
Probabilistic Measurement of Uncertainty in Moving Objects

Databases

Talel Abdessalem, Laurent Decreusefond
Ecole Nationale Supérieure des Télécommunications

Département Informatique et Réseaux, LTCI – UMR CNRS 5141
46, rue Barrault – 75013 Paris – France

{Talel.Abdessalem, Laurent.Decreusefond}@enst.fr

José Moreira
Universidade de Aveiro – Departamento de Electrónica e Telecomunicações, IEETA

Campus Universitário de Santiago – 3810 - 193 Aveiro – Portugal
jmoreira@det.ua.pt

July 11, 2005

Abstract

The representation of moving objects in spatial
database systems has become an important re-
search topic in recent years. As it is not realis-
tic to track and store the location of objects at
every time instant, one of the issues that has
been raised in this domain has to do with han-
dling uncertainty in the location of moving ob-
jects. There are several works proposing to en-
rich spatiotemporal languages with estimates
about the validity of the answers to queries
about the object’s movement. Although, re-
search in developing statistical tools to com-
pute those estimations is nearly non-existent.

In this paper, we propose three statisti-
cal tools for computing probabilistic estimates
about the location of a moving object at a
certain time and show how to use them for
evaluating probabilistic range queries. We also
compare the three proposals in terms of ex-

pressivity and ability for dealing with the dif-
ferent semantics proposed in the spatiotempo-
ral query languages literature. The focus is
on applications dealing with the history about
the spatiotemporal behavior of non-network
constrained moving objects, for monitoring or
data-mining purposes, for instance.

1 Introduction

The spatiotemporal databases research com-
munity is giving particular attention to moving
objects applications. Real-time systems, using
recent information about object’s movement
for anticipation of events in near future, or his-
torical systems, recording information about
object’s movement during large periods of time
for monitoring or data-mining purposes, are
noteworthy examples. Both cases require func-
tionality allowing answering questions of the
kind where and when. Although, as it is not

possible to continuously monitor and record
the location of moving objects, the knowledge
that may be captured and stored by computer
systems is only a partial representation of the
actual spatiotemporal behavior of real-world
objects.

For that reason, there are numerous pro-
posals for extending spatiotemporal query lan-
guages with adequate semantics for dealing
with uncertainty in the location of moving ob-
jects. The goal is to incorporate functionalities
allowing answering questions such as “Which
were the moving objects that have been within
a certain area during some period of time, with
a probability of at least 80%”. Answering such
kind of queries requires methods for comput-
ing probabilistic estimates about the location
of moving objects at a given time. Although,
research in this domain is almost non-existent.

This paper deals with the computation of
probabilistic estimates for the validity of an-
swers to spatiotemporal queries. The focus is
on systems representing the history about the
movement of non-network constrained moving
objects. We propose three statistical tools that
allow obtaining realistic estimates for the loca-
tion of a moving object at a certain time. The
methods explore different features and are ap-
plicable under different conditions, according
to the information that may be disclosed by
real applications. We also explain how we can
use these methods to implement different se-
mantics proposed in the literature for dealing
with uncertainty in the location of moving ob-
jects.

The remaining part of this paper is or-
ganized as follows. Section 2 presents an
overview of current proposals for dealing with
uncertainty in the location of non-network con-
strained moving objects. Section 3 depicts the
two main approaches that we have delineated
to solve the proposed problem and presents
three methods for computing probabilistic es-
timates about the location of moving objects.

Section 4 presents the tools that have been de-
veloped to test the proposed methods and puts
in evidence the domain of application covered
by each one. Finally, section 5 concludes the
paper.

2 Uncertainty in objects
movement representation

The representation of the objects’ movement is
inherently imprecise and therefore, answers to
user queries based on such information may be
inaccurate [8, 13]. Imprecision may be intro-
duced by the measurement process – it may de-
pend on the accuracy of the GPS, for instance
–, or by the sampling approach, as depicted be-
low. Notice that the imprecision refers to the
spatial dimension only, as it is commonly as-
sumed that measurement instruments are able
to determine precisely the time a position sam-
ple is taken.

As an example, consider the case of a port
authority dealing with a spread of toxic waste
in the sea and querying a nautical surveillance
system to know which ships have crossed the
polluted zone during a specified time inter-
val. Imagine that the ship responsible for the
waste has actually followed the trajectory rep-
resented in Figure 1. The black dots repre-
sent four observations made during the speci-
fied time interval, the shaded region represents
the polluted area and the hatched line a tra-
jectory that might have been inferred from the
observations.

Figure 1: Uncertainty about moving objects
trajectories

The hatched line does not cross the shaded
region and, thus, an answer to a query based
on this estimation of the trajectory would
not include the guilty ship. On the contrary
an answer may also include false candidates
whose inferred trajectory crosses the area even
though they have not actually been there.

2.1 Uncertainty of past, present and
future positions

The preceding example focuses on the history
of the objects’ movement. In general, the fo-
cus may be put on the past movement or on the
future movement of objects, depending on ap-
plications requirements. Two main approaches
were raised.

The first approach [8, 6], focusing on past
movements, addresses the needs of mining ap-
plications of spatiotemporal data: traffic min-
ing, environment monitoring, etc. In this case,
uncertainty is bounded using a sequence of po-
sitions of objects and some known physical
constraints on their movement.

