
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 55, NO. 3, MARCH 2007 897

Underdetermined Blind Separation of Nondisjoint
Sources in the Time-Frequency Domain

Abdeldjalil Aïssa-El-Bey, Nguyen Linh-Trung, Karim Abed-Meraim, Senior Member, IEEE,
Adel Belouchrani, and Yves Grenier, Member, IEEE

Abstract—This paper considers the blind separation of nonsta-
tionary sources in the underdetermined case, when there are more
sources than sensors. A general framework for this problem is to
work on sources that are sparse in some signal representation do-
main. Recently, two methods have been proposed with respect to
the time-frequency (TF) domain. The first uses quadratic time-fre-
quency distributions (TFDs) and a clustering approach, and the
second uses a linear TFD. Both of these methods assume that the
sources are disjoint in the TF domain; i.e., there is, at most, one
source present at a point in the TF domain. In this paper, we relax
this assumption by allowing the sources to be TF-nondisjoint to
a certain extent. In particular, the number of sources present at a
point is strictly less than the number of sensors. The separation can
still be achieved due to subspace projection that allows us to iden-
tify the sources present and to estimate their corresponding TFD
values. In particular, we propose two subspace-based algorithms
for TF-nondisjoint sources: one uses quadratic TFDs and the other
a linear TFD. Another contribution of this paper is a new estima-
tion procedure for the mixing matrix. Finally, then numerical per-
formance of the proposed methods are provided highlighting their
performance gain compared to existing ones.

Index Terms—Blind source separation, sparse signal decomposi-
tion/representation, spatial time-frequency representation, speech
signals, subspace projection, underdetermined/overcomplete rep-
resentation, vector clustering.

I. INTRODUCTION

SOURCE separation aims at recovering multiple sources
from multiple observations (mixtures) received by a set

of linear sensors. The problem is said to be “blind” when the
observations have been linearly mixed by the transfer medium,
while having no a priori knowledge of the transfer medium
or the sources. Blind source separation (BSS) has applications
in several areas, such as communication, speech/audio pro-
cessing, and biomedical engineering [1]. A fundamental and
necessary assumption of BSS is that the sources are statistically
independent and thus are often sought solutions using higher
order statistical information [2]. If some information about the
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sources is available at hand, such as temporal coherency [3],
source nonstationarity [4], or source cyclostationarity [5], then
one can remain in the second-order statistical scenario.

The BSS is said to be underdetermined if there are more
sources than sensors. In that case, the mixing matrix is not in-
vertible and, consequently, a solution for source estimation must
also be found even if the mixing matrix has been estimated. A
general framework for underdetermined blind source separation
(UBSS) is to exploit the sparseness, if it exists, of the sources in
a given signal representation domain [6]. The mixtures are then
transformed to this domain; one may then, estimate the trans-
formed sources using their sparseness, and finally recover their
time waveforms by source synthesis. For more information on
BSS and UBSS methods, see, for example, a recent survey [7].

Recently, several UBSS methods for nonstationary sources
have been proposed, given that these sources are sparse in
the time-frequency (TF) domain [8]–[10]. The first method
uses quadratic time-frequency distributions (TFDs), whereas
the second one uses a linear TFD. The main assumption used
in these methods is that the sources are TF-disjoint; in other
words, there is, at most, one source present at any point in
the TF domain. This assumption is rather restrictive, though
the methods have also showed that they worked well under a
quasi-sparseness condition, i.e., sources are TF-almost-disjoint.

In this paper, we want to relax the TF-disjoint condition by
allowing the sources to be nondisjoint in the TF domain; that
is, multiple sources are possibly present at any point in the TF
domain. This case has been considered in [11] (which corre-
sponds to part of this paper) and in [12] for the parametric
mixing matrix case. In particular, we limit ourselves to the sce-
nario where the number of sources present at any point is smaller
than the number of sensors. Under this assumption, the separa-
tion of TF-nondisjoint sources is achieved due to subspace pro-
jection. Subspace projection allows us to identify at any point
the sources present, and hence, to estimate the corresponding
TFD values of these sources.

