The invertibility of adapted perturbations of identity on the Wiener space

A. S. Üstünel and M. Zakai

Abstract: Let (W, H, μ) be the classical Wiener space. Assume that $U = I_W + u$ is an adapted perturbation of identity, i.e., $u: W \to H$ is adapted to the canonical filtration of W. We give some sufficient analytic conditions on u which imply the invertibility of the map U.

L'inversibilité des perturbations d'identité adaptées sur l'espace de Wiener

Resumé: Soit (W, H, μ) l'espace de Wiener. Soit $U = I_W + u$ une perturbation d'identité adaptée, i.e., $u: W \to H$ est adaptée à la filtration canonique de W. Nous donnons quelques conditions suffisantes qui impliquent l'inversibilité de l'application U.

1 Preliminaries

Let $W = C_0([0, 1])$ be the Banach space of continuous functions on [0, 1], with its Borel sigma field denoted by \mathcal{F} . We denote by H the Cameron-Martin space, namely the space of absolutely continuous functions on [0, 1] with square integrable Lebesgue density:

$$H = \left\{ h \in W : \ h(t) = \int_0^t \dot{h}(s) ds, \ |h|_H^2 = \int_0^1 |\dot{h}(s)|^2 ds < \infty \right\} \ .$$

 μ denotes the classical Wiener measure on (W, \mathcal{F}) , $(\mathcal{F}_t, t \in [0, 1])$ is the filtration generated by the paths of the Wiener process $(t, w) \to W_t(w)$, where $W_t(w)$ is defined as w(t) for $w \in W$ and $t \in [0, 1]$. We shall recall briefly some well-known functional analytic tools on the Wiener space, we refer the reader to [4, 3, 5] or to [6] for further details: $(P_\tau, \tau \in \mathbb{R}_+)$ denotes the semi-group of Ornstein-Uhlenbeck on W, defined as

$$P_{\tau}f(w) = \int_{W} f(e^{-\tau}w + \sqrt{1 - e^{-2\tau}}y)\mu(dy) \,.$$

Let us recall that $P_{\tau} = e^{-\tau \mathcal{L}}$, where \mathcal{L} is the number operator. We denote by ∇ the Sobolev derivative which is the extension (with respect to the Wiener measure) of the Fréchet derivative in the Cameron-Martin space direction. The iterates of ∇ are defined similarly. Note that, if f is real valued, then ∇f is a vector and if u is an H-valued map, then ∇u is a Hilbert-Schmidt (on

H) operator valued map whenever defined. If Z is a separable Hilbert space and if $p > 1, k \in \mathbb{R}$, we denote by $\mathbb{D}_{p,k}(Z)$ the μ -equivalence classes of Z-valued measurable mappings ξ , defined on W such that $(I + \mathcal{L})^{k/2}\xi$ belongs to $L^p(\mu, Z)$ and this set, equipped with the norm

$$\|\xi\|_{p,k} = \|(I + \mathcal{L})^{k/2} \xi\|_{L^p(\mu,Z)}$$
(1.1)

becomes a Banach space. From the Meyer inequalities, we know that the norm defined by

$$\sum_{k=0}^{n} \|\nabla^{k}\xi\|_{L^{p}(\mu, Z\otimes H^{\otimes k})}, n \in \mathbb{N},$$

is equivalent to the norm $\|\xi\|_{p,n}$ defined by (1.1). We denote by δ the adjoint of ∇ under μ and recall that, whenever $u \in \mathbb{D}_{p,0}(H)$ for some p > 1 is adapted, then δu is equal to the Itô integral of the Lebesgue density of u:

$$\delta u = \int_0^1 \dot{u}_s dW_s \,.$$

2 A sufficient condition for invertibility

Assume that $u: W \to H$ is adapted, i.e., $u(t) = \int_0^t \dot{u}_s ds$, $t \in [0, 1]$ and that \dot{u}_s is \mathcal{F}_s -measurable for almost all $s \in [0, 1]$. We suppose that $\rho(-\delta u)$ defined as

$$\rho(-\delta u) = \exp\left[-\delta u - \frac{1}{2}|u|_{H}^{2}\right]$$

is the terminal value of a uniformly integrable martingale. We shall assume that u is in $\mathbb{D}_{2,0}(H)$. We have

