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Abstract. This paper focuses on the second order identifiability prob-
lem of blind source separation and its testing. We present first necessary
and sufficient conditions for the identifiability and partial identifiability
using a finite set of correlation matrices. These conditions depend on the
autocorrelation fonction of the unknown sources. However, it is shown
here that they can be tested directly from the observation through the
decorrelator output. This issue is of prime importance to decide whether
the sources have been well separated or else if further treatments are
needed. We then propose an identifiability testing based on resampling
(jackknife) technique, that is validated by simulation results.

1 Introduction

Blind source separation (BSS) of instantaneous mixtures has attracted so far a lot of
attention due to its many potential applications [1] and its mathematical tractability
that lead to several nice and simple BSS solutions [1, 2, 5, 13]. The underlaying model
is given by:

x(t) = y(t) + w(t) = As(t) + w(t)

where s(t) = [s1(t), · · · , sm(t)]T is the m×1 complex source vector, w(t) = [w1(t), · · · ,
wn(t)]T is the n×1 complex noise vector, A is the n×m full column rank mixing matrix
(i.e., n ≥ m), and the superscript T denotes the transpose operator. The source signal
vector s(t), is assumed to be a multivariate stationary complex stochastic process.
In this paper we consider only the second order BSS methods and hence the component
processes si(t), 1 ≤ i ≤ m are assumed to be temporally coherent and mutually
uncorrelated, with zero mean and second order moments:

S(τ)
def
= E (s(t + τ)s?(t)) = diag[ρ1(τ), · · · , ρm(τ)]

where ρi(τ)
def
= E(si(t + τ)s∗i (t)), the expectation operator is E, and the superscripts

∗ and ? denote the conjugate of a complex number and the complex conjugate trans-
pose of a vector, respectively. The additive noise w(t) is modeled as a white stationary
zero-mean complex random process. In that case, the source separation is achieved by
decorrelating the signals at different time lags. This is made possible under certain
identifiability conditions that have been developed in [3] and recalled briefly in this
paper.
Although the previous conditions are expressed in terms of the autocorrelation coeffi-
cient of the unknown source signals, we propose here a solution to test them directly
out of the received data using the jackknife (resampling) technique.



2 Second Order Identifiability

In [4], Tong et al. have shown that the sources are blindly separable based on (the whole
set) of second order statistics only if they have different spectral density functions. In
practice we achieve the BSS using only a finite set of correlation matrices. Therefore,
the preview identifiability result was generalized to that case in [5, 3] leading to the
necessary and sufficient identifiability conditions given by the following theorem:

Theorem 1. Let τ1 < τ2 < · · · < τK be K ≥ 1 time lags, and define ρi = [ρi(τ1), ρi(τ2),
· · · , ρi(τK)] and ρ̃i = [<(ρi),=(ρi)] where <(x) and =(x) denote the real part and
imaginary part of x, respectively. Taking advantage of the indetermination, we assume
without loss of generality that the sources are scaled such that ‖ρi‖ = ‖ρ̃i‖ = 1, for
all i 1. Then, BSS can be achieved using the output correlation matrices at time lags
τ1, τ2, · · · , τK if and only if for all 1 ≤ i 6= j ≤ m:

ρ̃i and ρ̃j are (pairwise) linearly independent (1)

Interestingly, we can see from condition (1) that BSS can be achieved from only one cor-

relation matrix Rx(k)
def
= E(x(t+k)x?(t)) provided that the vectors [<(ρi(k)),=(ρi(k)]

and [<(ρj(k)),=(ρj(k)] are pairwise linearly independent for all i 6= j.
Note also that, from (1), BSS can be achieved if at most one temporally white source
signal exists. In contrast, recall that when using higher order statistics, BSS can only
be achieved if at most one Gaussian source signal exists.
Under the condition of Theorem 1, the BSS can be achieved by decorrelation according
to the following result:

Theorem 2. Let τ1, τ2, · · · , τK be K time lags and z(t) = [z1(t), · · · , zm(t)]T be an

m× 1 vector given by z(t) = Bx(t). Define rij(k)
def
= E(zi(t + k)z∗j (t)). If the identifi-

ability condition holds, then B is a separating matrix (i.e. By(t) = PΛs(t) for a given
permutation matrix P and a non-singular diagonal matrix Λ) if and only if

rij(k) = 0 and

τKX
k=τ1

|rii(k)| > 0 (2)

for all 1 ≤ i 6= j ≤ m and k = τ1, τ2, · · · , τK .

