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ABSTRACT

Many are the examples of application of SAR and differential SAR interferometry for topographic mapping and
ground deformation monitoring. However, on repeat pass geometry, the performance of these two techniques is
limited by the problem of loss of correlation (coherence) between two radar acquisitions. The lack of coherence
causes an additional noise thus a bad estimate of the interferometric phase. The disturbances can be due either
to surface changes due to long period cover (temporal decorrelation) or to a strong value of the baseline (spatial
decorrelation).

In this paper, we propose an empirical model for the estimate of coherence considering separately these
two sources of disturbances. Starting from the observations of experimental data, we study the behaviour of
coherence according to baseline and period cover in order to express the two terms of correlation. A number of
170 multi temporal and multi baseline differential interferograms covering the same region is used to validate
the proposed model.
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1. INTRODUCTION

SAR and differential SAR interferometry! have proven to be a performant tools for measuring with great accuracy
topography profile and ground surface motion.?* However, accurate estimation of the correlation or coherence
between channels is necessary. It is applied to select areas in which the phase information can be used to extract
target height as well as an indication of the quality of the generated digital elevation model.> In an other
hand, a perfect knowloge of the coherence is crucial for ground moving target measurements.® Thus, quantitave
coherence information is very important and should be estimated accurately.”

The SAR phase difference is a relevant information only if it is calculated between two images acquired in the
same conditions especially in repeat passes over the same site. This constraint represent an important limitation
of SAR interferometry. The phase can be disturbed by various types of phenomena. One of the principal
disturbances is the loss of correlation between two acquisitions which induces a bad estimation of the phase
thus a bad estimation of topography by interferometry. There is essentially two kind of disturbances causing
decorrelation®8:

e temporal decorrelation : ground surface changes due to long period cover such us vegetation grouth, glacier
motion, soil moisture, etc.

e spatial decorrelation : sensor geometry changes between the two radar acquisition. It concerne the repeat
incidence and aspect angles. This effect is directly related to the distance between the two antennas i.e.
the baseline.

This paper presents the different sources contributing to decorrelation, discuss correlation factors estimation
existing in the litterature and give a new empirical model for coherence by considering separetely the two latter
effects.

The second section present some theoretical bases useful in determining interferometric phase and coherence
statistical models. Both single and multi-look processing are considered. In section three, we describe the various
sources of decorrelation. The different factors causing a loss of correlation are considered separetely. The total
correlation is then given by the product of the different contribution factors. The section four propose a new



empirical model for interferometric coherence which is validated on experimental data. The proposed model
isolate spatial and temporal decorrelation. Spatial decorrelation formulation is confirmed with what exist in the
litterature but new temporal decorrelation formulation is much easier to determine when knowing surface ground
features.

2. INTERFEROMETRY BASES

Single-look complex radar signal is the starting point of interferometric statistical models study. Most mathemat-
ical modeling is aiming at the single-look processed data. However, for speckle reduction and data compression,
interferometric radar data are frequently multi-look processed.

Considering the circular Gaussian assumption® applied to two different radar signals z; and z, we deduce
the joint probability density function which is also a circular Gaussian distribution:

pdf(z1,22) = pdf (Z) = exp(Z_t*C’ng). (1)
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where Z is the complex vector (z1,22), Z~t* the complex conjugate transpose of Z and Cy is the complex
covariance matrix of Z given by:
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The diagonal elements of this matrix corresponds to averaged intensities whereas the nondiagonal elements
provide the complex correlation between the two images.
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with p = ||, denotes the coherence or the correlation coefficient between the two Gaussian signals and ¢g =
arg(y) is the phase difference between z; and zy thus the required interferometric phase.

The statistics presented above are calculated only for one resolution element (Single-look) in one interfero-
gram. However, the interferometric coherence and phase are frequently calculated on several samples (multi-look).
Multiple neighboring pixels are averaged in order to reduce the speckle in the inteferogram. For L looks, the
experimental complex covariance matrix is given by:
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The diagonal elements of this matrix provide an experimental phase dg and an experimental correlation p used
as interferometric data. The expression of ¢ and p is written:

{ ¢ = arg(y) (5)
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The two estimators ¢ and p are also ML (Maximum Likelihood) estimators.” It should be noted that the

multi-looking processing will not improve the coherence but will reduce the standard deviation of the interfero-
metric phase.

with ¥

(6)




3. STATISTICAL LIMITATION : DECORRELATION

The interferometric coherence given by the equation 5, identify the regions where variations of the phase between
two acquisitions are correlated. The experimental coherence p measures the degree of similarity between two
radar images since it represent a statistical estimator of the complex correlation coefficient. The coherence
highlights thus the quality and the potential of an interferometric couple.

