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ABSTRACT
The widely used Matching Pursuit algorithm processes the in-
put signal as a whole, and as such does not build relationships
between atoms that are selected at every iteration. For audio
signals, variants of this algorithm have been introduced that
catch structured sets of atoms (“molecules”) sharing common
properties: harmonic relationship, time-frequency proximity.
However, they are limited by the use of a single scale, hence
a fixed time-frequency resolution, within a molecule.

In this study, we propose a modified Matching Pursuit that
groups atoms at different scales within a given frequency line,
allowing molecules with an optimized time and frequency
resolution. Results on simple signals, as well as real audio
recordings, show that the extra flexibility provided by mul-
tiresolution comes at a small computational cost.

1. INTRODUCTION

The standard Matching Pursuit algorithm (MP) [1] is a greedy
algorithm giving an approximation of a signalx as a linear
combination ofM elementary waveforms (“atoms”)wm cho-
sen within an overcomplete dictionaryD of N atoms:

x =
M

∑
m=1

αmwm wherewm∈D . (1)

The MP decomposition proceeds as follows. At every it-
eration, the atom the most correlated with the signal (i.e. with
the largest scalar productαi = | 〈wi ,x〉 |) is selected, and the
corresponding weighted atomαi0wi0 subtracted from the sig-
nal. This process is iterated (which implies an update of all
scalar products) until some stopping criterium is reached,e.g.
on the Original-to-Residual energy Ratio (ORR). For music
or speech signals, Gabor atoms of different scales are gener-
ally employed, and MP has been successfully applied to vari-
ous signal processing problems such as audio coding or blind
source separation.

In its standard form, MP usually gives atoms at uncor-
related time-frequency locations between consecutive itera-
tions. This means that partials will not be extracted as a
whole, leading to potentially poor reconstruction when only
few atoms are employed : this leads to amplitude modula-
tions. To overcome this issue, so-called molecular variants of
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the Matching Pursuit algorithm have been introduced [2, 3, 4].
They exploit natural organizations of the atoms in the au-
dio signals, such as harmonic relationships, time-frequency or
time-scale proximities. The partial tracking aspect has been
handled in a mono-resolution context with local cosines [3] or
Gabor atoms [4]. Partial tracking algorithms have also been
developed in the past years with other approaches. Some of
them are based on the Short Time Fourier Transform [5, 6]:
these methods consequently have a fixed time-frequency reso-
lution. Levine [7] uses an octave filter-bank to perform band-
wise sinusoidal modeling, allowing a high time resolution
in high frequencies, and a high frequency resolution in the
low frequencies. In his study, the multi-resolution aspect has
proven efficient in reducing pre-echo artefacts.

In this paper, a method that transposes the molecular con-
cept into amulti-resolutioncontext is proposed: the Multi-
Resolution Molecular Matching Pursuit (MRMMP). Multi-
resolution is a very useful feature as it allows a simultane-
ously sparse representation of steady-state and transient parts
of the signals ; however if not carefully designed, this increase
in dimensionality could lead to overly complex decomposi-
tion schemes. In section 2, the details of the algorithm are
presented. Then, in section 3, we present and comment the
results that emphasize the extra flexibility provided by our al-
gorithm, on a single sinusoid and a real audio signal. Section
4 concludes with future improvements.

2. MULTI-RESOLUTION MOLECULAR MATCHING
PURSUIT

Basically, the only implementation difference between stan-
dard MP and Multi-Resolution Molecular Matching Pursuit
(MRMMP) resides in the set of allowed indexes for the search
of the atom maximally correlated with the signal. In MP, the
search is always performed on the whole dictionary. In MR-
MMP, two types of searches are performed : in the case of
seed atoms, the search is global as in MP; otherwise, the
search is restricted to a local search, in order to find atoms
that are maximally close in the time-frequency domain.

In this study, the dictionaryD is composed of Gabor
atomsw(s,u,ω) with 3 parameters corresponding to scales,
time u and frequencyω :

w(s,u,ω)(t) =
1√
s
w

(
t−u

s

)
e2iπωt (2)



2.1. Seed atom selection

The first atom is searched in the same way as in the standard
MP algorithm. It is theseedatom of the first molecule, with
parametersse,ue,ωe.

2.2. Consecutive atom selection

Following the selection of a seed atom (se,ue,ωe), the candi-
date atoms at the next iteration are restricted to a small sub-
set I of the whole dictionaryD , with locality constraints
as follows. Only candidates with the same frequencyωe are
considered (search restricted to pure tones).Ns atoms, where
Ns is the number of scales inferior or equal to current scale
se , are considered forward in time, one at each scale. At a
given scalesi , the forward candidate atom is located at time
uf

i = us+ si
2 . Similarly, Ns atoms are considered backwards

in time, with, at scalesi , a time locationub
i = us− si

2 .
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Fig. 1. Candidates for backward and forward extensions
of a molecule (here for the second atom of the molecule).
Thick line: envelope of the molecule seed (se = 4096
samples), dashed lines: envelopes of the candidates (si =
256,512,1024,2048,4096).