Theorem 1 Assume that u satisfies the hypothesis above. For $\tau \in [0,1]$, define u_{τ} as to be $P_{\tau}u$, where P_{τ} is the Ornstein-Uhlenbeck semigroup and assume also that $E[\rho(-\delta u_{\tau})] = 1$ for $\tau \in [0,1]$. Then the adapted perturbation of identity $U = I_W + u$ is invertible provided that

$$E\left[\int_0^1 |(I_H + \nabla u_\tau)^{-1} \mathcal{L} u_\tau|_H \rho(-\delta u_\tau) d\tau\right] < \infty.$$
(2.2)

Proof: Note that the map u_{τ} is again adapted and $H - C^1$ (in fact it is even $H - C^{\infty}$, cf. [7]). This means that there exists a negligeable set $N \subset W$ (in fact its capacity is null [6]) with $H + N \subset N$, such that, for any $w \in N^c$, the map $h \to u_{\tau}(w + h)$ is continuously Fréchet differentiable on H. Consequently $U_{\tau} = I_W + u_{\tau}$ satisfies the change of variables formula: for any $f \in C_b(W)$,

$$E[f \circ U_{\tau} \rho(-\delta u_{\tau})] = E[f(w) N_{\tau}(w)],$$

where N_{τ} is the multiplicity function of U_{τ} , namely the cardinality of the set $U_{\tau}^{-1}(\{w\})$ (cf. [7]). Since $E[\rho(-\delta u_{\tau})] = 1$, it follows that $N_{\tau} = 1$ μ -almost surely and this implies the existence of the inverse of U_{τ} which is denoted as V_{τ} . Note that V_{τ} is of the form $V_{\tau} = I_W + v_{\tau}$, where $v_{\tau} : W \to H$ and that the image of μ under V_{τ} , denoted as $V_{\tau}\mu$, is equivalent to μ with the Radon-Nikodym density

$$\frac{dV_{\tau}\mu}{d\mu} = \rho(-\delta u_{\tau}). \qquad (2.3)$$

We also have $v_{\tau} = -u_{\tau} \circ V_{\tau}$. We shall prove that $\lim_{\tau \to 0} v_{\tau}$ exists in $L^0(\mu, H)$. Note that $\tau \to v_{\tau}$ is differentiable on (0, 1) and we have

$$\frac{dv_{\tau}}{d\tau} = -\left((I_H + \nabla u_{\tau})^{-1}\mathcal{L}u_{\tau}\right) \circ V_{\tau}.$$
(2.4)

Since

$$|v_{\beta} - v_{\alpha}| \le \int_{\alpha}^{\beta} \left| \frac{dv_{\tau}}{d\tau} \right|_{H} d\tau$$

and since $L^0(\mu, H)$ is complete, in order to show that $\lim_{\alpha,\beta\to 0} \mu(\{|v_\alpha - v_\beta| > c\}) = 0$, for any c > 0, it suffices to show that

$$E\int_0^\kappa \left|\frac{dv_\tau}{d\tau}\right| d\tau < \infty\,,$$

for some $\kappa > 0$. From the relations (2.3) and (2.4), we obtain

$$E \int_{\alpha}^{\beta} \left| \frac{dv_{\tau}}{d\tau} \right|_{H} d\tau = E \int_{\alpha}^{\beta} \left| \left((I_{H} + \nabla u_{\tau})^{-1} \mathcal{L} u_{\tau} \right) \circ V_{\tau} \right|_{H} d\tau$$
$$= E \int_{\alpha}^{\beta} \left| (I_{H} + \nabla u_{\tau})^{-1} \mathcal{L} u_{\tau} \right|_{H} \rho(-\delta u_{\tau}) d\tau.$$

Hence the hypothesis (2.2) implies the existence of the limit $\lim_{\tau\to 0} v_{\tau}$ in $L^1(\mu, H)$ which we shall denote by v. Since $v_{\tau} = -u_{\tau} \circ V_{\tau}$ and since $(\rho(-\delta u_{\tau}), \tau \in [0, 1])$ is uniformly integrable, $V\mu$ is absolutely continuous with respect to μ and we have also the identity $v = -u \circ V$, where $V = I_W + v$. Now it is easy to see that $U \circ V = V \circ U = I_W \mu$ -almost surely.