Since interferometric measurements are disturbed by various phenomena, a loss of coherence between the two
radar images appears. It induces a visible noise in the interferogram affecting any estimate of the phase and
values of || close to zero. There is several causes to explain the problem of decorrelation!?:

1. The retrodiffused signals are disturbed with an additive thermal noise related to the sensor.

2. Effects due to interferometric radar geometry. There is essentially three sources of geometrical decorrelation:

e The changes caused by viewing the surface with two antennas at slightly different aspect angles. That
induces a change of the relative positions of the diffusers within the pixel. The degree of coherence
will be then a function of the distance separating the two satellite positions i.e. the interferometric
baseline.

e The changes caused by pixel misregistration between the two InSAR images. The scattering targets
for the two pixels are slightly different and therefore have different interference patterns.

e The third geometrical effect inducing a decorrelation is the rotation of the targets with respect to
the radar look direction. The rotation of a resolution element yields to slightly different phase shift
resulting in signal decorrelation.

3. Two radar acquisitions are separate in time (case of multi-pass) so there is a temporal decorrelation. This
term is caused by changes of the physical surface features, phenomenon difficult to predict or to model.
Modifications of the distribution of the resolution element can be du to different causes involving the
displacement of the sources (growth of the vegetation, rivers...) and/or a modification of the electromagnetic
features of the targets (moisture, temperature .. .).

According to what precedes, Zebker et al..® showed that the total term of decorrelation is written:

ﬁtotal = ﬁthermal . fsgeomet'rical . ﬁtemporal (7)

Li and Goldstein!! like Rodriguez and Martin'? quantified these various contributions to the decorrelation
using one statistical model of formation of the images starting from elementary targets. This work was then
resumed and improved by Zebker in.®

3.1. Thermal decorrelation

The loss of correlation related to thermal noise is obtained by considering two signals acquired by two different
antennas, observing the same target, at the same moment. These signals are then modelled by the sum of a
commun correlated part and an additional thermal noise. The thermal decorrelation is given by:

R 1
Pthermal = m (8)

where RSB the signal to noise ratio.



3.1.1. Geometrical decorrelation

The spatial decorrelation caused by three different sources, we start by presenting the baseline decorrelation. It
is obtained by adding the uncorrelated part of the signal to preceding modeling of the two received signals. It’s
given by:

R 2B Res,;
Phoaseline = 1- )\7}20 (9)

where B is the baseline, Res, and Ry are the range resolution and the target satellite distance. the correlation
decrease quickly when B increase. The minimum value of B for which ppgserine €quals zero is the critical baseline
B.:

ARy cos O
B., = ———
el 2Res,

This equation underlines the importance of the baseline for an interferometric couple. For differential inter-
ferometry dedicated to surface change measurements, similar radar geometries are desirable, i.e. the lowest value
of the baseline. However, for interferometry dedicated to topography mapping, significant values of baseline are
desirable because it increases the altitude sensitivity. Then, it is obvious that the baseline controls the quality
of an interferogram and it should not exceed the critical baseline.

An error of pixel misregistration introduces a phase shift which involves a loss of correlation given by:

TAx 2BRes,
1
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where Az represent an error of misregistration on the ground. Only significant errors of misregistration ap-
proaching the size of the pixel will involve a significant loss of correlation.

Finally, a rotation angle d¢ of the targets with respect to the look direction induce a decorrelation given by:

. 2sinf|d¢|Res,

ﬁrotation -
A

where Res, is the azimuth resolution.

3.1.2. Temporal decorrelation

A quantification of the temporal correlation due to the change of surface was given by Zebker and Al in.® Tt
measure the volumic change of a resolution element by considering the influence of a random horizontal change
04, and a random change in height o,. The temporal decorrelation is then given by:

A 1 4rn .
ptemporal = exXp 75(7)2(05 SlIl2 0 + 05 COSQ 0)} (10)
Only random motions are considered, that is, each scattering center moves independently from all others.If
in fact the scatterers move together in one prefered direction then instead of decorrelation a systematic phase
shift would occur.

In conclusion, for differential interferometry, it is preferable to use on one hand, interferograms with small
baseline to reduce spatial decorrelation, and in other hand, to use short period couples to limit temporal decor-
relation.

To resolve decorrelation problems (thermal, geometric of temporal) affecting the interferometric phase, several
solutions were proposed in particular the interferogram filtering!3.14
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Figure 1. Global coherence coefficient variation according to baseline for a data set of 170 interferograms. Interferograms
time period is thresholded to one year (right figure) to reduce temporal decorrelation effects.

4. EMPIRICAL MODEL FOR COHERENCE

The coherence is a measurement of the interferometric phase standard deviation and depends primarily on
satellite parameters, imaging geometry and ground features. The equation 7 shows that coherence is written as a
product of three quantities. Usually, the geometrical and temporal correlation are more significant than thermal
correlation. Thus, we can make the assumption that the noise of the sensor is negligible, so that coherence will
incorporate only two quantities : geometrical and temporal correlation.

(11)

Having a multi-temporal and multi-baseline series of 170 differential interferograms covering the region of
Corinth Gulf, we study the behavior of coherence according to baseline and time period in order to express the
two terms of correlation Pyeometric a0d Premporat- 1t follows an empirical modeling of these two quantities.

Ptotal = Pgeometrical * Ptemporal

For this purpose, we attribute to each interferogram a global coherence coefficient reflecting its quality. Global
coherence coefficient is calculated using the coherence image provided by Diapason [] which is calculated starting
from the equations 5 and 6.

