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Abstract

In this work we study the Monge-Ampère equation in the frame of infinite
dimensional Fréchet spaces equipped with a Gauss measure, polar factor-
ization of the mappings which transform a spread measure to another one
in terms of the measure transportation of Monge-Kantorovitch.
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1 Introduction

In 1781, G. Monge has launched his famous problem, which can be expressed in
terms of the modern mathematics as follows: given two probability measures ρ
and ν on IRn, find the map T : IRn → IRn such that Tρ = ν 1 and T is also the

1Tρ means the image of the measure ρ under the map T

1



solution of the minimization problem

inf
U

{∫
IRn

c(x, U(x))ρ(dx)

}
, (1.1)

where the infimum is taken between all the maps U : IRn → IRn such that Uρ = ν
and where c : IRn × IRn → IR+ is a positive, measurable function, called usually
the cost function. In the original problem of Monge, the cost function c(x, y) was
|x− y|, later other costs have been considered. Between them, the most popular
one which is also abundantly studied, is the case where c(x, y) = |x − y|2.After
several tentatives (cf., [1, 2]), in the 1940’s this highly nonlinear problem of Monge
has been reduced to a linear problem by Kantorovitch, cf.[12], in the following
way: let Σ(ρ, ν) be the set of probability measures on IRn × IRn, whose first
marginals are ρ and the second marginals are ν. Find the element(s) of Σ(ρ, ν)
which are the solutions of the minimization problem:

inf
β∈Σ(ρ,ν)

{∫
IRn×IRn

c(x, y)dβ(x, y)

}
. (1.2)

It is obviuous that Σ(ρ, ν) is a convex, compact set under the weak*-topology
of measures, hence, in case, the cost function c has some regularity properties,
like being lower semi-continuous, this problem would have solutions. If any one
of them is supported by the graph of a map T : IRn → IRn, then obviously, T
will be also a solution of the original problem of Monge 1.1. Since that time, the
problem (1.2) is called the Monge-Kantorovitch problem (MKP). The program
of Kantorovitch has been followed by several people and a major contribution
has been done by Sudakov [18]. In the early 90’s there has been another impetus
to this problem, cf., [4], where it has been proven the importance of the convex
functions in the solutions of the MKP and of the problem of Monge (cf., also
[13, 14]).

In [9], we have solved the MKP and the problem of Monge in the infinite
dimensional case, where the space on which the measures are defined is a Polish
space into which is injected densely and continuously a Hilbert space H, which
is called as the Cameron-Martin space in reference to the Gaussian case. The
cost function that we have chosen was c(x, y) = |x − y|2H , where | · |H denotes
the Euclidean norm of H. Because of this choice, in comparison to the finite
dimensional space, the situation becomes very singular, since, in general, the
space H is of zero measure with respect to almost all the reasonable measures
for which one can expect to have solutions for the aforementioned problems of
Monge and MKP. On the other hand, due to the potential applications to several
problems of stochastic analysis and physics, this cost function is particularly
important. We have also given several applications of these results, for example
we have proven a factorization result of the absolutely continuous transformations
of the Wiener measure, the solutions of the Monge-Ampère equation, etc.
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This paper is devoted to the further developement of the subject, in particular,
we give a much more general result of the factorization of the vector fields which
map a probability measure on W to another one such that one of them is spread
and (cf. the preliminaries) the two measures are at finite Wasserstein distance
from each other. As an example we treat in detail the case of the Gaussian
measures. One of the main contributions in this work is the proof of the existence
of the functional analytic (or strong) solutions of the Monge-Ampère equation for
the H-log-concave densities. In [9], we have studied the Monge-Ampère equation
for the upper and lower bounded densities with respect to the Wiener measure.
The main difficulty in this case stems from the lack of regularity of the transport
potentials, in fact we know only that these functions are in the Sobolev space
ID2,1, i.e., they have only first order Sobolev derivatives. However, to write the
Gaussian Jacobian, we need them to be second order Sobolev differentiable. This
difficulty, which exists also in the finite dimensional case is solved in this latter
case with the help of the Alexandroff differentiability of the convex functions. In
the infinite dimensional case the situation is worse, in fact the transport potentials
are not in general convex, nor H-convex (which is a more reasonable requirement,
cf. [7]), but only 1-convex in the Cameron-Martin space direction as explained
in the next sections. As it is shown in Section 5, the only exception to this lack
of regularity arises in the case where the target measure has an H-log-concave
density. In this case, using the finite dimensional results of Caffarelli [6], we
show that the transport potential has a second order derivative as an operator
valued map and then using some celebrated identity of Wiener space analysis,
we also prove that this second derivative takes its values in the space of Hilbert-
Schmidt operators, hence we can write the corresponding Jacobian which includes
the modified Carleman-Fredholm determinant, cf. [22] and finally we prove that
the transport potential is the unique 1-convex solution of the Monge-Ampère
equation. In Section 6 we show that all these difficulties disappear if we use the
natural Ito Calculus and we can calculate the Jacobian (cf. Theorem 6.1) using
the natural Brownian motion which is associated to the solution of the Monge
problem. In fact, with Itô parametrization, the complications are absorbed by
the filtrations of forward and backward transport processes (i.e., maps).