The main contribution of this paper is proposing two sub-
space-based algorithms for UBSS in the TF domain: one uses
quadratic TFDs, while the other uses linear TFD. In line with
the cluster-based quadratic algorithm proposed in [8], we also
propose here a cluster-based algorithm but using a linear TFD,
which is not a block-based technique like the quadratic one.
Therefore, its low cost computation is useful for processing
speech and audio sources. Another contribution of the paper is
a method of estimation for the mixing matrix.

The paper is organized as follows. Section II-A formulates
the UBSS problem, introduces the underlying TF tools and
states some TF conditions necessary for the separation of
nonstationary sources in the TF domain. Section III deals
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with the TF-disjoint sources. It reviews the cluster-based
quadratic TF-UBSS algorithm [8] and, from that, proposes a
cluster-based linear TF-UBSS algorithm. Section IV proposes
two subspace-based TF-UBSS algorithms for TF-nondisjoint
sources, using quadratic and linear TFDs. In this section, we
propose also a method for the blind estimation of mixing
matrix. There is some discussion of the proposed methods in
Section V. The performance of the above methods are numer-
ically evaluated in Section VI.

II. PROBLEM FORMULATION

A. Data Model

Let be the desired sources to be recovered
from the instantaneous mixtures given by

(1)

where is the source vector
with the superscript denoting the transpose operation,

is the mixture vector, and
is the mixing matrix of size that

satisfies:
Assumption 1: The column vectors of are pairwise lin-

early independent. That is, for any index pair , where
, and , we have and linearly inde-

pendent. This assumption is necessary because if otherwise, we
have for example, then the input/output relation (1)
can be reduced to

and hence the separation of and is inherently impos-
sible.

It is known that BSS is only possible up to some scaling and
permutation. We take advantage of these indeterminacies to fur-
ther assume, without loss of generality, that the column vectors
of all have unit norm, i.e., for all .

The sources are nonstationary, that is their frequency spectra
vary in time. Often, nonstationarity imposes more difficulties
on a problem; however, in this case, it actually offers a solu-
tion: one can solve the BSS problem without using higher order
approaches by directly exploiting the additional information of
this TF diversity across the spectra; this solution was proposed
in [4]. We defer to a little later making TF assumptions on the
sources, and for now we introduce the concept of TF signal pro-
cessing.

B. Time-Frequency Distributions

TF signal processing provides effective tools for analyzing
nonstationary signals, whose frequency content varies in time.
This concept is a natural extension of both the time domain
and the frequency domain processing that involve representing
signals in a two-dimensional (2-D) space the joint TF domain,
hence providing a distribution of signal energy versus time and
frequency simultaneously. For this reason, a TF representation
is commonly referred to as a TFD.

The general class of quadratic TFDs of an analytic signal
is defined as [13]

(2)

where is a 2-D function in the so-called ambiguity do-
main and is called the Doppler-lag kernel, and the superscript

denotes the conjugate operator. We can design a TFD with
certain desired properties by properly constraining .

When we have the following famous
Wigner–Ville distribution (WVD):

(3)

The WVD is the most widely studied TFD. It achieves max-
imum energy concentration in the TF plane around the instan-
taneous frequency for linear frequency-modulated (LFM) sig-
nals. However, it is in general nonpositive, and it introduces the
so-called “cross-terms” when multiple frequency laws (e.g., two
LFM components) exist in the signals, due to the quadratic mul-
tiplication of shifted versions of the signals.

Another well-known TFD and most used in practice is the
short-time Fourier transform (STFT)

(4)

where is a window function. Note that the STFT is a linear
TFD,1 and its quadratic version, called the spectrogram (SPEC),
is defined as

(5)

Clearly, from the definition, there is no cross-terms effect
present in STFT, hence in the SPEC. However, these distri-
butions have very low TF resolution in comparison with the
WVD. The low cost of implementation for the STFT, hence for
the SPEC, in comparison with that for the WVD and, together
with the advantage of being free of cross terms, justifies the fact
that the STFT is most used in practice, especially for speech or
audio signals. However, when it comes to frequency-modulated
(FM) signals, the WVD is preferred.