In the second approach [10, 11, 19, 13], the
focus is put on the uncertainty about the fu-
ture movement of objects. This approach ad-
dresses the needs of real-time applications and
location-based services: real-time traffic con-
trol, real-time mobile workforce management,
digital battlefields, etc. These systems make
use of speed patterns information in the con-
struction of future movements and uncertainty
is fixed in advance. The latter allows avoid-
ing frequent updates of the database. In fact,
the database is not updated as long as the ac-
tual object’s movement deviation from its ex-
pected location, as inferred from the informa-
tion stored in the database, is less than the
threshold previously fixed.

2.2 Bounding uncertainty

There are physical constraints on the move-
ment of objects allowing limiting uncertainty of
their position at a certain time. For instance,
the uncertainty zone for a train moving on a
railway is a section of the railway and for a
ship moving freely in the ocean is an area.

When it comes to future movements, con-
sidering a two-dimensional space (Figure 2),
the uncertainty area is a circle centered on
the expected location of the object. The cir-
cle bounds the maximum deviation allowed for
an object at a given time instant. Objects are
committed to send a location update when the
deviation reaches the bound.

Figure 2: Expected location of a moving object

For past movements, since the positions be-
tween two consecutive samples are not mea-
sured, the best to do is to limit the pos-
sibilities of where the moving object could
have been [9, 8, 7]. Let us consider a two-
dimensional space and a moving object m, an
instant t belonging to a time interval 〈t1, t2〉
and two consecutive observations (p1, t1) and
(p2, t2), (Figure 3). We denote by p1 and p2

the positions of the moving object at observa-
tion time instants t1 and t2, respectively. d de-
notes the distance between p1 and p2. At time
t, the distance d1 between m and p1 is inferior
to r1 = Vmax × ∆t1, where ∆t1 = t − t1 and
Vmax is a user-defined value standing for the

maximum velocity of moving object m. The
distance d2 between m and p2, at instant t, is
inferior to r2 = Vmax×∆t2, where ∆t2 = t2−t.
So, at time t, the moving object might be at
any location within the area defined by the in-
tersection of the two circles of radius r1 and r2.
This is a so-called lens area [8] representing the
set of all possible locations for a moving object
at a certain time instant.

Figure 3: A lens area for a time instant

The set of all locations where a moving ob-
ject might have been between two consecutive
observations corresponds to an ellipsis (Fig-
ure 4). This means that the ellipsis covers all
possible lens areas between the two consecutive
observations [7, 2].

Figure 4: A lens area for a time interval be-
tween consecutive observations

Figure 4 shows how to compute the lens area
for a time interval 〈ta, tb〉, between two con-
secutive observations. The circle with radius
rb = Vmax × (tb − t1) corresponds to the max-
imum distance from p1 that could be reached
by the moving object at tb. The same rea-
soning applies to ra. In addition, the moving
object could not have been outside the ellipsis
just defined. So, the lens area is defined by the

intersection of the two circles with the ellipsis.

Lens areas for time intervals comprising one
or more observations are the union of sev-
eral lens areas computed using the method de-
scribed above.

2.3 Using probabilistic methods

Consider now that we have methods that al-
low estimating the location of a moving object
at any time instant. The evaluation of spa-
tiotemporal query expressions could than be
augmented with probabilistic estimates of the
validity of answers to users queries. Thus, it
would be possible to answer queries such as
“Which are the planes for which the probabil-
ity of being inside Area C within 5 minutes is
at least 40%?”, or “Which were the ships that
were in a certain area during a given time in-
terval, with a probably of at least 60%?”.

Figure 5 illustrates this kind of query [8].
It considers the case of the anticipation of
the location of an object moving on a two-
dimensional space. If we assume that the dis-
tribution of probability in this lens area is uni-
form, then, the object is said to be within the
given area with a probability of 30%, if at least
30% of its lens area is within that area.

Figure 5: Probability of intersection between a
lens area and a query window

2.4 Related works

In recent years, uncertainty handling emerged
as an important issue in moving object
database research. Several aspects were inves-
tigated and two complementary models were
proposed: [8] focusing on past objects’ move-
ment and [19, 13] dealing with future objects’
movement. Moreover, [18, 17] investigated the
communication cost for updating the database
in the case of real-time applications. [5] dis-
cusses how the uncertainty of network con-
strained moving objects can be reduced by us-
ing reasonable modeling methods and location
update policies. Finally, [9] added fuzziness in
object location and considered the case of mov-
ing objects that may change their geometry in
time.

An important issue of the current research
activity in this domain is the design of a prob-
abilistic model of uncertainty. The goal is to
handle more realistic (non-uniform) distribu-
tions of probability on the location of moving
objects, and measure the validity of the an-
swers to user queries. Recent results [4, 3, 12]
are going toward this goal, even if they just
briefly touch upon the possibility of a non-
uniform distribution.

Besides, the evaluation of user queries may
require handling temporal types such as time
instants, time intervals or a combination of
them. Evidently, the probability of presence
of a moving object within a given area at a
certain time, should be less or equal than the
probability of presence of the moving object
within the same area during any time that in-
cludes the previous one. However, the methods
presented in section 2.3 are suitable for dealing
only with time instants and are not adequate
to deal with time intervals.

For instance, consider figure 6 where A is an
area of interest, L′ is the lens area calculated
for the location of an object at a time instant
t (1st case) and L′′ is a lens area for the loca-

tion of the same object during a time interval
〈ta, tb〉 ⊃ t (2nd case).