2 Preliminaries and notations

Let W be a separable Fréchet space equipped with a Gaussian measure µ of zero
mean whose support is the whole space. The corresponding Cameron-Martin
space is denoted by H. Recall that the injection H ↪→ W is compact and its
adjoint is the natural injection W ? ↪→ H? ⊂ L2(µ). The triple (W,µ,H) is
called an abstract Wiener space. Recall that W = H if and only if W is finite
dimensional. A subspace F of H is called regular if the corresponding orthogonal
projection has a continuous extension to W , denoted again by the same letter.
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It is well-known that there exists an increasing sequence of regular subspaces
(Fn, n ≥ 1), called total, such that ∪nFn is dense in H and in W . Let Vn be
the σ-algebra generated by πFn , then for any f ∈ Lp(µ), the martingale sequence
(E[f |Vn], n ≥ 1) converges to f (strongly if p < ∞) in Lp(µ). Observe that the
function fn = E[f |Vn] can be identified with a function on the finite dimensional
abstract Wiener space (Fn, µn, Fn), where µn = πnµ.

Since the translations of µ with the elements of H induce measures equivalent
to µ, the Gâteaux derivative in H direction of the random variables is a closable
operator on Lp(µ)-spaces and this closure will be denoted by ∇ cf., for exam-
ple [21]. The corresponding Sobolev spaces (the equivalence classes) of the real
random variables will be denoted as IDp,k, where k ∈ IN is the order of differen-
tiability and p > 1 is the order of integrability. If the random variables are with
values in some separable Hilbert space, say Φ, then we shall define similarly the
corresponding Sobolev spaces and they are denoted as IDp,k(Φ), p > 1, k ∈ IN.
Since ∇ : IDp,k → IDp,k−1(H) is a continuous and linear operator its adjoint is
a well-defined operator which we represent by δ. In the case of classical Wiener
space, i.e., when W = C(IR+, IR

d), then δ coincides with the Itô integral of the
Lebesgue density of the adapted elements of IDp,k(H) (cf.[21]).

For any t ≥ 0 and measurable f : W → IR+, we note by

Ptf(x) =

∫
W

f
(
e−tx+

√
1− e−2ty

)
µ(dy) ,

it is well-known that (Pt, t ∈ IR+) is a hypercontractive semigroup on Lp(µ), p >
1, which is called the Ornstein-Uhlenbeck semigroup (cf.[21]). Its infinitesimal
generator is denoted by−L and we call L the Ornstein-Uhlenbeck operator (some-
times called the number operator by the physicists). Due to the Meyer inequalities
(cf., for instance [21]), the norms defined by

‖ϕ‖p,k = ‖(I + L)k/2ϕ‖Lp(µ) (2.3)

are equivalent to the norms defined by the iterates of the Sobolev derivative
∇. This observation permits us to identify the duals of the space IDp,k(Φ); p >
1, k ∈ IN by IDq,−k(Φ