To combine the high resolution of the WVD while using the
free cross-term property of the SPEC, the masked Wigner–Ville
distribution (MWVD) is derived so that

(6)

There are many other useful TFDs in the literature, notably those
that give high TF resolution while effectively minimizing the
cross terms, for example, the B distribution [14]. However, we
only introduce here the TFDs above since they will be used in
the later sections.

1In fact, the STFT does not represent an energy distribution of the signal in
the TF plane. However, for simplicity, we still refer to it as a TFD.
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Fig. 1. Source TF-disjoint condition: 
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sources are said to be TF-almost-disjoint).

Fig. 2. TF-nondisjoint condition: 
 \ 
 6= ;.

C. TF Conditions on Sources

Now, as we have introduced the concept of TF signal pro-
cessing as a useful tool for analyzing nonstationary signals,
some TF conditions need to be applied to the sources. Note
that the TF method in [4] does not work for UBSS because the
mixing matrix is not invertible. In order to deal with UBSS,
one often seeks for a sparse representation of the sources [6]. In
other words, if the sources can be sparsely represented in some
domain, then the separation is to be carried out in that domain
to exploit the sparseness.

1) TF-Disjoint Sources: Recently, there have been several
UBSS methods, notably those in [8] and [9], in which the TF
domain has been chosen to be the underlaying sparse domain.
These two papers have based their solutions on the assumption
that the sources are disjoint in the TF domain. Mathematically,
if and are the TF supports of two sources and ,
then . This condition can be illustrated in Fig. 1.
However, this is a rather strict assumption. A more practical as-
sumption is that the sources are almost-disjoint in the TF do-
main [8], allowing some small overlapping in the TF domain,
for which the above two methods also worked.

2) TF-Nondisjoint Sources: In this paper, we want to relax
the TF-disjoint condition by allowing the sources to be nondis-
joint in the TF domain, as illustrated in Fig. 2.

This is motivated by a drawback of the method in [8]. Al-
though this method worked well under the TF-almost-disjoint
condition, it did not explicitly treat the TF regions where the

sources were allowed to have some small overlapping. A point
at the overlapping of two sources was assigned “by chance”
to belong to only one of the sources. As a result, the source
that picks up this point will have some information of the other
source while the latter loses some information of its own. The
loss of information can be recovered to some extent by the in-
terpolation at the intersection point using TF synthesis. How-
ever, for the other source, there is an interference at this point,
hence the separation performance may degrade if no treatment
is provided. If the number of overlapping points increases (i.e.,
the TF-almost-disjoint condition is violated), the performance
of the separation is expected to degrade unless the overlapping
points are treated.

This paper will give such a treatment using subspace projec-
tion. Therefore, we will allow the sources to be nondisjoint in the
TF domain; that is, multiple sources are allowed to be present
at any point in the TF domain. However, instead of being in-
evitably nondisjoint, we limit ourselves by making the following
constraint.

Assumption 2: The number of sources that contribute their
energy at any TF point is strictly less than the number of sensors.

In other words, for the configuration of sensors, there exist
at most sources at any point in the TF domain. For the
special case when , Assumption 2 reduces to the disjoint
condition.

We also make another assumption on the TF conditioning of
the sources.

Assumption 3: For each source, there exists a region in the
TF domain, where this source exists alone.

Note that, this assumption is easily met and hence not restric-
tive for audio sources and FM-like signals. Also, it should be
noted that this last assumption is, however, not a restriction on
the use of subspace projection, because it will only be used later
for the estimation of the mixing matrix. If otherwise, the mixing
matrix can be obtained by another method, for example the one
in [15], then Assumption 3 can be omitted.

