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Abstract: Let (W,H, µ) be the classical Wiener space. Assume that U = IW + u is an adapted perturba-
tion of identity, i.e., u : W → H is adapted to the canonical filtration of W . We give some sufficient analytic
conditions on u which imply the invertibility of the map U .

L’inversibilité des perturbations d’identité adaptées sur l’espace de Wiener

Resumé: Soit (W,H, µ) l’espace de Wiener. Soit U = IW + u une perturbation d’identité adaptée, i.e.,
u : W → H est adaptée à la filtration canonique de W . Nous donnons quelques conditions suffisantes qui
impliquent l’inversibilité de l’application U .

1 Preliminaries

Let W = C0([0, 1]) be the Banach space of continuous functions on [0, 1], with its Borel sigma
field denoted by F . We denote by H the Cameron-Martin space, namely the space of absolutely
continuous functions on [0, 1] with square integrable Lebesgue density:

H =
{

h ∈ W : h(t) =
∫ t

0
ḣ(s)ds, |h|2H =

∫ 1

0
|ḣ(s)|2ds < ∞

}
.

µ denotes the classical Wiener measure on (W,F), (Ft, t ∈ [0, 1]) is the filtration generated by
the paths of the Wiener process (t, w) → Wt(w), where Wt(w) is defined as w(t) for w ∈ W and
t ∈ [0, 1]. We shall recall briefly some well-known functional analytic tools on the Wiener space,
we refer the reader to [4, 3, 5] or to [6] for further details: (Pτ , τ ∈ IR+) denotes the semi-group of
Ornstein-Uhlenbeck on W , defined as

Pτf(w) =
∫

W
f(e−τw +

√
1− e−2τy)µ(dy) .

Let us recall that Pτ = e−τL, where L is the number operator. We denote by ∇ the Sobolev
derivative which is the extension (with respect to the Wiener measure) of the Fréchet derivative
in the Cameron-Martin space direction. The iterates of ∇ are defined similarly. Note that, if f is
real valued, then ∇f is a vector and if u is an H-valued map, then ∇u is a Hilbert-Schmidt (on
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H) operator valued map whenever defined. If Z is a separable Hilbert space and if p > 1, k ∈ IR,
we denote by IDp,k(Z) the µ-equivalence classes of Z-valued measurable mappings ξ, defined on W
such that (I + L)k/2ξ belongs to Lp(µ,Z) and this set, equipped with the norm

‖ξ‖p,k = ‖(I + L)k/2ξ‖Lp(µ,Z) (1.1)

becomes a Banach space. From the Meyer inequalities, we know that the norm defined by

n∑
k=0

‖∇kξ‖Lp(µ,Z⊗H⊗k) , n ∈ IN ,

is equivalent to the norm ‖ξ‖p,n defined by (1.1). We denote by δ the adjoint of ∇ under µ and
recall that, whenever u ∈ IDp,0(H) for some p > 1 is adapted, then δu is equal to the Itô integral
of the Lebesgue density of u:

δu =
∫ 1

0
u̇sdWs .

2 A sufficient condition for invertibility

Assume that u : W → H is adapted, i.e., u(t) =
∫ t
0 u̇sds, t ∈ [0, 1] and that u̇s is Fs-measurable for

almost all s ∈ [0, 1]. We suppose that ρ(−δu) defined as

ρ(−δu) = exp
[
−δu− 1

2
|u|2H

]
is the terminal value of a uniformly integrable martingale. We shall assume that u is in ID2,0(H).
We have

Theorem 1 Assume that u satisfies the hypothesis above. For τ ∈ [0, 1], define uτ as to be Pτu,
where Pτ is the Ornstein-Uhlenbeck semigroup and assume also that E[ρ(−δuτ )] = 1 for τ ∈ [0, 1].
Then the adapted perturbation of identity U = IW + u is invertible provided that

E

[∫ 1

0
|(IH +∇uτ )−1Luτ |Hρ(−δuτ )dτ

]
< ∞ . (2.2)

Proof: Note that the map uτ is again adapted and H−C1 (in fact it is even H−C∞, cf. [7]). This
means that there exists a negligeable set N ⊂ W (in fact its capacity is null [6]) with H + N ⊂ N ,
such that, for any w ∈ N c, the map h → uτ (w + h) is continuously Fréchet differentiable on H.
Consequently Uτ = IW + uτ satisfies the change of variables formula: for any f ∈ Cb(W ),

E[f ◦ Uτ ρ(−δuτ )] = E[f(w) Nτ (w)] ,

where Nτ is the multiplicity function of Uτ , namely the cardinality of the set U−1
τ ({w})(cf. [7]).