(1st case) (2nd case)
Lens area for t Lens area for 〈ta, tb〉 ⊃ t

Figure 6: Intersection of a lens area (L) with
an area of interest (A)

Considering that the distribution of proba-
bility in the lens area is uniform, then the prob-
ability of presence of the moving object within
A at time t is P (t) = area(A∩L′)

area(L′) and the prob-
ability of being within A during time 〈ta, tb〉 is
P (〈ta, tb〉) = area(A∩L′′)

area(L′′) .
As A ∩ L′ is equal to A ∩ L′′ and the area

of L′ is less than the area of L′′ then, against
evidence, P (t) is greater than P (〈ta, tb〉).

3 Probabilistic reasoning

This section presents the statistical tools that
we propose for the evaluation of probabilistic
estimates about the location of moving objects.
We will denote the probability of presence of a
moving object within a given region during a
certain time, simply as P (t). We only consider
the past objects’ movement and we assume
that it is represented as an ordered sequence
of observations, denoted {(t, p)}, where p is a
two-dimensional value denoting the location of
the object at time instant t. We also consider
that the objects move freely in space with no
obstacles or networks constraining their move-
ments.

It is also important to notice that the move-
ment of real-world objects is not random. In-
deed, it is reasonable to consider that, most
often, their movement is smooth, i.e., that the

movement between two locations is approxi-
mately linear and uniform. This means that
the locations in the neighborhood of the posi-
tion expected for an object1, denoted p̃, should
have a greater weight in the computation of the
probabilities, than those locations that are far
from p̃.

As we are interested in obtaining realist esti-
mates, it is desirable that the density functions
for distribution of the probabilities within lens
areas take this feature into account. Moreover,
the location of a moving object at the time in-
stants corresponding to the observations is pre-
cisely known, and thus, we must have P (t) = 1
for those time instants or any time interval
containing them. Finally, we also assume that
there are systems for which it is not reasonable
to estimate in advance the maximum velocity
of a moving object with an acceptable accu-
racy. We propose a specific method for those
cases.

We have investigated two main guidelines
for the implementation of the proposed sta-
tistical tools, which were designated by point-
based and trajectory-based approaches. We
have developed methods based on each of these
approaches and we will put in evidence the
strengths and weaknesses of each one.

3.1 Point-based approach

As referred in section 2.4, there are several au-
thors suggesting using a density function to es-
timate the probabilities of presence of a mov-
ing object at each point inside the lens area.
Then, assuming that t denotes a time instant,
the values of P (t) may be calculated using the
weight of the intersection of the lens area with
the region considered, as shown in formula (1).

1The position expected for a moving object at a cer-
tain time instant is estimated assuming that the move-
ment between consecutive observations is linear and
uniform.

P (t) =
WLensArea(t) ∩ Region

WLensArea(t)
(1)

The main issue is the definition of a den-
sity function over a complex form, such as a
lens area. Since we can easily define a density
function over a circle, we propose to perform
an anamorphosis of the lens area into a circle.
The method that we propose consists in four
steps:

• First, we define a local coordinates system
for the lens area, to make the formulation
of the lens area equation easier.

• Second, we define the anamorphosis of the
lens area into a circle of radius 1, to which
the chosen density of probability will be
associated.

• Third, we define how to transform the
density of probability over the circle of ra-
dius 1 into a density of probability over
the lens area.

• Finally, we complete the process by the
evaluation of P (t).

3.1.1 Lens area equations

The lens area is given by the intersection of
two circles. If one circle contains the other,
the result of the intersection is the smaller cir-
cle. This situation may arise for time instants
in the neighborhood of the instants of observa-
tions. Otherwise, the result of the intersection
is an area similar to the one depicted in fig-
ure 7.

The lens area in figure 7 delimits the set of all
possible locations for a moving object at time
instant t, between two consecutive locations:
p0, observed at instant t0, and p1, observed at
t1. As presented in section 2, the left centered
circle delimits the lens area of the object during
the time interval [t0, t]. The right centered cir-
cle delimits the lens area of this object during

Figure 7: Lens area parameters

the time interval [t, t1]. The radiuses of the cir-
cles depend on the maximum velocity (Vmax)
previously estimated:

r0 = Vmax × (t− t0)

r1 = Vmax × (t1 − t)
(2)

To make the formulation of the lens area pa-
rameters easier, we use a local coordinates sys-
tem based on the lens area axes (see figure 7).
Let us consider d as the distance between p0

and p1. The origin o of the coordinates system
corresponds to the projection of the lens area
summits over the x-axis. Formally, o is consid-
ered as the center of mass, i.e. the barycenter2,
of points p0 with mass x1

d=(x1−x0) , and p1 with
mass x0

d=(x1−x0) , and is defined as:

o

(
0
0

)
= bar

{(
p0

(
x0
0

)
,

x1

d

)
,

(
p1

(
x1
0

)
,

x0

d

)}
(3)

2Consider two points A1 and A2 defined by their
cartesian coordinates (x1, y1) and (x2, y2). The mass,
also referred to as the weighting coefficients, for each
point is m1 and m2, respectively. The barycenter of
((A1, m1), (A2, m2)) is a point d with cartesian coor-
dinates (xg, yg) such as: xg = m1x1+m2x2

m1+m2
and yg =

m1y1+m2y2
m1+m2

.