III. CLUSTER-BASED TF-UBSS APPROACH FOR

DISJOINT SOURCES

A. Quadratic TFD Approach

In this section, we review a method proposed in [8] based on
the idea of clustering; hence, it is now referred to as the cluster-
based quadratic TF-UBSS algorithm. For a signal vector

, the STFD matrix is given by [4]

...
. . .

... (7)

where, for is the quadratic cross-TFD be-
tween and as obtained by (2), but with the first
being replaced by and the second by . By definition, the
STFD takes into account the spatial diversity.

By applying the STFD defined in (7) on both sides of the BSS
model in (1), we obtain the following TF-transformed structure:

(8)
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TABLE I
CLUSTER-BASED QUADRATIC TF-UBSS ALGORITHM USING STFD

where and are, respectively, the source
STFD matrix and mixture STFD matrix.

Let us call an autosource TF point a point at which there is
a true energy contribution/concentration of source or sources in
the TF domain, and a cross-source point a point at which there
is a “false” energy contribution (due to the cross-term effect
of quadratic TFDs). Note that, at other points with no energy
contribution, the TFD value is ideally equal to zero. Under the
assumption that all sources are disjoint in the TF domain, there
is only one source present at any autosource point. Therefore,
the structure of is reduced to

(9)

where denotes, hereafter, the TF support of source .
The observation (9) suggests that for all , the

corresponding set of STFD matrices will have
the same principal eigenvector . It is this observation that leads
to the general separation method using quadratic TFDs in [8].
Indeed, [8] proposed several algorithms and pointed out that the
choice of the TFD should be made carefully in order to have
a “clean” (cross-term-free) TFD representation of the mixture
and chose the MWVD as a good candidate. This algorithm is
summarized in Table I and further detailed below for later use.

1) STFD Mixture Computation and Noise Thresholding: The
STFD of the mixtures using the MWVD is computed by the
following:

(10a)

for ,
otherwise

(10b)

(10c)

In (10), , and denotes the Hadamard product.
2) Noise Thresholding and Autosource Point Selection: A

“noise thresholding” procedure is used to keep only those points
having sufficient energy, i.e., autosource points. One way to do
this is as follows: for each time-slice of the TFD rep-
resentation, apply the following criterion for all the frequency
points belonging to this time-slice:

If keep (11)

where is a small threshold (typically, ). This “hard
thresholding” procedure has been preferred to the “soft thresh-
olding” using power-weighting of [9] as it contributes also to
reducing the computation complexity. The set of all the au-
tosource points is denoted by . Since sources are TF-disjoint,
we have . This partition is found in the following
way.

3) Vector Clustering and Source TFD Estimation: For each
point , compute its corresponding spatial direction

(12)

and force it, without loss of generality, to have the first entry real
and positive.

Having the set of spatial direction ,
one can cluster them into classes using any unsupervised
clustering algorithm (see [17] for different clustering methods).
The clustering algorithm used in [8] is rather sensitive due to
the threshold in use; a robust method should be investigated,
and this deserves another contribution. If the number of sources
has been well estimated, one can use the so-called -means clus-
tering algorithm [17] to achieve a good clustering performance.
The output of the clustering algorithm is a set of classes

. Also, the collection of all the points that corre-
spond to all the vectors in the class forms the TF support
of the source .

Then, one can estimate the TFD of the source (up to a
scalar constant) as

otherwise
(13)

4) Source TF Synthesis: Having obtained the source TFD es-
timate , the estimation of the source can be done
through a TF synthesis algorithm. The method in [16] is used for
TF synthesis from a WVD estimate, based on the following in-
version property of the WVD [13]:

which implies that the signal can be reconstructed to within
a complex exponential constant given

.
It can be observed that in this version of the quadratic

TF-UBSS algorithm, the STFD matrices are not fully needed
as only their diagonal entries are used in the algorithm. This
should be taken into account to reduce the computational cost.