Note that, if one of the time lags is zero, the result of Theorem 2 holds only under
the noiseless assumption. In that case, we can replace the condition

PτK
k=τ1

|rii(k)| > 0

by rii(0) > 0, for i = 1, · · · , m. On the other hand, if all the time lags are non-zero
and if the noise is temporally white (but can be spatially colored with unknown spatial
covariance matrix) then the above result holds without the noiseless assumption.
Based on Theorem 2, we can define different objective (contrast) functions for signal
decorrelation. In [6], the following criterion2 was used

G(z) =

τKX
k=τ1

log |diag(Rz(k))| − log |Rz(k)| (3)

1 We implicitly assume here that ρi 6= 0, otherwise the source signal could not be
detected (and a fortiori could not be estimated) from the considered set of correlation
matrices. This hypothesis will be held in the sequel.

2 In that paper, only the case where τ1 = 0 was considered.



where diag(A) is the diagonal matrix obtained by zeroing the off diagonal entries of
A. Another criterion used in [7] is

G(z) =

τKX
k=τ1

X
1≤i<j≤m

|rij(k)|2 +

mX
i=1

|
τKX

k=τ1

|rii(k)| − 1|2 (4)

Equations (3) and (4) are non-negative functions which are zero if and only if Rz(k) =
E(z(n + k)z?(n)) are diagonal for k = τ1, · · · , τK or equivalently if (2) is met.

3 Partial Identifiability

It is generally believed that when the identifiability conditions are not met, the BSS
cannot be achieved. This is only half of the truth as it is possible to partially separate
the sources in the sense that we can extract those which satisfy the identifiability con-
ditions. More precisely, the sources can be separated in blocks each of them containing
a mixture of sources that are not separable using the considered set of statistics. For
example, consider a mixture of 3 sources such that ρ̃1 = ρ̃2 while ρ̃1 and ρ̃3 are linearly
independent. In that case, source s3 can be extracted while sources s1 and s2 cannot.
In other words, by decorrelating the observed signal at the considered time lags, one
obtain 3 signals one of them being s3 (up to a scalar constant) and the two others are
linear mixtures of s1 and s2.
This result can be mathematically formulated as follows: assume there are d distinct
groups of sources each of them containing di source signals with same (up to a sign)
correlation vector ρ̃i, i = 1, · · · , d (clearly, m = d1 + · · ·+ dd). The correlation vectors
ρ̃1, · · · , ρ̃d are pairwise linearly independent. We write s(t) = [sT

1 (t), · · · , sT
d (t)]T where

each sub-vector si(t) contains the di source signals with correlation vector ρ̃i.

Theorem 3. Let z(t) = Bx(t) be an m× 1 random vector satisfying equation (2) for
all 1 ≤ i 6= j ≤ m and k = τ1, · · · , τK . Then, there exists a permutation matrix P such

that z(t)
def
= Pz(t) = [zT

1 (t), · · · , zT
d (t)]T where zi(t) = Uisi(t), Ui being a di × di non-

singular matrix. Moreover, sources belonging to the same group, i.e., having same (up
to a sign) correlation vector ρ̃i can not be separated using only the correlation matrices
Rx(k), k = τ1, · · · , τK .

This result (see [3])shows that when some of the sources have same (up to a sign)
correlation vectors then the best that can be done is to separate them per blocks and
this can be achieved by decorrelation. However, this result would be useless if we cannot
check the linear dependency of the correlation vectors ρ̃i and partition the signals per
groups (as shown above) according to their correlation vectors. This leads us to the
important problem of testing the identifiability condition that is discussed next.

4 Testing of identifiability condition

4.1 Theoretical result

The necessary and sufficient identifiability condition (1) depends on the correlation
coefficients of the source signals. The latter being unknown, it is therefore impossible
to a priori check whether the sources are ‘separable’ or not from a given set of output
correlation matrices. However, it is possible to check a posteriori whether the sources
have been ‘separated’ or not. We have the following result [3]:



Theorem 4. Let τ1 < τ2 < · · · < τK be K distinct time lags and z(t) = Bx(t). Assume
that B is a matrix such that z(t) satisfies3 equation (2) for all 1 ≤ i 6= j ≤ m and
k = τ1, · · · , τK . Then there exists a permutation matrix P such that for k = τ1, · · · , τK .