Applying the Al-Kashi’s theorem (law of
cosines) [1, 16], we obtain the following ab-
scises for p0 and p1 in the local coordinates
system:

x0 = −d2+r0
2−r1

2

2d

x1 = d2−r0
2+r1

2

2d = d + x0

(4)

In the general case, the lens area is defined
by two arcs located in the half-plans x > 0
and x < 0. Otherwise, it is a circle centered
on p0 or p1. So, we use the following explicit
equations to represent the lens area:

fL(y) =

{
x1 −

√
r1

2 − y2 , in the general case

x0 −
√

r0
2 − y2 , if x1 −

√
r1

2 − y2 > 0

fR(y) =

{
x0 +

√
r0

2 − y2 , in the general case

x1 +
√

r1
2 − y2 , if x0 +

√
r0

2 − y2 < 0

(5)

Now, we can easily change from the global
coordinates system to the local one, by a trans-

lation of vector
(−o.X
−o.Y

)
, that places the ori-

gin at o, followed by a rotation of an angle θ,
such as:

{
cos θ = p1.X−p0.X

d

sin θ = p1.Y−p0.Y
d

(6)

3.1.2 Lens area anamorphosis

As referred above, defining a density function
over complex objects such as lens areas would
not be a simple task. To cope with this prob-
lem, we propose using an anamorphosis, to
transform the lens area into a circle of radius
1 (figure 8). The density function will be then
defined over the circle.

To achieve such transformation, we define an
affine bijection [15, 14] between the lens area
and the circle. This one-to-one transformation
preserves collinearity (i.e., all points lying on

(a) 1st case

(b) 2nd case

Figure 8: Lens area anamorphosis

a line initially still lie on a line after trans-
formation), as well as the ratios of masses and
distances (i.e., the barycenter of a line segment
stills the barycenter of the corresponding line
segment after transformation). So, determin-
ing the point in the circle that corresponds to
a point in the lens area, is formally defined as
follows:

- Consider a point M

(
x
y

)
that belongs the

lens area (figure 8).

- Using the explicit equations (5), we can
define the endpoints of the line seg-
ment containing M , as Ll

(
xL = fL(y)

y

)
and

Rl

(
xR = fR(y)

y

)
.

- Supposing that M is the barycenter of the
line segment LlRl, then M must verify
equation (7). This means that mass co-
efficients of Ll and Rl are proportional to
their distance from M .

M = bar

{(
Ll,

xR − x

xR − xL

)
,

(
Rl,

x− xL

xR − xL

)}
(7)

- Let us denote the maximum height of a
lens area by r. Depending on the shape of
the lens area, r may be equal to the length
of the line segment between the summits
of the lens area (figure 8(a)), or it may
be equal to the radius of the smaller of
the two circles that define the lens area.
The latter occurs for time instants near
to the instants of observations, when the
lens area is a circle or when it looks like
the one presented in figure 8(b). Equation
8 shows how to calculate r.

r =

{ √
r0

2 − x0
2 , in the general case

r0 , if x0 > 0
r1 , if x1 < 0

(8)

- The points Lc and Rc in the boundary of
the unity disk (figure 8), that correspond
to the points Ll and Rl in the boundary
of the lens area, are defined as follows:

Lc

(
−
√

1− y
r

2

y
r

)
and Rc

(√
1− y

r
2

y
r

)
(9)

- Point P in the unity disk is the image of
M , obtained by an affine one-to-one trans-
formation of line segment LlRl in the lens
area into the line segment LcRc in the
unity disk:

P = bar

{(
Lc,

xR − x

xR − xL

)
,

(
Rl,

x− xL

xR − xL

)}
(10)

- So, P is the image of M obtained by an
anamorphosis α such as:

M

(
x
y

)
α→ P

(
2x−xL−xR

xR−xL

√
1−

(
y
r

)2

y
r

)
(11)

3.1.3 Defining the density function

The density of probability over the lens area
is then defined throw the density of proba-
bility over the unity disk. However, we can-
not simply apply the transformation and keep
the probability corresponding to each point,
since the differential surface element has been
changed by the anamorphosis:

∫
L

f (α (x, y)) dx dy 6=
∫

D
f (x, y) dx dy = 1

where, L stands for the lens area and
D stands for the unity disk.

(12)

Hence, the density of probability must be
normalized to guarantee that the whole prob-
ability is equal to 1. As in computation it is
not possible to deal with infinite sets, we have
introduced the notion of granularity g in this
model. We define g as the distance between
two consecutive points (granules). So, the co-
ordinates of each point become multiples of g.
We define the weight of a point as its corre-
sponding density of probability over the unity
disk. Considering all the points in a lens area,
the sum of their weights gives the total weight
of the lens area Wtot.

Wtot =

∑

m>0|m g−x0<r0

m<0|x1−m g<r1

∑

n|(m g−x0)2+(n g)2<r0
2

f (α (m g, n g))

(13)

The probability associated to each point is
then defined as the ratio of its weight over the
total weight of the lens area.

P

(
M

(
mM g
nM g

))
=

f (α (mM g, nM g))

Wtot
(14)

3.1.4 Probability of presence of an ob-
ject within a region

Considering a region Z and a lens area L, then
P (t) is proportional to the weight of the inter-
section zone L ∩ Z. As the space has been de-
composed into granules, the value of P (t) may
be easily calculated by summing the weight of
the points within L that intersect Z:

P (t) =
1

Wtot

∑

(m g,n g)∈L∩Z

f (α (mg, n g)) (15)

The computation of this probability may be
performed simultaneously with the computa-
tion of the total weight of the lens area. The
weight of each point in the intersection zone is
added simultaneously to the weight of the lens
area Wtot and to the weight of the intersection
zone WL∩Z . Then, P (t) is obtained as follows:

P (t) =
WL∩Z

Wtot
(16)

3.2 Trajectory-based approach

The Trajectory-based approach consists in the
generation of a large number of trajectories
between each two consecutive observations
recorded for the object. The probability of
presence of a moving object within a given re-
gion, during a time interval ∆t, is then esti-
mated by the number of trajectories intersect-
ing that region, over the total number of tra-
jectories generated (17).