B. Linear TFD Approach

As we have seen before, the STFT is often used for speech/
audio signals because of its low computational cost. Therefore,
in this section, we briefly review the STFT method in [9] and
propose simultaneously a cluster-based linear TF-UBSS algo-
rithm using the STFT to avoid some of the drawbacks in [9].
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TABLE II
CLUSTER-BASED LINEAR TF-UBSS ALGORITHM USING STFT

First, under the transformation into the TF domain using the
STFT, the model in (1) becomes

(14)

where is the mixture STFT vector and is the
source STFT vector. Under the assumption that all sources are
disjoint in the TF domain, (14) is reduced to

(15)

Now, in [9], the structure of the mixing matrix is particular in
that it has only two rows (i.e., the method uses only two sensors)
and the first row of the mixing matrix contains all 1’s. Then, (15)
is expanded to

which results in

(16)

Therefore, all the points for which the ratios on the right-hand
side of (16) have the same value form the TF support of a
single source, say . Then, the STFT estimate of is
computed by

otherwise

The source estimate is then obtained by converting
to the time domain using inverse STFT [18]. Note

that, the extension of the UBSS method in [9] to more than two
sensors is a difficult task. Second, the division on the right-hand
side of (16) is prone to error if the denominator is close to zero.

To avoid the above-mentioned problems, we propose here
a modified version of the previous method referred to as the
cluster-based linear TF-UBSS algorithm. In particular, from the
observation (15), we can deduce the separation algorithm as
shown next, and summarized in Table II.

1) Mixture STFT Computation and Noise Thresholding:
Compute the STFT of the mixtures, , by applying (4)
for each of the mixture in , as follows:

(17a)

(17b)

Since the STFT is totally free of cross terms, a point with a
nonzero TFD value is ideally an autosource point. Practically,
we can select all autosource points by only applying a noise

thresholding procedure as that in the cluster-based quadratic
TF-UBSS algorithm. In particular, for each time-slice of
the TFD representation, apply the following criterion for all the
frequency points belonging to this time-slice:

If then keep (18)

where is a small threshold (typically, ). Then, the
set of all selected points is expressed by , where

is the TF support of the source . Note that the effects of
spreading the noise energy while localizing the source energy in
the time-frequency domain amounts to increasing the robustness
of the proposed method with respect to noise. Hence, by (18)
(or (11)), we would keep only time-frequency points where the
signal energy is significant; the other time-frequency points are
rejected, i.e., not further processed, since they are considered to
represent noise contribution only. Also, due to the noise energy
spreading, the contribution of the noise in the source time-fre-
quency points is relatively, negligible at least for moderate and
high signal-to-noise ratios (SNRs).

2) Vector Clustering and Source TFD Estimation: The
clustering procedure can be done in a similar manner as in
the quadratic algorithm. First, we obtain the spatial direction
vectors by

(19)

and force them, without loss of generality, to have the first entry
real and positive.

Next, we cluster these vectors into classes ,
using the -means clustering algorithm. The collection of all
points, whose vectors belong to the class , now forms the TF
support of the source . Then, the column vector of
is estimated as the centroid of this set of vectors

(20)

where is the number of vectors in this class.
Therefore, we can estimate the STFT of each source by

otherwise
(21)

since, from (15), we have

Note that the STFT is a particular form of wavelet transforms
which have been used in [19] for the UBSS of image signals.

IV. SUBSPACE-BASED TF-UBSS APPROACH FOR

NONDISJOINT SOURCES

We have seen the cluster-based TF-UBSS methods, using ei-
ther quadratic TFDs such as the MWVD or linear TFDs such
as the STFT, as summarized in Table I or Table II, respectively.
These methods relied on the assumption that the sources were
TF-disjoint, which has led to the enabling TF-transformed struc-
tures in (9) or (15). When the sources are nondisjoint in the TF
domain, then these equations are no longer true.
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TABLE III
SUBSPACE-BASED QUADRATIC TF-UBSS ALGORITHM USING MWVD

Under the TF-nondisjoint condition, stated in Assumption
2, we propose in this section two alternative methods: one for
quadratic TFDs and the other for linear TFDs, for the UBSS
problem using subspace projection.