E(z(t + k)z?(t)) = PT S(k)P

In other words the entries of z(t)
def
= Pz(t) have the same correlation coefficients as

those of s(t) at time lags τ1, · · · , τK , i.e. E(zi(t + k)z∗i (t)) = ρi(k) for k = τ1, · · · , τK

and i = 1, · · · , m.

From Theorem 4, the existence of condition (1) can be checked by using the approx-

imate correlation coefficients rii(k)
def
= E(zi(t + k)z?

i (t)). It is important to point out
that even if equation (2) holds, it does not mean that the source signals have been
separated. Three situations may happen:

1. For all pairs (i, j), ρ̃i and ρ̃j (computed from z(t)) are pairwise linearly indepen-
dent. Then we are sure that the sources have been separated and that z(t) = s(t)
up to the inherent indeterminacies of the BSS problem. In fact, the testing of the
identifiability condition is equivalent to pairwise testing the angles between ρ̃i and
ρ̃j for all 1 ≤ i 6= j ≤ m. The larger the angle between ρ̃i and ρ̃j , the better the
quality of source separation (see performance analysis in [5]).

2. For all pairs (i, j), ρ̃i and ρ̃j are linearly dependent. Thus the sources haven’t been
separated and z(t) is still a linear combination of s(t).

3. A few pairs (i, j) out of all pairs satisfy ρ̃i and ρ̃j linearly dependent. Therefore
the sources have been separated in blocks.

Now, having only one signal realization at hand, we propose to use a resampling tech-
nique to evaluate the statistics needed for the testing.

4.2 Testing using resampling techniques

Note that in practice the source correlation coefficients are calculated from noisy finite
sample data. Due to the joint effects of noise and finite sample size, it is impossible to
obtain the exact source correlation coefficients to test the identifiability condition. The
identifiability condition should be tested using a certain threshold α, i.e., decide that
ρ̃i and ρ̃j are linearly independent if ||ρ̃iρ̃

T
j | − 1| > α.

To find α we use the fact that the estimation error of ρ̃iρ̃
T
j is asymptotically gaussian

4 and hence one can build the confidence interval of such a variable according to its
variance. This algorithm can be summarized as follows:

1. Estimate a demixing matrix B and z(t)
def
= Bx(t) using an existing second order

decorrelation algorithm (e.g. SOBI [5]).
2. For each component zi(t), estimate the corresponding normalized vector eρi.

3. Calculate the scalar product R̂(i, j) = |ρ̃iρ̃
T
j | for each pair (i, j).

4. Estimate σ̂(i,j) the standard deviation of R̂(i, j) using resampling technique (see
Section 5).

5. Choose α(i,j) according to the confidence interval. e.g. to have a confidence interval

equal to 99.7% we choose α(i,j) = 3σ̂(i,j), and compare |R̂(i, j)− 1| to α(i,j) to test
whether sources i and j have been separated or not.

3 Because of the inherent indetermination of the BSS problem, we assume without loss
of generality that the exact and estimated sources are similarly scaled, i.e., ‖ρ̃i‖ = 1.

4 More precisely, one can prove that the estimation error
√

Tδ(ρ̃iρ̃
T
j ) is asymptotically,

i.e. for large sample size T , gaussian with zero mean and finite variance.



5 Resampling techniques: The jackknife

In many signal processing applications one is interested in forming estimates of a cer-
tain number of unknown parameters of a random process, using a set of sample values.
Further, one is interested in finding the sampling distribution of the estimators, so
that the respective means, variances, and cumulants can be calculated, or in making
some kind of probability statements with respect to the unknown true values of the
parameters.
The bootstrap [8] was introduced by Efron [9] as an approach to calculate confidence
intervals for parameters in circumstances where standard methods cannot be applied.
The bootstrap has subsequently been used to solve many other problems that would
be too complicated for traditional statistical analysis.
In simple words, the bootstrap does with a computer what the experimenter would do
in practice, i.e. if it were possible: he or she would repeat the experiment. With the
bootstrap, the observations are randomly reassigned, and the estimates recomputed.
These assignments and recomputations are done hundreds or thousands of times and
treated as repeated experiments.
The jackknife [10] is another resampling technique for estimating the standard devi-
ation. As an alternative to the bootstrap, the jackknife method can be thought of as
drawing n samples of size n− 1 each without replacement from the original sample of
size n [10].