′), with q−1 = 1− p−1, where the latter space is defined by
replacing k in (2.3) by −k, this gives us the distribution spaces on the Wiener
space W (in fact we can take as k any real number). An easy calculation shows
that, formally, δ ◦ ∇ = L, and this permits us to extend the divergence and the
derivative operators to the distributions as linear, continuous operators. In fact
δ : IDq,k(H ⊗ Φ) → IDq,k−1(Φ) and ∇ : IDq,k(Φ) → IDq,k−1(H ⊗ Φ) continuously,
for any q > 1 and k ∈ IR, where H ⊗ Φ denotes the completed Hilbert-Schmidt
tensor product (cf., for instance [21]). The following assertion is useful: assume
that (Zn, n ≥ 1) ⊂ ID′ converges to Z in ID′, assume further that each each Zn

is a probability measure on W , then Z is also a probability and (Zn, n ≥ 1)
converges to Z in the weak topology of measures. In particular, a lower bounded
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distribution (in the sense that there exists a constant c ∈ IR such that Z + c is a
positive distribution) is a (Radon) measure on W , c.f. [21].

A measurable function f : W → IR ∪ {∞} is called H-convex (cf.[7]) if

h→ f(x+ h)

is convex µ-almost surely, i.e., if for any h, k ∈ H, s, t ∈ [0, 1], s+ t = 1, we have

f(x+ sh+ tk) ≤ sf(x+ h) + tf(x+ k) ,

almost surely, where the negligeable set on which this inequality fails may depend
on the choice of s, h and of k. We can rephrase this property by saying that
h → f(x + h) is an L0(µ)-valued convex function on H. f is called 1-convex if
the map

h→ f(x+ h) +
1

2
|h|2H = F (x, h)

is convex on the Cameron-Martin space H with values in L0(µ). Note that all
these notions are compatible with the µ-equivalence classes of random variables
thanks to the Cameron-Martin theorem. It is proven in [7] that this definition
is equivalent the following condition: Let (πn, n ≥ 1) be a sequence of regular,
finite dimensional, orthogonal projections of H, increasing to the identity map
IH . Denote also by πn its continuous extension to W and define π⊥n = IW − πn.
For x ∈ W , let xn = πnx and x⊥n = π⊥n x. Then f is 1-convex if and only if

xn →
1

2
|xn|2H + f(xn + x⊥n )

is π⊥n µ-almost surely convex. We define similarly the notion of H-concave and
H-log-concave functions. In particular, one can prove that, for any H-log-concave
function f on W , Ptf and E[f |Vn] are again H-log-concave [7].

3 Monge-Kantorovitch problem

Let us recall the definition of the Monge-Kantorovitch problem in our case:

Definition 3.1 Let ρ and ν be two probability measures on W , let also Σ(ρ, ν) be
the convex subset of the probability measures on the product space W ×W whose
first marginal is ρ and the second one is ν. The Monge-Kantorovitch problem
for the couple (ρ, ν) consists of finding a measure γ ∈ Σ(ρ, ν) which realizes the
following infimum:

d2
H(ρ, ν) = inf

β∈Σ(ρ,ν)

∫
W×W

|x− y|2Hdβ(x, y) .

The function c(x, y) = |x− y|2H is called the cost function.
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Remark 3.1 Note that the cost function is not continuous with respect to the
product topology of W × W and it takes the value ∞ very often for the most
notable measures, e.g., when ρ and ν are absolutely continuous with respect to
the Wiener measure µ.

The proof of the next theorem, for which we refer the reader to [9], can be done
by choosing a proper disintegration of any optimal measure in such a way that
the elements of this disintegration are the solutions of finite dimensional Monge-
Kantorovitch problems. The latter is proven with the help of the measurable
section-selection theorem.

Theorem 3.1 (General case) Suppose that ρ and ν are two probability mea-
sures on W such that

dH(ρ, ν) <∞ .