A. Subspace-Based Quadratic TF-UBSS Algorithm

Recall that the first two steps of the cluster-based quadratic
TF-UBSS algorithm do not rely on the assumption of TF-dis-
joint sources (see Table I). Therefore, we can reuse these steps to
obtain the set of autosource points . Now, under the TF-nondis-
joint condition, consider an autosource point such
that there are sources, , present at this point. Our
goal is to identify the sources present at and to estimate
the energy each of these sources contributes.

Denote the indexes of the sources present
at , and define the following:

(22a)

(22b)

Then, under Assumption 2, (8) is reduced to

(23)

Consequently, given that is of full rank, we have

Range Range (24)

Let be the orthogonal projection matrix onto the noise sub-
space of . Then, from (24), we obtain

(25)

and

(26)

In (25), is the matrix formed by the principal singular
eigenvectors of .

Assuming that has been estimated by some method, the ob-
servation in (26) enables us to identify the indexes ,
and hence, the sources present at . In practice, to take into
account the estimation noise, one can detect these indexes by de-
tecting the smallest values from the set , as
mathematically expressed by

(27)

where denotes the minimization to obtain the smallest
values. The TFD values of the sources at are esti-
mated as the diagonal elements of the following matrix:

# # (28)

where the superscript # is the Moore–Penrose’s pseudoinver-
sion operator.

Here, we propose also an estimation method for by using
Assumption 3. This assumption states that, for each source ,
there exists a TF region where exists alone. In other
words, contains all the single-source autosource points of

. Therefore, we can reuse the observation (9) in the TF-dis-
joint case, but for some TF regions, as follows:

The union of these regions is detected by the
following:

If then (29)

where is a small threshold value (typically, )
and denotes the maximum eigenvalue of

. Then, we can apply the same vector clustering
procedure as in Section III-A-3) to estimate . In particular,
we first obtain all the spatial direction vectors

(30)

Next, we cluster these vectors into classes
using the -means clustering algorithm. The collection of all
points, whose vectors belong to the class , now forms the TF
region of the source . Finally, the column vectors are
estimated as the centroid vectors of these classes as

(31)

where is the number of points in .
Table III gives a summary of the subspace-based quadratic

TF-UBSS algorithm.

B. Subspace-Based Linear TF-UBSS Algorithm

Similarly, we propose here a subspace-based linear TF-UBSS
algorithm for TF-nondisjoint sources using STFT. We also use
the first step of the cluster-based linear TF-UBSS algorithm
(see Table II) to obtain all the autosource points . Under
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TABLE IV
SUBSPACE-BASED LINEAR TF-UBSS ALGORITHM USING STFT

the TF-nondisjoint condition, consider an autosource point
at which there are sources

present, with . Then, (8) is reduced to the following:

(32)

where and are as previously defined in (22).
Let represent the orthogonal projection matrix onto the

noise subspace of . Then, can be computed by

(33)

We have the following observation:

(34)

If has already been estimated by some method, then
this observation gives us the criterion to detect the indexes

; and hence, the contributing sources at the au-
tosource point . In practice, to take into account noise,
one detects the column vectors of , minimizing

(35)

where .
Next, TFD values of the sources at TF point are

estimated by

# (36)

Here, we propose a method for estimating the mixing matrix
. This is performed by clustering all the spatial direction vec-

tors in (19) as for the preview TF-UBSS algorithm. Then, within
each class , we eliminate the far-located vectors from the cen-
troid (in the simulation we estimate vectors such that

(37)

leading to a size-reduced class . Essentially, this is to keep the
vectors corresponding to the TF region , which are ideally
equal to the spatial direction of the considered source signal.
Finally, the th column vector of is estimated as the centroid
of .

Table IV provides a summary of the subspace projection
based TF-UBSS algorithm using STFT.

V. DISCUSSION

We discuss here certain points relative to the proposed
TF-UBSS algorithms and their applications.