Suppose we are given the sample X = {X1, X2, . . . , Xn} and an estimate, ϑ̂, from X .
The jackknife method is based on the sample delete-one observation at a time,

X (i) = {X1, X2, . . . , Xi−1, Xi+1, . . . , Xn}

for i = 1, 2, . . . , n, called the jackknife sample. This ith jackknife sample consists of the
data set with the ith observation removed. For each ith jackknife sample, we calculate

the ith jackknife estimate, ϑ̂(i) of ϑ, i = 1, 2, . . . , n. The jackknife estimate of the

standard deviation of ϑ̂ is defined by

σ̂ =

vuutn− 1

n

nX
i=1

 
ϑ̂(i) − 1

n

nX
j=1

ϑ̂(j)

!2

The jackknife is computationally less expensive if n is less than the number of replicates
used by the bootstrap for standard deviation estimation because it requires computa-

tion of ϑ̂ only for the n jackknife data sets. For example, if L = 25 resamples are
necessary for standard deviation estimation with the bootstrap, and the sample size is
n = 10, then clearly the jackknife would be computationally less expensive than the
bootstrap. In order to test the separability of the estimated signals, we have used a
jackknife method to estimate the variance of the scalar product quantities R(i, j) for
i, j = 1, 2, . . . , m. This is done according to the following steps:

1. From each signal zi = [zi(0), . . . , zi(T − 1)]T , generate T vectors such as z
(j)
i =

[zi(0), . . . , zi(j − 1), zi(j + 1), . . . , zi(T − 1)]T and j = 0, 1, . . . , T − 1.

2. For each vector z
(j)
i , estimate the corresponding vector eρ(j)

i .

3. Estimate R̂ such as its (i, j)th entry is

R̂(i, j) =
1

T

T−1X
k=0

〈eρ(k)
i , eρ(k)

j 〉
‖eρ(k)

i ‖‖eρ(k)
j ‖

where 〈·, ·〉 denotes the scalar product and ‖ · ‖ is the euclidian norm.



4. Estimate the standard deviation of R̂(i, j) by

σ̂(i,j) =

vuutT − 1

T

T−1X
k=0

 
〈eρ(k)

i , eρ(k)
j 〉

‖eρ(k)
i ‖‖eρ(k)

j ‖
− 1

T

T−1X
l=0

〈eρ(l)
i , eρ(l)

j 〉
‖eρ(l)

i ‖‖eρ(l)
j ‖

!2

6 Discussion

Some useful comments are provided here to get more insight onto the considered testing
method and its potential applications and extensions.

– The asymptotic performance analysis of SOBI derived in [5], shows that the sep-
aration performance of two sources si and sj depends on the angle between their
respective correlation vectors eρi and eρj . Hence, measuring this angle gives a hint
on the interference rejection level of the two considered sources.
As a consequence, one can use the measure of this angle not only to test the sep-
arability of the two sources but also to guarantee a target (minimum) separation
quality. Choosing the threshold α(i,j) accordingly is an important issue currently
under investigation.

– The testing method can be incorporated into a two stage separation procedure
where the first stage consists in a second order decorrelation method (e.g. SOBI).
The second stage would be an HOS-based separation method applied only when
the testing indicates a failure of separation at the first step.

– In many practical situations, one might be interested by only one or few source
signals. This is the case for example in the interference mitigation problem in [11]
or in the power plants monitoring applications [12]. In this situation, the partial
identifiability result is of high interest as it proves that the desired source signal
can still be extracted even if a complete source separation cannot be achieved.

– We believe that similar testing procedure can be used for HOS-based BSS methods,
at least for those like JADE [13], that are based on 4th order decorrelation. This
would be the focus of future research work.