Let (πn, n ≥ 1) be a total increasing sequence of regular projections (of H, con-
verging to the identity map of H). Suppose that, for any n ≥ 1, the regular
conditional probabilities ρ(· |π⊥n = x⊥) vanish π⊥n ρ-almost surely on the subsets of
(π⊥n )−1(W ) with Hausdorff dimension n−1. Then there exists a unique solution of
the Monge-Kantorovitch problem, denoted by γ ∈ Σ(ρ, ν) and γ is supported by the
graph of a Borel map T which is the solution of the Monge problem. T : W → W
is of the form T = IW + ξ , where ξ ∈ H almost surely. Besides we have

d2
H(ρ, ν) =

∫
W×W

|T (x)− x|2Hdγ(x, y)

=

∫
W

|T (x)− x|2Hdρ(x) ,

and for π⊥n ρ-almost almost all x⊥n , the map u → u + ξ(u + x⊥n ) is cyclically
monotone on (π⊥n )−1{x⊥n }, in the sense that

N∑
i=1

(
ui + ξ(x⊥n + ui), ui+1 − ui

)
H
≤ 0

π⊥n ρ-almost surely, for any cyclic sequence {u1, . . . , uN , uN+1 = u1} from πn(W ).
Finally, if, for any n ≥ 1, π⊥n ν-almost surely, ν(· |π⊥n = y⊥) also vanishes on the
n−1-Hausdorff dimensional subsets of (π⊥n )−1(W ), then T is invertible, i.e, there
exists S : W → W of the form S = IW + η such that η ∈ H satisfies a similar
cyclic monotononicity property as ξ and that

1 = γ {(x, y) ∈ W ×W : T ◦ S(y) = y}
= γ {(x, y) ∈ W ×W : S ◦ T (x) = x} .
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In particular we have

d2
H(ρ, ν) =

∫
W×W

|S(y)− y|2Hdγ(x, y)

=

∫
W

|S(y)− y|2Hdν(y) .

Remark 3.2 In particular, for all the measures ρ which are absolutely continu-
ous with respect to the Wiener measure µ, the second hypothesis is satisfied, i.e.,
the measure ρ(· |π⊥n = x⊥n ) vanishes on the sets of Hausdorff dimension n− 1.

Any probability measure satisfying the hypothesis of Theorem 3.1 is called a
spread measure. Namely,

Definition 3.2 A probability measure m on (W,B(W )) is called a spread mea-
sure if there exists a sequence of finite dimensional regular projections (πn, n ≥ 1)
converging to IH such that the regular conditional probabilities m( · |π⊥n = x⊥n ) con-
centrated in the n-dimensional spaces πn(W )+x⊥n vanishe on the sets of Hausdorff
dimension n− 1 for π⊥n (m)-almost all x⊥n and for any n ≥ 1.

The case where one of the measures is the Wiener measure and the other
is absolutely continuous with respect to µ is the most important one for the
applications. Consequently we give the related results separately in the following
theorem where the tools of the Malliavin calculus give more information about
the maps ξ and η of Theorem 3.1:

Theorem 3.2 (Gaussian case) Let ν be the measure dν = Ldµ, where L is
a positive random variable, with E[L] = 1. Assume that dH(µ, ν) < ∞ (for
instance L ∈ IL log IL). Then there exists a 1-convex function ϕ ∈ ID2,1 and a
partially 1-convex function ψ ∈ L2(ν), both are unique upto a constant, called
Monge-Kantorovitch potentials, such that

ϕ(x) + ψ(y) +
1

2
|x− y|2H ≥ 0

for all (x, y) ∈ W ×W and that

ϕ(x) + ψ(y) +
1

2
|x− y|2H = 0

γ-almost everywhere. The map T = IW + ∇ϕ is the unique solution of the
original problem of Monge. Moreover, its graph supports the unique solution of
the Monge-Kantorovitch problem γ. Consequently

(IW × T )µ = γ
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In particular T maps µ to ν and T is almost surely invertible, i.e., there exists
some T−1 = IW + η such that T−1ν = µ, η ∈ L2(ν) and that

1 = µ
{
x : T−1 ◦ T (x) = x

}
= ν

{
y ∈ W : T ◦ T−1(y) = y

}
.

Remark 3.3 By the partial 1-convexity we mean that yF → ψ(yF + y⊥F ) is
ν(·|π⊥F = y⊥F )-almost surely 1-convex on any regular, finite dimensional subspace
F , where πF is the (regular) projection corresponding to F , yF = πF (y) and
y⊥F = y − yF . Assume that the operator ∇ is closable with respect to ν, then we
have η = ∇ψ. In particular, if ν and µ are equivalent, then we have

T−1 = IW +∇ψ ,

where is ψ is a 1-convex function.