1) Number of Sources: The number of sources is assumed
known in the clustering method ( -means) that we have used.
However, there exist clustering methods [17] that perform the
class estimation as well as the estimation of the number .
In our simulation, we have observed that most of the time the
number of classes is overestimated, leading to poor source
separation quality. Hence, robust estimation of the number of
sources in the UBSS case remains a difficult open problem that
deserves particular attention in future works.

2) Number of Overlapping Sources: In the subspace-based
approach, we have to evaluate the number of overlapping
sources at a given TF point. This can be done by finding out
the number of non-zero eigenvalues of using cri-
teria such as minimum description length (MDL) or Akaike in-
formation criterion (AIC) [20]. It is also possible to consider a
fixed (maximum) value of that is used for all autosource TF
points. Indeed, if the number of overlapping sources is less than

, we would estimate close-to-zero source STFT values. For
example, if we assume sources are present at a given TF
point while only one source is effectively contributing, then we
estimate one close-to-zero source STFT value. This approach
increases slightly the estimation error of the source signals (es-
pecially at low SNRs) but has the advantage of simplicity com-
pared to using information theoretic-based criterion. In our sim-
ulation, we did choose this solution with or .

3) Quadratic Versus Linear TFDs: We have proposed two
algorithms using quadratic and linear TFDs. The one using the
quadratic TFD should be preferred when dealing with FM-like
signals and for small or moderate sample sizes (typically up to
a few hundred samples). For audio source separation often the
case the sample size is large, and, hence, to reduce the compu-
tational cost, one should prefer the linear-TFD-based UBSS al-
gorithm. Overall, the quadratic version performs slightly better
than the linear one but costs much more in computations.

4) Separation Quality Versus Number of Sources: Although
we are in the underdetermined case, the number of sources
should not exceed too much the number of sensors. Indeed,
when increases, the level of source interference increases,
and hence, the source disjointness assumption is ill satisfied.
Moreover, for a large number of sources, the likelihood of
having two sources closely spaced, i.e., such that the spatial
directions and are “close” to linear dependency, increases.
In that case, vector clustering performance degrades signifi-
cantly. In brief, sparseness and spatial separation are the two
limiting factors against increasing the number of sources. Fig. 8
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Fig. 3. Simulated example (viewed in TF domain) for the subspace-based
TF-UBSS algorithm with STFT in the case of four speech sources and three
sensors. The top four plots represent the original source signals, the middle
three plots represent the three mixtures, and the bottom four plots represent the
source estimates.

illustrates the performance degradation of source separation
versus the number of sources.

VI. SIMULATION RESULTS

A. Simulation Results of Subspace-Based TF-UBSS Algorithm
Using STFT

In the simulations, we use a uniform linear array of
3 sensors. It receives signals from 4 independent speech
sources in the far field from directions

, and , respectively. The sample size is
8192 samples. In Fig. 3, the top four plots represent the TF rep-
resentation of the original sources signal, the middle three plots
represent the TF representation of the mixture signals and
the bottom four plots represent the TF representation of the es-
timate of sources by the subspace-based algorithm using STFT
(Table IV). Fig. 4 represents the same disposition of signals but
in the time domain.

Fig. 4. Simulated example (viewed in time domain) for the subspace-based
TF-UBSS algorithm with STFT in the case of four speech sources and three sen-
sors. The top four plots (a)–(d) represent the original source signals, the middle
three plots (e)–(f) represent the three mixtures, and the bottom four plots (h)–(k)
represent the source estimates.

In Fig. 5, we compare the separation performance obtained by
the subspace-based algorithm with and the cluster-based
algorithm (Table II). It is observed that subspace-based algo-
rithm provides much better separation results than those ob-
tained by the cluster-based algorithm.

In the subspace-based method, one first needs to estimate the
mixing matrix . This is done by the cluster-based method pre-
sented previously. The plot in Fig. 6 represents the normalized
estimation error of versus the SNR in decibels. Clearly, the
proposed estimation method of the mixing matrix provides sat-
isfactory performance, while the plot in Fig. 7 presents the sep-
aration performance when using the exact matrix compared
with that obtained with the proposed estimate .