7 Simulation results

We present in this section some simulation results to illustrate the performance of our
testing method. In the simulated environment we consider uniform linear array with
n = 2 sensors receiving the signals from m = 2 unit-power first order autoregressive
sources (with coefficients a1 = 0.95ej0.5 and a2 = 0.5ej0.7) in the presence of station-
ary complex temporally white noise. The considered sources are separable according to
the identifiability result, i.e. their respective correlation vectors eρ1 and eρ2 are linearly
independent. The time lags (delays) implicitly involved are τ0, · · · , τ9 (i.e., K = 10).
The signal to noise ratio (SNR) is defined as SNR = −10 log10 σ2

n, where σ2
n is the noise

variance. We use SOBI algorithm [5] to obtain the decorrelated sources. The statistics
in the curves are evaluated over 2000 Monte-Carlo runs. We present first in figure 1(a)
a simulation example where we compare the rate of success of the testing procedure
(success means that we decide the 2 sources have been separated) to detect the sources
separability for different sample sizes versus the SNR in dB. The confidence interval
is fixed to β = 99.7%. One can observe from this figure that the performance of the
testing procedure degrades significantly for a small sample size due to the increased
estimation errors and the fact that we use the asymptotic normality of considered sta-
tistics. In figure 1(b), we present a simulation example where we compare the rate of
success according to the sample size for different confidence intervals. The SNR is set
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Fig. 1. (a)Rate of success versus SNR for 2 autoregressive sources and 2 sensors and
β = 99.7%: comparison of the performance of our testing algorithm for different sample
sizes T ; (b)Rate of success versus sample size T for 2 autoregressive sources and 2
sensors and SNR=25dB: comparison of the performance of our algorithm for different
confidence interval β.

to 25dB. Clearly, the lower the confidence interval is, the higher is the rate of success of
the testing procedure. Also, as observed in figure 1, the rate of success increases rapidly
when increasing the sample size. In figure 2(a), we present a simulation example where
we plot the rate of success versus the confidence interval β for different sample sizes
and for SNR=25dB. This plot shows somehow the evolution of the rate of success w.r.t.
the ’false alarm rate’ and confirms the results of the two previous figures.
The simulation example presented in figure 2(b) assumes two source signals with pa-

rameters a1 = 0.5ej0.5 and a2 = 0.5ej(0.5+δθ), where δθ represents the spectral overlap
of the two sources. The number of sensors is n = 5, the sample size is T = 1000 and
the SNR=30dB. Figure 2(b) shows the rate of success versus the spectral shift δθ. As
we can see, small values of δθ lead to high rates of ’non-separability’ decision by our
testing procedure. Indeed, when δθ is close to zero the two vectors eρ1 and eρ2 are close
to ’linear dependency’. That means that the separation quality of the two sources is
poor in that case which explains the observed testing results. In the last figure, we
assume there exist three sources. The first two sources are complex white gaussian
processes (hence eρ1 = eρ2) and the third one is an autoregressive signal with coefficient
a3 = 0.95ej0.5. The plots in figure 2(c) compares the average values of scalar products
for eρi and eρj (i, j = 1, 2, 3) with their corresponding threshold values 1− α(i,j) versus
the SNR. The sample size is fixed to T = 500 and the number of sensors is n = 3. This
example illustrates the situation where two of the sources (here sources 1 and 2) cannot
be separated (this is confirmed by the testing result) while the third one is extracted
correctly (the plots show clearly that R(1, 3) < 1− α(1,3) and R(2, 3) < 1− α(2,3)).

8 Conclusion

This paper introduces a new method for testing the second order identifiability condi-
tion of the blind source separation problem. In simple words, this testing allows us to
’blindly’ check, out of the observation, whether the unknown sources have been cor-
rectly separated or not. To evaluate the statistics needed for the testing procedure we
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Fig. 2. (a)Rate of false alarm versus confidence interval β for 2 autoregressive sources
and 2 sensors and SNR=25dB: comparison of the performance of our algorithm for
different sample size T ; (b)Rate of success versus spectral shift δθ for 2 autoregressive
sources and 5 sensors and SNR=25dB; (c)Average values of the |R(i, j)| and thresholds
1−α(i,j) versus SNR for 3 sources and 3 sensors : 2 sources are complex white gaussian
processes and the third one is an autoregressive signal.

used the jackknife (resampling) technique. The simulation results illustrate and assess
the effectiveness of this testing procedure at least for moderate and large sample sizes.
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