech
Recognition” Computer Speech and Language, 16(1):69-
88, 2002.

[2] Biing-Hwang Juang, Wu Chou and Chin-Hui Lee,
“*Minimum Classification Error Rate Methods for Speech
Recognition”, IEEE Transactions on Speech and Audio
processing, 5:3, pp. 266-277, 1997.

[3] Ralf Schluter, Wolfgang Macherey, Boris Muller and
Herman Ney, '"Comparison of Discriminative Training
Criteria and Optimization Methods for Speech
Recognition”, Speech Communication. Vol. 34, pp. 287-
310, 2001.

[4] Zheng Chen, Mingjing Li and Kai-Fu Lee,
“'Discriminative Training on Language Model", Proc.
ICSLP 00, Beijing, China, 2000.

[5] Hong-Kwang Jeff Kuo, Eric Fosler-Lussier and Hui Jiang,
Chin-Hui Lee, ''Discriminative Training of Language
Models for Speech Recognition”, Proc. ICASSP’02,
Orlando, Florida, 2002.

[6] Brian Roark, Murat Saraclar and Michael Collins,
“"Corrective Language Modeling For Large Vocabulary
ASR With The Perceptron Algorithm”, Proc. ICASSP
2004. Montreal, Canada, 2004.

[7] Mehryar Mohri, Fernando C. Pereira and Michael Riley,
“"General-purpose Finite-State Machines Software
Tools”. http://www.research.att.com/sw/tools/fsm, AT&T
research, 1997.

[8] Jean-Luc Cochard, Gérard Chollet, Philippe Langlais and
Andrei Constantinescu. “Swiss-French Polyphone: a
Telephone Speech Database to develop Interactive Voice
Servers”, Linguistic Databases, CSLI Publications, John
Nerbonne (Ed.), 1997.