Fig. 8 illustrates the rapid degradation of the separation
quality when we increase the number of sources from
to . This confirms the remarks made in Section V.
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Fig. 5. Comparison between subspace-based and cluster-based TF-UBSS al-
gorithms using STFT: normalized MSE (NMSE) versus SNR for four speech
sources and three sensors.

Fig. 6. Mixing matrix estimation: normalized MSE versus SNR for four speech
sources and three sensors.

In Fig. 9, we compare the performance obtained with the sub-
space-based method for and . In that experiment,
we have used 4 sensors and 5 source signals. One
can observe that, for high SNRs, the case of leads to a
better separation performance than for the case of . How-
ever, for low SNRs, a large value of increases the estimation
noise (as mentioned in Section V) and hence degrades the sep-
aration quality.

B. Simulation Results of Subspace-Based TF-UBSS Algorithm
Using STFD

In this simulation, we use a uniform linear array of
sensors with half wavelength spacing. It receives signals from

independent LFM sources, each has 256 samples, in the
presence of additive Gaussian noise where the SNR = 20 dB.

Fig. 7. Comparison, for the subspace-based TF-UBSS algorithm using STFT,
when the mixing matrix A is known or unknown: NMSE of the source esti-
mates.

Fig. 8. Comparison between subspace-based and cluster-based TF-UBSS al-
gorithms using STFT: NMSE versus number of sources.

We compare the cluster-based (Table I) and the pro-
posed subspace-based (Table III) TF-UBSS algorithms.
Fig. 10(a), (d), (g), and (j) represent the TFDs (using WVD)
of the four sources. Fig. 10(b), (e), (h), and (k) show the
estimated source TFDs using the cluster-based algorithm,
whereas Fig. 10(c), (f), (i), and (l) are those obtained by the
subspace-based algorithm.

From Fig. 10(b) and (e), we can see that the overlapping
points between source and source were picked
up by source with the cluster-based algorithm. On the
other hand, using the subspace-based algorithm, the inter-
section points have been redistributed to the two sources
[Fig. 10(c) and (f)].

In general, the overlapping points in the nondisjoint case have
been explicitly treated. This provides a visual performance com-
parison.
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Fig. 9. Comparison between subspace-based and cluster-based TF-UBSS al-
gorithms using STFT: NMSE of the source estimates for different sizes of the
projector, for the case of five sources and four sensors.

Fig. 10. Simulated example (viewed in TF domain) for the subspace-based
TF-UBSS algorithm with STFT in the case of 4 LFM sources and 3 sensors.
From left to right, the figures respectively represent the original source TF sig-
natures, the estimated source TF signatures using the cluster-based algorithm,
and the estimated source TF signatures using the subspace-based algorithm.

In Fig. 11, we compare the statistical separation performance
between the subspace-based algorithm and the cluster-based al-
gorithm using STFD, evaluated over 1000 Monte Carlo runs.

One can also notice that the gain here is smaller than the one
obtained previously for audio sources. This is due to the fact that
the overlapping region of the considered signals is smaller. This

Fig. 11. Comparison between subspace-based and cluster-based TF-UBSS al-
gorithms using STFD: normalized MSE (NMSE) versus SNR for four LFM
sources and three sensors.

result confirms the previous visual observation with respect to
the performance gain in favor of our subspace-based method.

VII. CONCLUSION

This paper introduces new methods for the UBSS of
TF-nondisjoint nonstationary sources using time-frequency
representations. The main advantages over the proposed sepa-
ration algorithms are, first, a weaker assumption on the source
“sparseness,” i.e., the sources are not necessarily TF-disjoint,
and second, an explicit treatment of the overlapping points
using subspace projection, leading to significant performance
improvements. Simulation results illustrate the effectiveness of
our algorithms in different scenarios compared to those existing
in the literature.
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