P (∆t) =
#trajectories(∆t) ∩ region

#trajectories generated
(17)

Let us now consider a motion section defined
by three consecutive observations, as shown in
figure 9. Let T0,1 (respectively T1,2) be the set
of the N0,1 (respectively N1,2) trajectories gen-
erated for the first (respectively second) step
of the motion section. Let Z0,1 (respectively
Z1,2) be the subset of the K0,1 (respectively

Figure 9: Trajectory-based approach

K1,2) trajectories that do not intersect the for-
bidden region. The obtained set of trajecto-
ries over the two steps of the motion section is
then T0,2 = T0,1 × T1,2, and the subset of the
trajectories that do not intersect the forbidden
region is Z0,2 = Z0,1 × Z1,2. Thus, the proba-
bility of presence of the moving object in the
given region during the query window ∆t may
be calculated as follows:

P0,2(∆t) =
#(T0,2 −Z0,2(∆t))

#T0,2
=

#T0,2 −#Z0,2(∆t)

#T0,2

P0,2(∆t) = 1− #(Z0,1(∆t)×Z1,2(∆t))

#(T0,1 × T1,2)

P0,2(∆t) = 1− #Z0,1(∆t)#Z1,2(∆t)

#T0,1#T1,2
= 1− K0,1

N0,1

K1,2

N1,2

Hence:

P0,2(∆t) = 1− P 0,1(∆t)P 1,2(∆t)

For the general case, where 0 < i < j, we obtain:

Pi,j(∆t) = 1−
∏

k∈[i,j−1]

P k,k+1(∆t) (18)

The key issue for this approach is the de-
velopment of a generator for movement data.
The generated movements should be random,
but they must comply with some physical con-
straints on the movement of real world objects.

We have implemented two kinds of genera-
tors that we designate by the Brownian motion
generator and the vector-oriented motion gen-
erator. Only the latter requires knowing the
maximum velocity of the object.

3.2.1 Brownian motion generator

The Brownian motion is originally used to
describe the movement of particles that re-

ceive a random number of impacts of random
strength, from random directions, during a cer-
tain period of time. The movement of the par-
ticles between two impacts is linear and uni-
form. No other interaction with the particles
exists. This theory has been firstly set by
Robert Brown in 1827, when observing pollen
particles floating on water. It is applied today
to many different domains, like financial assets
modeling or signal processing. In the later the
Brownian motion theory is used to simulate
noise associated to processed signals. A brown
noise (or ”Brownian”), is a noise in which each
successive sample is a small random increment
or decrement above the previous sample. We
follow a similar process to generate our Brow-
nian movements.

Brownian movements

In our case, Brownian movements are gener-
ated between consecutive observations. So, the
origin and the destination of each generated
movement must coincide with the given ob-
servations. The Brownian movement genera-
tion is then done in a suite of constant steps
between the origin and the destination. The
number of steps is fixed in advance.

We propose two generators of Brownian
movements. The first one generates one-
dimensional Brownian movements. This kind
of movement don’t enable backward steps. The
moving object executes a suite of constant
steps following the same direction: from the
origin to the destination. Time is also decom-
posed on a regular (uniform) basis. Within
each step the projection of the movement over
the line defined by the origin and destination is
uniform. However, the movement over the per-
pendicular directions is directed by a Brownian
law. Figure 10 shows a representation of the
so-called one-dimensional Brownian motion.

The second generator we propose com-
bines two one-dimensional Brownian motions

Figure 10: One-dimensional Brownian motion

to obtain a random movement, called two-
dimensional Brownian movement. There is no
longer regularity between the generated move-
ment steps. In particular, we can observe back-
ward movement steps. Thus, the movement is
more realistic and the set of trajectories gener-
ated covers an area that is closer to the shape of
a lens area, than that one covered by the one-
dimensional generator. This kind of movement
is illustrated in figure 11.

Figure 11: Two-dimensional Brownian motion

Implementation

To implement the generators described above,
we define the Brownian as follows:

{
B0 = 0
Bk = Bk−1 +

√
p . N(0, 1) ∀k ∈ [1, n− 1]

(19)

where n is the number of points of the Brow-
nian (which corresponds to the number of in-

termediate points between the origin and the
destination), p is the fixed step length and
N(0, 1) is a generator of random values accord-
ingly to a Gaussian law, with an average null
and a variance equal to 1.

To constraint the movement origin and des-
tination, the Brownian generator must fulfill
the following criteria: B̃0 = B̃N−1 = 0. This is
obtained in the following equation:

B̃k = Bk − k
Bn−1

n− 1
∀k ∈ [0, n− 1] (20)

The advantage of the one-dimensional Brow-
nian motion is that it is simple to implement.
This movement is generated easily using a
Brownian value to which we apply a rotation
and a translation. The obtained vector is then
added to an initial movement vector obtained
on the basis of uniform movement following the
axis origin-destination.

Let τ be the path generated between two
points A(xa, ya) and B(xb, yb) and τd the path
from A to B following a straight line:





τd(0) = A
τd(n− 1) = B

τd(k) = A + k
~AB

n−1
∀k ∈ [0, n− 1]

(21)

The one-dimensional movement is then cal-
culated for each step using the following for-
mula, where σ is a user defined parameter that
enables amplifying the Brownian values:

τ(k) = τd(k)+ trans(rot(σ . B̃k)), ∀k ∈ [0, n− 1] (22)

The generation of two-dimensional Brown-
ian movement requires using four parameters
σ[2,2] instead of a single σ, and two indepen-
dent Brownians.