Remark 3.4 Let (en, n ∈ IN) be a complete, orthonormal in H, denote by Vn

the sigma algebra generated by {δe1, . . . , δen} and let Ln = E[L|Vn]. If ϕn ∈ ID2,1

is the function constructed in Theorem 3.2, corresponding to Ln, then, using the
inequality (cf., [9])

d2
H(µ, ν) ≤ 2E[L logL] ,

we can prove that the sequence (ϕn, n ∈ IN) converges to ϕ in ID2,1.

4 Polar factorization of mappings between spread

measures

In [9] we have proved the polar factorization of the mappings U : W → W such
that the Wasserstein distance between Uµ and the Wiener measure µ, denoted
by dH(µ, Uµ), is finite. We have also studied the particular case where U is a
perturbations of identity, i.e., it is the form IW + u, where u maps W to the
Cameron-Martin space H. In this section we shall generalize this results in the
frame of spread measures.

Theorem 4.1 Assume that ρ and ν are spread measures with dH(ρ, ν) <∞ and
that Uρ = ν, for some measurable map U : W → W . Let T be the optimal trans-
port map sending ρ to ν, whose existence and uniqueness is proven in Theorem
3.1. Then R = T−1 ◦U is a ρ-rotation (i.e., Rρ = ρ) and U = T ◦R, morover, if
U is a perturbation of identity, then R is also a perturbation of identity. In both
cases, R is the ρ-almost everywhere unique minimal ρ-rotation in the sense that∫

W

|U(x)−R(x)|2Hdρ(x) = inf
R′∈R

∫
W

|U(x)−R′(x)|2Hdρ(x) , (4.4)

where R denotes the set of ρ-rotations.
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Proof: Let T be the optimal transportation of ρ to ν whose existence and unique-
ness follows from Theorem 3.1. The unique solution γ of the Monge-Kantorovitch
problem for Σ(ρ, ν) can be written as γ = (I × T )ρ. Since ν is spread, T is in-
vertible on the support of ν and we have also γ = (T−1 × I)ν. In particular
Rρ = T−1 ◦Uρ = T−1ν = ρ, hence R is a rotation. Let R′ be another rotation in
R, define γ′ = (R′ × U)ρ, then γ′ ∈ Σ(ρ, ν) and the optimality of γ implies that
J(γ) ≤ J(γ′), besides we have∫

W

|U(x)−R(x)|2Hdρ(x) =

∫
W

|U(x)− T−1 ◦ U(x)|2Hdρ(x)

=

∫
W

|x− T−1(x)|2Hdν(x)

=

∫
W

|T (x)− x|2Hdρ(x)

= J(γ) .

On the other hand

J(γ′) =

∫
W

|U(x)−R′(x)|2Hdρ(x) ,

hence the relation (4.4) follows. Assume now that for the second rotation R′ ∈ R
we have the equality∫

W

|U(x)−R(x)|2Hdρ(x) =

∫
W

|U(x)−R′(x)|2Hdρ(x) .

Then we have J(γ) = J(γ′), where γ′ is defined above. By the uniqueness of the
solution of Monge-Kantorovitch problem due to Theorem 3.1, we should have
γ = γ′. Hence (R× U)ρ = (R′ × U)ρ = γ, consequently, we have∫

W

f(R(x), U(x))dρ(x) =

∫
W

f(R′(x), U(x))dρ(x) ,

for any bounded, measurable map f on W ×W . This implies in particular∫
W

(a ◦ T ◦R) (b ◦ U)dρ =

∫
W

(a ◦ T ◦R′) (b ◦ U)dρ

for any bounded measurable functions a and b. Let U ′ = T ◦ R′, then the above
expression reads as ∫

W

a ◦ U b ◦ Udρ =

∫
W

a ◦ U ′ b ◦ Udρ .