This choice of distance between two consecutive atoms
avoids hole forming in the partial, that is observed in stan-
dard MP (see Section 1). Indeed, the 50 % overlap between
neighboring atoms at the same scale guarantees perfect recon-
struction of constant-amplitude sines using Gabor atoms with
a Hanning window. When the best matching atom is selected
within this subsetI , the corresponding waveformαi0wi0 is
subtracted from the signal as in MP.

Following iterations are done in the same manner ex-
cept that the backward candidate locations are computed as
a function of the location of the first atom of the molecule in
progress, and the forward candidate as a function of its last
atom. The molecule is terminated when the selected atom
reaches a fixed proportion of the first atom or an absolute en-
ergy threshold. The choice of this criterion is arbitrary. Af-
ter each terminated molecule, the algorithm looks for the next
seed atom until the general stopping criteria has been reached.

Note that with this method, groups of adjacent time-
frequency atoms representing an given partial are considered
as a whole, which is a definite improvement for modelling the
partials in the signal.

2.3. Optimization of the atom weights

As an additional benefit, this atom grouping allows for some
(optional) optimization. Once all atoms within a molecule
have been selected, their weightsαi can be refined as follows.
Given a setSm of im atomswi that form the moleculem, find

{αopt
i }i=1..im = arg min

αi ,i=1..im
||x−

im

∑
i=1

αiwi ||

With W the matrix of the molecule’s atoms in column, the
least-square solution{αopt

i }i=1..in is given by be the matrix of
the atoms in column,αopt the column vector containing the
optimal weights . Then:

αopt = (WHW)−1WHx

After optimizing these weights, an update of scalar products
has to be performed.

Note that in our case the column vectors (or the atoms)
are not strongly correlated, since their temporal support are
distinct between each other. It implies that the matrixWHW
is well-conditioned and that numeric computations lead to ro-
bust results. This optional step is related to the so-called or-
thogonal MP [8], where at each iteration the signal is opti-
mally projected on the span ofall previously selected atoms;
in MRMMP this optimization islocal to within a molecule,
i.e. to where atoms are most correlated, with significant com-
putational savings.

2.4. Computational load

The computational cost, usually dominated by the update
of the scalar products, is reduced when compared with MP.
Within a molecule, these update steps are quick: only the
scalar products related to candidate atoms need an update (Ns
updates). This is done by directly computing the inner prod-
uct between the atom and the signal. Given the candidate
scalesi , this lead to a computational load ofO(∑si) (∑si mul-
tiplications and∑si additions for each candidate), instead of
O(∑(si log(si))) when a Fast Fourier Transform algorithm is
employed. When a molecule is terminated, all the inner prod-
ucts touched by the molecule time support must be updated ;
here only this step has similar complexity as standard MP.

3. EXPERIMENTS

3.1. Single sinusoid

The described algorithm has been applied on a single sinu-
soid at frequency 1000 Hz (sample rate 44.1 kHz), lasting
about 1s. The scales are 256, 512, 1024, 2048, 4096 sam-
ples (Ns = 5) and the window shift 128 samples. The FFT
have been computed on zero-padded windows in order to have
the same frequency sampling for each block. The stop crite-
rion has been fixed at 24 atoms, which is the size of the first
molecule with the MRMMP algorithm. Three algorithm have
been tested: the MP, the MRMMP without molecule optimi-
sation, the MRMMP with molecule optimisation. On Fig-
ure 2, the reconstruction and the residual resulting from the 3
methods are displayed. The respective ORRs are 34.6, 36.2
and 50.0 dB.
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Fig. 2. Comparison between the MP and MRMMP algo-
rithms. (a): original signal. (b), (d), (f): constant amplitude
sinusoid reconstructed respectively with MP atoms, MRMMP
atoms without optimization, MRMMP with optimization. (c),
(e), (f): respective residuals.

The standard Matching Pursuit (Figure 2 (b) and (c)) algo-
rithm fails to efficiently represent the partial: the first selected
atoms have a maximum amplitude that exceeds the amplitude
of the sinusoid. Here, MP adds energy in the middle of the
atom (bumps in (b), sounding as amplitude modulations).