τ(k) = τd(k) +

(
σ11 σ12

σ21 σ22

)
.




B̃1
k

B̃2
k




∀k ∈ [0, n− 1]

(23)

The shape of the movements generated is in-
fluenced by the four parameters σ[2,2]. The pa-
rameters in the first line have an influence on
the shifting of positions in the direction of the
line connecting the origin and destination, and
the other parameters have an influence on the
shifting of positions in the perpendicular direc-
tion.

3.2.2 Vector-oriented motion generator

This movement generator may be suitable for
applications for which the Brownian move-
ments doesn’t represent a realistic solution.
Since there is no restrictions for the changing of
cape between two successive steps of a Brown-
ian movement, instantly U-turns are made pos-
sible. This is not adequate for moving objects
like fishing ships, for instance.

Vector-oriented movements

A vector-oriented movement is a movement
composed of a suite of steps, each one is cal-
culated using a random speed and orientation
values. The main issue for this approach is
the convergence of the generated movements
towards the chosen destination, without inter-
fering with the desirable random features of
the generated values. To deal with this prob-
lem, we have defined a circumference with a
center at the origin and radius equal to the dis-
tance between the origin and the destination.
Then the movement generated must converge
towards the circumference. For each step, the
cape angle is generated accordingly to a dis-
tribution centered towards the closest point of
the circumference. Once a point of the circum-
ference is attained, it is enough to perform a
rotation to make the last point generated coin-
cide with the destination intended (figure 12).

Figure 12: Generation of vector-oriented move-
ments

Implementation

The time interval between two observations is
decomposed into steps representing the small-
est unit for the simulation. All steps have the
same duration. New orientation and speed val-
ues are generated at each step accordingly to
the following criteria:

• for the cape angle, the distribution is cen-
tered towards the closest point of the cir-
cumference. Considering that αavg(n) is
the mean value of the angles generated for
steps 1 through (n − 1), the new orienta-
tion α(n) generated at step n is bounded
by ∆max, as follows:

α(n) ∈ [αavg(n)−∆max, αavg(n) + ∆max] (24)

• for the speed value at step n, the distri-
bution is centered on the average speed
vavg(n), which should be equal to the av-
erage speed required to reach the closest
point of the circumference.

Our experiments revealed that the trajec-
tories generated converge quickly towards the
neighborhood of the circumference, but after
that, they turned around during a certain time
before reaching it.

To cope with this situation, we tried to de-
crease the variance of the random variables
over time accordingly to a chosen law (linear,
quadratic or exponential). In this way, con-
vergence is imposed artificially but the results
obtained were satisfactory for our model.

Finally, it may arise that, during the gen-
eration of a movement, we obtain a average
speed value greater than the maximum speed
allowed. In this case, that generated part of
the movement is simply discarded and a new
one is generated.

4 Tools and applications

This section compares the proposed methods
and introduces some issues related with their
application for the implementation of spa-
tiotemporal operations. As an example, we
show how to use them for evaluating proba-
bilistic range queries.

4.1 Comparison of the methods

The point-based and the vector-oriented meth-
ods are applicable to systems where it is pos-
sible to estimate the maximum velocity of the
objects in advance. Otherwise, the Brownian
motion method should be used.

The point-based method allows estimating
values for P (t), only when t is a time instant.
Extending this method to cope with time inter-
vals is not trivial. We could conceive a method
based on the notion of a temporal granular-
ity, as we did for space in section 3.1.3. The
method would consist in the specification of
a sequence of lens areas, one for each tempo-
ral granule within the desired time interval,
and building a density function for each lens
area, using the point-based method proposed
in this paper. Then, the density function for
a time interval would result from a combina-
tion of density functions defined for each lens
area. The problem is that the probability for
the presence of a moving object at a certain
location depends on its location at previous in-
stant. As the location of the moving object at
the previous instant may be one within a possi-
bly large set of points, we were not able to find

a solution for such a complex problem, allow-
ing maintaining the desirable properties from
the statistical point of view.

The vector-oriented motion method allows
estimating values for P (t), where t is a time
instant or a time interval. The method is
also simpler than the previous one, but a def-
inite choice should only be made after bench-
marking for performance and reliability evalu-
ation purposes. The former, benchmarking for
performance evaluation, would indicate which
method is the most efficient from response
times point of view. The latter concerns the
quality of the estimations. This is an inter-
esting issue, also raised in [3], as we are inter-
ested in comparing the reliability of the results
of probabilistic queries, but in fact we do not
know which are the true results.

The Brownian motion generator should be
used for systems where the maximum veloc-
ity of the moving objects cannot be estimated
accurately in advance. Under these circum-
stances, it is not possible to define lens areas.
Consequently, it is not possible to guaranty
that when P (t) = 0, the moving object has
not been within the region of interest during
the specified time instant or time interval t.
As we will see below this feature restricts the
applications of this method.

4.2 Tools and functionality

We have developed two tools for the evaluation
of the proposed methods: one implementing
the Brownian motion generator and the other
implementing the methods based on the knowl-
edge of the maximum velocity.

The Brownian motion generator tool has
been implemented in C language and runs on
Windows systems (figure 13).