Taking a = b, we obtain∫
W

(a ◦ U) (a ◦ U ′) dρ = ‖a ◦ U‖L2(ρ)‖a ◦ U ′‖L2(ρ) ,
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for any bounded, measurable a. This implies that a ◦ U = a ◦ U ′ ρ-almost surely
for any a, hence U = U ′ i.e, T ◦ R = T ◦ R′ρ-almost surely. Let us denote
by S the left inverse of T whose existence follows from Theorem 3.1 and let
D = {x ∈ W : S ◦T (x) = x}. Since ρ(D) = 1 and since R and R′ are ρ-rotations,
we have also

ρ
(
D ∩R−1(D) ∩R′−1(D)

)
= 1 .

Let x ∈ W be any element of D ∩R−1(D) ∩R′−1(D), then

R(x) = S ◦ T ◦R(x)

= S ◦ T ◦R′(x)

= R′(x) ,

consequently R = R′ on a set of full ρ-measure..

Let us give another result of interest as an application of these factorization
results: it is important to have as much as information about the measures and
the tranformations which induce them in the setting of Girsanov Theorem, cf. [22]
and the references there. The problem which we propose is the following: assume
that, in the case of the Wiener measure, we have a density L with dH(µ, L·µ) <∞,
hence from Theorem 3.1, a map T : W → W , which is the optimal transport map
corresponding to the solution of MKP in Σ(µ, L · µ). Since the target measure
is also spread, the map T possesses a left inverse S such that S ◦ T = IW µ-
almost surely. Assume now that the transformation T has a Girsanov density,
i.e., λ ∈ L1

+(µ), with E[λ] = 1 and that∫
f ◦ Tλ dµ =

∫
f dµ ,

for any f ∈ Cb(W ). We can now prove:

Theorem 4.2 Let T be as explained above, assume moreover that

dH(λ · µ, µ) <∞ ,

then T has also a right inverse, i.e., T is invertible µ-almost everywhere.

Proof: Denote by Θ : W → W the optimal transportation map corresponding to
the solution of MKP in Σ(µ, λ ·µ). Note that both of the measures (T ×IW )(λ ·µ)
and (IW ×Θ)µ belong to Σ(µ, λ ·µ). By the uniqueness of the solutions of MKP,
they are equal, hence, for any a, b ∈ Cb(W ), we have∫

a(T (x)) b(x)λ(x)dµ(x) =

∫
a(x)b(Θ(x))dµ(x) . (4.5)
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Since Θ(µ) = λ · µ, the equality (4.5) can also be written as∫
a(T ◦Θ(x)) b(Θ(x))dµ(x) =

∫
a(x)b(Θ(x))dµ(x) . (4.6)

Since, as T , the map Θ has also a left inverse, the sigma algebra generated by Θ
is equal to the Borel sigma algebra of W , consequently, the relation (4.6) implies
that

a ◦ T ◦Θ = a ,

µ-almost surely, for any a ∈ Cb(W ). Therefore we have

µ ({x ∈ W : T ◦Θ(x) = x}) = 1 ,

since T has already a left inverse, the proof is completed.

4.1 Application to Gaussian measures

Let us give an example of the above results: Assume that ρ = µ, i.e., the
Wiener measure and let K be a Hilbert-Schmidt operator on H. Assume that the
Carleman-Fredholm determinant det2(IH+K) is different than zero, hence the op-
erator IH +K : H → H is invertible. Moreover, it follows from the general theory
that IH +K has a unique polar decomposition as IH +K = (IH + K̄)(IH + A),
where IH + A is an isometry2 and IH + K̄ is a symmetric, positive operator.
Note that K̄ is compulsorily Hilbert-Schmidt. Let us now define U : W → W
as U(x) = x + δK(x), where δK(x) is the H-valued divergence, defined by
(δK(x), h)H = δ(K∗h)(x). Then it is known that the measure Uµ is absolutely
continuous with respect to µ, in fact Uµ is even equivalent to µ since |ΛK | 6= 0
µ-almost surely, where

ΛK = det2(IH +K) exp

{
δ2(K)− 1

2
|δK|2H

}
.

Besides we have

L =
dUµ

dµ
=

1

|ΛK | ◦ V
,

where V is the inverse of U , whose existence follows from the invertibility of
h→ h+ δ(K)(x) +Kh on H, cf. [22]. Consequently,

E[L logL] = −E[log |ΛK |] <∞ ,

hence dH(µ, Uµ) <∞. We shall prove that the polar factorization of U is given
by

U = (IW + δK̄) ◦ (IW + δA) .