The MRMMP without optimisation shows a more advan-
tageous behaviour: the first atom is (as in MP) too energetic
(see the bump on the reconstructed signal (d)). Then the next
atom takes less energy, and the following ones converge to a
steady value. However this value does not lead to a perfect
reconstruction in the steady part of the sinusoid. In the be-
ginning and end of the signal we see the advantage of using a
multiresolution approach : a too long atom extracted near the
beginning of the partial is compensated by the extraction of a
smaller scale atom with an opposite phase, hence a reduction
of pre-echo. A very interesting remark arises when looking at
the new ORR: 36.2 dB> 34.6 dB. This is apparently paradox-
ical: each iteration of MRMMP isL2−suboptimal compared
to MP (since it searches the best matching atom in a subset
of D), so one would naively expect always better results for
MP. However, after a numberM of iterations, MRMMP leads
(in this particular case) to better results ! Remember that MP
is only optimalat every iteration, and generally there is no
guarantee that afterM iterations it gives the bestM-atoms ap-
proximation. In turns out that the guided search in MRMMP
can indeed lead to better global results.

Finally, the least square optimisation of the molecule is
efficient in reducing the residual in the steady part of the si-

nusoid. However, artifacts are unavoidable at the end and at
the beginning. Indeed, at the sides, the scale changes between
consecutive atoms; since windows at different scales are ho-
mothetic (Hanning windows in our case), the overlap cannot
lead to perfect reconstruction.

0 100 200 300 400 500 600 700
10

12

14

16

18

20

22

24

26

28

30

Iteration Number

E
ne

rg
y 

of
 th

e 
re

si
du

al
 [d

B
]

Fig. 3. Energy of the residuals as a function of the number of
iterations. Solid line with triangles: MRMMP without opti-
misation, with circles: MRMMP with optimisation (triangles
and circles mark the molecule starts). Dashed line: MP.

3.2. Real signals
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Fig. 4. Example of a glockenspiel partial modeled by 7 atoms
of different scales, obtained with MRMMP.

The performances in terms of ORR of the MRMMP on a
glockenspiel recording is shown on Figure 3. The stop cri-
teria for the molecules have been set to 20dB below the first
atom of the molecule, and 40 dB below the first atom of the
whole MRMMP algorithm. The glockenspiel signal contains
well defined partials with constant frequencies. An example
of a partial modeled by several atoms is shown on Figure 4.
The MP decay curve is displayed for reference purpose: as
stated above the goal of MRMMP is not to achieve the best
ORR but it remains close to it. However the main improve-
ment when compared to MP is to catch perceptually relevant
structures. Note that the local optimization significantly im-
proves the overall ORR for a given number of iterations (up



to 1 dB).

Fig. 5. Adjacency matrix for the MP (top) and the MRMMP
(bottom) algorithms. Residual molecules are circled.

Figure 5 shows the adjacency matrix of the SMP and the
MRMMP atomic representation of the glockenspiel signal: if
atomi and atomj have overlapping temporal support and the
same frequency, they are said to be adjacent and a dot is dis-
played at coordinates(i, j) .

Unsurprisingly, MP shows few interconnections between
consecutive atoms when compared to the MRMMP, which
is designed to extract adjacent atoms. However, an interest-
ing feature of the MRMMP also appears on this figure: the
molecules resulting from the residual of another molecule
can be easily identified because each of its atoms is adja-
cent to one of the original molecule, and atoms are mutu-
ally adjacent inside the residual molecule. If the goal of the
sparse approximation is audio coding or partial extraction for
analysis-synthesis, these low energy artefacts from significant
molecules can be removed because of their low perceptual
significance. They can otherwise be allocated to the original
molecule if a more precise description of the partial is needed.

4. CONCLUSION

In this paper, a new method is proposed for high-resolution
partial tracking. It is a modification of the Matching Pursuit

algorithm, adapted to audio signals in the way that it catches
some of its relevant structures. The novelty of this paper is the
inclusion of multiresolution, an important feature for the ex-
traction of amplitude-modulated sinusoids and transient parts
of the signals. We have shown it is possible to design prac-
tical algorithms where that the extra flexibility provided by
multiresolution comes at a small computational cost. In some
simple cases, MRMMP, although suboptimal at each itera-
tion as compared to MP, can even lead to better ORR results.
Finally, the resultant structured representations can be a rele-
vant starting point for higher-level processing, such as sound
transformation and automatic transcription.

Towards a more complete bottom-up processing of audio-
signals, the presented approach will be extended to the extrac-
tion of more complex but relevant structures. Molecules of
harmonic atoms [2] can be built in the same manner. Chirped
Gabor atoms could also benefit from a local candidate atom
selection, by examining frequency proximity in addition to
time proximity. From a practical point of view this method
will be implemented in MPTK, a fast open-source Matching
Pursuit toolkit [9].
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