The tool allows drawing polygons and paths.
Polygons are shown in its triangulated form.
The paths are line segments defined by a se-
quence of points. The parameters for each sim-

Figure 13: Brownian motion tool

ulation are entered in the simulation window,
where Brownian motion type allows choosing
between one or two-dimensional Brownian mo-
tions, Paths stands for the number of trajecto-
ries that should be generated, Step defines the
number of motion sections between each pair
of consecutive points, and Sigma are the coef-
ficients that direct the spatial distribution of
the generated values.

The color of the pixels in the neighborhood
of the paths that could have been followed by
a moving object are darker for smaller proba-
bilities and lighter for higher probabilities.

The results are displayed in the property
window, where Proba main denotes the value
estimated for the probability of the presence
of the object within the region defined by
the polygon during the whole simulation, and
proba denotes the values estimated for each in-
dividual segment.

Notice that the Sigma parameters may be
adjusted to mimic the features of real-world
applications. We have tried to establish a pol-

icy for controlling these parameters in order to
apply this solution for cases where the max-
imum speed is known as well. Although, we
were not succeeded in finding a solution that
would allow preserving the desirable statistical
properties of the generated values and giving
realistic answers to user queries.

The second tool implements the point-based
and the vector-oriented methods. It has been
developed in C language and runs on Linux
systems (figure 14).

Figure 14: Vector-oriented motion tool

The functionalities offered here are approxi-
mately the same as those offered by the previ-
ous tool. In addition, as this tool implements
the methods based on the maximum velocity,
it also allows drawing lens areas, for time inter-
vals defined between two consecutive observa-
tions (the ellipsis) or for arbitrary time inter-
vals (the area defined by the intersection of two
circles). Another difference is the displaying
method. This tool does not use a colored scale
for representing the probabilities. Hence, the
zones of higher or lower probabilities should be
inferred visually, considering the density of the
trajectories displayed.

Previous figure shows that there are loca-
tions within a lens area, which are not crossed
by any trajectory. As the probabilities inferred
for those locations would be zero, this is not

adequate to implement some operations pro-
posed in the spatiotemporal query languages
literature. To overcome this problem it is re-
quired to consider that every location within a
lens area has an initial probability equal to a
very small value.

4.3 Application to spatial-temporal
query languages

The application of the proposed methods to
answer probabilistic range queries, such as
“Which were the ships that were in a certain
region during a time interval, with a probabil-
ity of at least 30%” [8, 4] could be expressed
as follows in a SQL-like language:

select objId
from movingObjects
where probWithin(objMotion, region, time) > 0.3;

In this example, movingObjects(objId, ob-
jMotion) is a table holding the information
about the spatiotemporal behavior of the mov-
ing objects3, and probWithin is a function im-
plemented using one of the methods proposed
in this paper.

Notice that, queries defining that a probabil-
ity is equal to some precise value are not mean-
ingful, as these values are merely estimations
for what could have happen in a real situation.
Although, the methods have been developed
and tested for the validity of the bounding val-
ues, i.e., when P (t) = 0 and P (t) = 1. For in-
stance, when one of the observations falls into
a particular region during the specified time
interval, all methods assure that P (t) = 1.
For methods grounding on a maximum veloc-
ity value, it is also possible to guaranty that
when P (t) = 0, the moving object has not been
within the specified zone during that time.

3For simplicity, we assume in this example that the
movement of an object, denoted objMotion, is defined
as an abstract data type, but other kinds of represen-
tation might have been used.

Consequently, these methods may also be
used to implement semantics adequate to an-
swer questions such as “Which were the mov-
ing objects that surely have been within a spec-
ified region during a certain time” or “The
list of all moving objects that could have been
within a specified region”, as proposed in [6].

The same does not hold for Brownian mo-
tion, as the parameters used for carrying out
this method do not allow establishing an accu-
rate bounding of lens areas.

It is also possible to implement many other
semantics. For instance, one may be interested
in defining a probable operator and consider
that probable means a probability of at least
80%, unlikely means at most 20%, or that a
query yields true if the probability is at least
60%, among many others reasoning possibili-
ties.

5 Conclusion and future work

This paper deals with the computation of esti-
mates about spatiotemporal events for moving
objects systems. The focus is on the history of
object’s movement and it is assumed that the
objects move freely in space.

We have followed two main approaches, a
point-based and a trajectory-based approach,
and proposed three methods, with different
features, that may be applied to a wide range
of moving objects systems. We succeeded in
obtaining non-uniform statistical distributions
for estimating the location of moving objects,
congruent with the features of real-world sys-
tems. These methods can be used to put into
practice the operations proposed in different
query languages for dealing with uncertainty
in the location of moving objects.

We also expect that the issues presented in
this paper could give useful insights for devel-
oping new solutions in the future.

At a first glance, it seamed that the point-

based approach was the most obvious solution
for estimating the probability of presence of a
moving object within a certain region. This
also was the solution that was envisaged in the
literature, but, as previous section shows, the
method based on this approach is considerably
more difficult to implement than the others.
Besides, this method can only be applied to
answer probabilistic queries about the location
of a moving object at a certain time instant,
i.e., time intervals are not allowed.

On the other hand, trajectory-based meth-
ods are simpler to implement and they are able
to cope with a greater variety of applications:
it is possible to answer probabilistic queries
about the location of a moving object during
any temporal domain specified by users, and
it is also possible to develop methods that do
not require knowing the maximum velocity in
advance.