Combining Theorem 1 with the inequality of T. Carleman, (cf. [1] or [2], Corollary XI.6.28) which says:

$$\|\det_2(I_H+A)(I_H+A)^{-1}\| \le \exp\frac{1}{2}(\|A\|_2^2+1)$$

for any Hilbert-Schmidt operator A, where the left hand side is the operator norm, $\det_2(I_H + A)$ denotes the modified Carleman-Fredholm determinant and $\|\cdot\|_2$ denotes the Hilbert-Schmidt norm, we get

Theorem 2 Assume that $u \in \mathbb{D}_{2,1}(H)$ such that $E[\rho(-\delta u_{\tau})] = 1$ and that

$$E\left[e^{\frac{1}{2}\|\nabla u\|_{2}^{2}}\int_{0}^{1}P_{\tau}\left(\rho(-\delta u_{\tau})|\mathcal{L}u_{\tau}|_{H}\right)d\tau\right]<\infty$$

Then U satisfies the conclusions of Theorem 1.

Proof: The integrand in the relation (2.2) can be upperbounded as follows:

$$|(I_H + \nabla u_{\tau})^{-1} \mathcal{L} u_{\tau}|_H \leq \exp \frac{1}{2} (\|\nabla u_{\tau}\|_2^2 + 1) |\mathcal{L} u_{\tau}|_H$$

$$\leq |\mathcal{L} u_{\tau}|_H P_{\tau} (\exp \frac{1}{2} (\|\nabla u\|_2^2 + 1)),$$

where the second line follows from the Jensen inequality. Here there is no term with det₂ since, ∇u_{τ} being quasi-nilpotent, its Carleman-Fredholm determinant is always equal to one. We then use the symmetry of P_{τ} with respect to μ . **Corollary 1** Suppose that u is adapted, $E[\rho(-\delta u_{\tau})] = 1$ for all $\tau \in [0, 1]$. Let $\varepsilon > 0$ be given and assume further that $u \in \mathbb{D}_{\frac{\varepsilon+1}{\varepsilon},2}(H)$ and that the following relation holds:

$$E\left[\left(1+e^{-e(1+\varepsilon)\delta u}\right)\exp\left(\frac{1+\varepsilon}{2}\|\nabla u\|_{2}^{2}\right)\right] < \infty.$$
(2.5)

Then $U = I_W + u$ is μ -almost surely invertible.

Proof: Let C_{ε} represent the left hand side of the relation (2.5), then using the Hölder inequality we get

$$E\left[\int_{0}^{1} |(I_{H} + \nabla u_{\tau})^{-1} \mathcal{L} u_{\tau}|_{H} \rho(-\delta u_{\tau}) d\tau\right] \leq C_{\varepsilon}^{\frac{1}{1+\varepsilon}} \|u\|_{\frac{1+\varepsilon}{\varepsilon},2}.$$
In follows.

Hence the conclusion follows.

Remark: If we take $\varepsilon = 1$ in Corollary 1, then it is easy to see, using the Wiener chaos expansion for $E[|\mathcal{L}P_{\tau}u|_{H}^{2}]$ that

$$E\int_{0}^{1} |\mathcal{L}P_{\tau}u|_{H}^{2} d\tau \le ||u||_{2,1}^{2}$$

Remark: In the case where u is not adapted, the condition (2.5) with $\varepsilon = 1$ is sufficient for the measure theoretic degree of the map U to be one as it is proven in Theorem 9.3.2 of [7].

References

- [1] T. Carleman: "Zur Theorie der linearen Integralgleichungen". Math. Zeit. 9, 196-217, 1921.
- [2] N. Dunford and J.T. Schwartz: Linear Operators, Vol. 2, New York, Interscience, 1967.
- [3] D. Feyel and A. de La Pradelle: "Capacités gaussiennes". Annales de l'Institut Fourier, 41, f. 1, 49-76, 1991.
- [4] P. Malliavin: Stochastic Analysis. Springer, 1997.
- [5] A. S. Ustünel: Introduction to Analysis on Wiener Space. Lecture Notes in Math. Vol. 1610. Springer, 1995.
- [6] A. S. Üstünel: Analysis on Wiener Space and Applications. Electronic text at the site http://www.finance-research.net/.
- [7] A. S. Üstünel and M. Zakai: Transformation of Measure on Wiener Space. Springer Verlag, 1999.

A. S. Üstünel	M. Zakai,
ENST, Paris	Technion, Haifa
Dept. Infres, 46, rue Barrault	Dept. Electrical Eng.,
75013 Paris,	32000 Haifa
France	Israel
ustunel@enst.fr	zakai@ee.technion.ac.il