Since E[ρ(−δuτ )] = 1, it follows that Nτ = 1 µ-almost surely and this implies the existence of the
inverse of Uτ which is denoted as Vτ . Note that Vτ is of the form Vτ = IW + vτ , where vτ : W → H
and that the image of µ under Vτ , denoted as Vτµ, is equivalent to µ with the Radon-Nikodym
density

dVτµ

dµ
= ρ(−δuτ ) . (2.3)
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We also have vτ = −uτ ◦ Vτ . We shall prove that limτ→0 vτ exists in L0(µ,H). Note that τ → vτ

is differentiable on (0, 1) and we have

dvτ

dτ
= −

(
(IH +∇uτ )−1Luτ

)
◦ Vτ . (2.4)

Since

|vβ − vα| ≤
∫ β

α

∣∣∣∣dvτ

dτ

∣∣∣∣
H

dτ ,

and since L0(µ,H) is complete, in order to show that limα,β→0 µ ({|vα − vβ | > c}) = 0, for any
c > 0, it suffices to show that

E

∫ κ

0

∣∣∣∣dvτ

dτ

∣∣∣∣ dτ < ∞ ,

for some κ > 0. From the relations (2.3) and (2.4), we obtain

E

∫ β

α

∣∣∣∣dvτ

dτ

∣∣∣∣
H

dτ = E

∫ β

α

∣∣((IH +∇uτ )−1Luτ

)
◦ Vτ

∣∣
H

dτ

= E

∫ β

α
|(IH +∇uτ )−1Luτ |Hρ(−δuτ )dτ .

Hence the hypothesis (2.2) implies the existence of the limit limτ→0 vτ in L1(µ,H) which we shall
denote by v. Since vτ = −uτ ◦ Vτ and since (ρ(−δuτ ), τ ∈ [0, 1]) is uniformly integrable, V µ is
absolutely continuous with respect to µ and we have also the identity v = −u◦V , where V = IW +v.
Now it is easy to see that U ◦ V = V ◦ U = IW µ-almost surely.

Combining Theorem 1 with the inequality of T. Carleman, (cf. [1] or [2], Corollary XI.6.28) which
says:

‖det2(IH + A)(IH + A)−1‖ ≤ exp
1
2

(
‖A‖2

2 + 1
)

,

for any Hilbert-Schmidt operator A, where the left hand side is the operator norm, det2(IH + A)
denotes the modified Carleman-Fredholm determinant and ‖·‖2 denotes the Hilbert-Schmidt norm,
we get

Theorem 2 Assume that u ∈ ID2,1(H) such that E[ρ(−δuτ )] = 1 and that

E

[
e

1
2
‖∇u‖22

∫ 1

0
Pτ (ρ(−δuτ )|Luτ |H) dτ

]
< ∞ .

Then U satisfies the conclusions of Theorem 1.

Proof: The integrand in the relation (2.2) can be upperbounded as follows:

|(IH +∇uτ )−1Luτ |H ≤ exp
1
2
(‖∇uτ‖2

2 + 1)|Luτ |H

≤ |Luτ |HPτ (exp
1
2
(‖∇u‖2

2 + 1)) ,

where the second line follows from the Jensen inequality. Here there is no term with det2 since,
∇uτ being quasi-nilpotent, its Carleman-Fredholm determinant is always equal to one. We then
use the symmetry of Pτ with respect to µ.
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Corollary 1 Suppose that u is adapted, E[ρ(−δuτ )] = 1 for all τ ∈ [0, 1]. Let ε > 0 be given and
assume further that u ∈ ID ε+1

ε
,2(H) and that the following relation holds:

E

[(
1 + e−e(1+ε)δu

)
exp

(
1 + ε

2
‖∇u‖2

2

)]
< ∞ . (2.5)

Then U = IW + u is µ-almost surely invertible.

Proof: Let Cε represent the left hand side of the relation (2.5), then using the Hölder inequality
we get

E

[∫ 1

0
|(IH +∇uτ )−1Luτ |Hρ(−δuτ )dτ

]
≤ C

1
1+ε
ε ‖u‖ 1+ε

ε
,2 .

Hence the conclusion follows.

Remark: If we take ε = 1 in Corollary 1, then it is easy to see, using the Wiener chaos expansion
for E[|LPτu|2H ] that

E

∫ 1

0
|LPτu|2Hdτ ≤ ‖u‖2

2,1 .

Remark: In the case where u is not adapted, the condition (2.5) with ε = 1 is sufficient for the
measure theoretic degree of the map U to be one as it is proven in Theorem 9.3.2 of [7].
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