The purpose of this work was to look for sta-
tistical tools suitable for the implementation of
probabilistic spatiotemporal queries. The em-
phasis was on feasibility – identification of ap-
proaches and development of methods to put
them into practice – and expressivity – which
are the domains of application and the limi-
tations, when applying these methods to the
implementation of the different semantics pro-
posed in the literature for dealing with uncer-
tainty –.

Performance and reliability issues were left
for future work. This task involves establish-
ing policies for fine-tuning the controllable pa-
rameters defined for each method, in order to
obtain the best response times without com-
promising the desired reliability of the results.
To fulfil this task and to put in evidence the
strengths and the weaknesses of each method,
a benchmarking methodology, defining appro-
priate metrics for performance and reliability,
is required. Other related tasks include look-
ing for adequate filter steps for eliminating
a large number of non-qualifying candidates,

using methods computationally non-exigent.
This issue is also related with the development
of data structures and efficient access methods
for movement data.

Acknowledgments

We would like to thank Cyril Branciard,
Aurélien Coquard, Yvain Thonnart, Nghoc-
Minh Vo, Cédric Lacage, Haykel Tagourti and
Thomas Sirvent for their precious collabora-
tion. They have worked on the development
and implementation of the statistical tools pre-
sented in this paper, and their contribution was
fundamental for the achievement of this work.

References

[1] Theoreme d’Al-Kashi. Wikipedia,
l’encyclopedie libre, http://fr.wikipedia.org.

[2] T. Abdessalem, C. du Mouza, J. Moreira,
and P. Rigaux. Management of Large Moving
Objects Databases: Indexing, Benchmarking
and Uncertainty in Movement Representation,
chapter 10, pages 225–249. In Y. Manolopou-
los, A. Papadopoulos and M. Vassilakopoulos
eds, Spatial Databases: Technologies, Tech-
niques and Trends. IDEA Group Publishing,
2005.

[3] R. Cheng, D. V. Kalashnikov, and S. Prab-
hakar. Evaluating probabilistic queries over
imprecise data. In SIGMOD’03, Proc. of
ACM SIGMOD International Conference on
Management of Data, San Diego, USA, June
9–12 2003.

[4] R. Cheng, S. Prabhakar, and D. Kalash-
nikov. Querying Imprecise Data in Moving
Object Environments. In ICDE 2003, Proc.
of the 19th IEEE International Conference on
Data Engineering, Bangalore, India, March 5–
8 2003.

[5] Z. Ding and R. H. Güting. Uncertainty man-
agement for network constrained moving ob-
jects. In DEXA 2004, Proc. of 15th In-
ternational Conference on Database and Ex-
pert Systems Applications, pages 411–421,
Zaragoza, Spain, 2004.

[6] J. Moreira, C. Ribeiro, and T. Ab-
dessalem. Query Operations for Moving Ob-
jects Database Systems. In Proc. of the 8th
International Symposium on Advances in Ge-
ographic Information Systems (ACMGIS-00),
pages 108–114. ACM Press, 2000.

[7] J. Moreira, J.-M. Saglio, and C. Ribeiro.
Representation and manipulation of moving
points: An extended data model for loca-
tion estimation. Journal of Cartography and
Geographic Information Systems (CaGIS),
ACSM, 26(2):109–123, 1999.

[8] D. Pfoser and C. Jensen. Capturing the uncer-
tainty of moving-object representations. Lec-
ture Notes in Computer Science, 1651:111–
132, 1999.

[9] D. Pfoser and N. Tryfona. Capturing fuzzi-
ness and uncertainty of spatiotemporal ob-
jects. Lecture Notes in Computer Science,
2151:112, 2001.

[10] A. P. Sistla, O. Wolfson, S. Chamberlain, and
S. Dao. Querying the Uncertain Position of
Moving Objects. In Temporal Databases: Re-
search and Practice, volume 1399, pages 310–
337. Springer-Verlag, 1998.

[11] P. Sistla, Wolfson, Chamberlain, and S. Dao.
Querying the uncertain position of moving ob-
jects. Lecture Notes in Computer Science,
1399:310, 1998.

[12] G. Trajcevski. Probabilistic range queries in
moving objects databases with uncertainty. In
Proc. of the 3rd ACM international workshop
on Data engineering for wireless and mobile
access, pages 39–45. ACM Press, 2003.

[13] G. Trajcevski, O. Wolfson, F. Zhang, and
S. Chamberlain. The geometry of uncertainty
in moving objects databases. In EDBT 2002,
Proc. of 8th International Conference on Ex-
tending Database Technology, volume 2287 of
Lecture Notes in Computer Science, pages
233–250. Springer, 2002.

[14] E. W. Weisstein. Affine transforma-
tion. MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com.

[15] E. W. Weisstein. Bijection.
MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com.

[16] E. W. Weisstein. Law of cosines.
MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com.

[17] O. Wolfson, L. Jiang, A. P. Sistla, S. Cham-
berlain, N. Rishe, and M. Deng. Databases for
tracking mobile units in real time. In C. Beeri
and P. Buneman, editors, ICDT, volume 1540
of Lecture Notes in Computer Science, pages
169–186. Springer, 1999.

[18] O. Wolfson, A. P. Sistla, S. Chamberlain, and
Y. Yesha. Updating and querying databases
that track mobile units. Distributed and Par-
allel Databases, 7(3):257–387, 1999.

[19] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou,
S. Chamberlain, Y. Yesha, and N. Rishe.
Tracking moving objects using database tech-
nology in DOMINO. In R. Y. Pinter and
S. Tsur, editors, NGITS, volume 1649 of Lec-
ture Notes in Computer Science, pages 112–
119. Springer, 1999.