4.1. Geometrical decorrelation

As previously mentionned, the geometrical correlation is due to three different causes. Assuming that the two
satellite orbits are parallels and the misregistration errors are less than pixel size, the geometrical decorrelation
is then attributed to the change of satellite position between the two acquisitions.

Variations of the global coherence coefficient with respect to baseline are plotted in figure 1. However, this
coefficient incorporate the baseline and time decorrelation effects mixed together. In order to reduce temporal
effects, we threshold the baseline to 100m, obtaining thus figure 1. This figure, shows in accordance with equation
9, that we can make the assumption of a linear relation ship between the correlation and baseline which can be
written by

ﬁgeometrique =aB+0b (12)
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Figure 2. Global coherence coefficient variation according to time period for a data set of 170 interferograms. Interfero-
grams baseline is thresholded to 100m (right figure) to reduce geometrical decorrelation effects.

Knowing that maximum correlation (pgeometricat = 1) is realized for a zero baseline. We deduce that b = 1.
This value does not correspond to the experimental value of b since we cannot completely isolate baseline effect
from temporal one. The value of the experimental slope a obtained is:

1

CERS

ac = —0.001 ~ —

(13)

where Bcgprg is the critical baseline of satellite ERS estimated at 1100m. The expression of the equation 9
established by Zebker® is thus confirmed with experimental results.

Consequently, the geometrical correlation can be modelled by:

. B
Pgeometrique = 1-— B_C (14)

4.1.1. Temporal decorrelation

Variations of the global coherence coefficient with respect to period of time covered by the interferogram are also
plotted. In order to reduce baseline effect, we threshold time period to one year (see figure 2).

The figure 2 shows that the temporal correlation decrease exponentially according to time period. More the
interferogram duration increase more the correlation has a significant decreases. However, temporal correlation
is function of ground features in particular of surface ground changes. Therefore the figure 2 is not sufficient
to determine temporal decorrelation, the global coherence coefficient is still biaised by the change of the ground
nature. Assuming that the regions having the same ground surface properties undergoe the same changes
(displacement or electromagnetic features change), the temporal correlation can be written:

fétemporelle = el‘p(—ﬁATQ) (15)

where AT represent the interferogram period of time and [ is a parameter related to the ground feature.
Thus, having a classification of the ground surface components, we can estimate the value of the temporal
correlation.

For the Corinth Gulf interferogram data base, a classification algorithm is applied on a landsat image (covering
the same region than interferograms) in order to specify the areas of different cover. The classification algorithm



used is the K-means. It enable us to determine three different classes of ground components (see figure 3). The
value of 3 is then calculated by minimizing the difference between the model and the experimental data.

For two regions characterized by two different parameters 3 i.e. having different surface cover, the global
coherence coefficient is plotted according to interferogram duration (see figure 4). The obtained figure shows
that the model fit well data but as we can notice the exponential decrease is slithtly faster than the data one.
This is du to the fact that the baseline is not the same for all interferograms (even thresholded). We can also see
that the global coherence coefficient in the figure 4 (right one) is more significant than the one of figure 4 (left
one). It’s because rocky areas are more coherent than vegetation ones. The model suggested will not be valid
in particular cases where the changes of ground surface touch only a delimited part of a region as for example
vegetations areas half irrigated, areas deforested in parts, etc.

Figure 3. Landsat classification applied in order to fix ground areas with the same features. 3 classes are obtained
corresponding respectively to vegetations (white), rocky areas (black) and water sufaces (gray).
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Figure 4. Temporal decorrelation models for two different ground surface cover regions. (left figure) temporal decorre-
lation for vegetation areas. (right figure) temporal decorrelation for rocky areas.
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Figure 5. 3D variation of the global coherence coefficient according to baseline and time period for the data base of 170
differential interferograms. The right figure corresponds to the obtained empirical model for the same set of interferograms.

If we compare the expression of temporal correlation given by Zebker,® to the expression given by the equation
15, we notice two exponential decreases: one according to interferogram time period, the other according to
scattering volume. The first formulation is more rigorous and is obtained with less approximations. However,
in a practical way, it is very difficult, sometime impossible to measure the volume variation of each pixel which
make the second expression easier to exploit.

Thus the total expression of the new coherence empirical estimator is given by:

R R . B
Ptotal = PgeometriquePtemporelle = (1@)(6]}})(—5AT2)) (16)

The figure 5 enables us to compare the variation of global coherence coefficient simultanously according to
baseline and time period .It is obtained starting from the experimental data and from the empirical model. The
two curves are close except for points where baseline decorrelation is biaised by temporal factor and inversely.

5. CONCLUSION

In this article, we exposed the problem of coherence estimation for SAR interferometric processing. An empirical
model for interferometric coherence is proposed and was validated on a data set of 170 multi temporal and multi
baseline interferograms. This model was also discussed and compared to other existant modeling and we showed
that proposed formulation of temporal decorrelation is very useful in a practical way.
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