2A satisfies the relation A + A∗ + A∗A = 0.
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In fact, it follows from Theorem B.6.4 of [22], that

(IW + δK̄) ◦ (IW + δA) = IW + δK̄ + δA+ δ(K̄A)

= IW + δ(K̄ + A+ K̄A)

= IW + δK .

Besides ∇2δ2K̄ = 2K̄, and since IH + K̄ is a positive operator, the Wiener map
1
2
δ2K̄ is 1-convex, consequently, T = IW +δK̄ is the transport map and IW +δA is

the unique rotation whose existence is proven in Theorem 4.1. The Kantorovitch
potentials ϕ and ψ of Theorem 3.2 can be chosen as

ϕ(x) =
1

2
δ2K̄(x)

for T and

ψ(x) = −1

2
δ((IH + K̄)−1K̄)(x)

for T−1 = IW +∇ψ.

Remark 4.1 Let us denote by Pker δ the projection operator from ID′(H) to the
kernel of the divergence operator δ. Then, we have the following identity:

Pker δ

(
δ((IH + K̄)A)

)
= δK̂ − δK̄ ,

where K̂ denotes the symmetrization of K. This shows that the polar decompo-
sition and the Helmholtz decomposition are different in general.

We can also calculate the Monge-Kantorovitch potential function for the singular
case as follows: assume that ν is a zero mean Gaussian measure on W such that
dH(µ, ν) <∞. Then there exists a bilinear form q on W ? such that∫

W

ei〈α,x〉dν(x) = exp−1

2
q(α, α) ,

for any α ∈ W ?. On the other hand, from Theorem 3.2, there exists a ϕ ∈ ID2,1,
which is 1-convex, such that Tµ = (IW +∇ϕ)µ = ν. Hence, rewriting the above
relation with T , we obtain:∫

W

ei〈tα,T (x)〉dµ(x) = exp−t
2

2
q(α, α) , (4.7)

for any t ∈ IR and α ∈ W ?. Taking the derivative of both sides twice at t = 0,
we obtain

q(α, α) = |α̃|2H + E
[
(∇ϕ, α̃)2

H

]
+ 2E [(∇ϕ, α̃)Hδα̃]

= |α̃|2H + E [(∇ϕ⊗∇ϕ, α̃⊗ α̃)2] + 2E
[
(∇2ϕ, α̃⊗ α̃)2

]
,
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where α̃ denotes the image of α under the injection W ? ↪→ H.Note that, here,
∇2ϕ is to be interpreted as a distribution. Denote by M the Hilbert-Schmidt
operator defined by

M = E [∇ϕ⊗∇ϕ] + 2E
[
∇2ϕ

]
.

We have
q(α, α) = ((IH +M)α̃, α̃)H .

Let IH +N be the positive square root of the (positive) operator IH +M , then
N is a symmetric Hilbert-Schmidt operator. Define

ϕ =
1

2
δ2N .

Evidently ϕ is a 1-convex element of ID2,1, moreover the map T defined by T =
IW +∇ϕ = IW + δN satisfies the identity (4.7), hence T is the unique solution
of the Monge problem and (IW × T )µ is the unique solution of MKP for Σ(µ, ν).

5 Strong solutions of the Monge-Ampère equa-

tion for H-log-concave densities

Assume that L ∈ IL1
+,1(µ) is of the form

L =
1

E [e−f ]
e−f ,

where f is an H-convex function in some Lp(µ), p > 1. We assume that f ≥ −α
almost surely, for some α ∈ IR+. Denote by ϕ ∈ ID2,1 the potential of the
transport problem between µ and L ·µ which is a 1-convex function. This means
that the mapping defined by T = IW +∇ϕ satisfies Tµ = L·µ and (IW×T )µ is the
unique solution of the Monge-Kantorovitch problem with the singular quadratic
cost function c(x, y) = |x−y|2H . Let Λ = 1/L◦T , we know that T−1µ = Λ·µ where
T−1 = IW +∇ψ such that ψ ∈ ID2,1 is also defined uniquely. Let Ln = E[L|Vn],
where Vn is the sigma algebra generated by the first n elements of an orthonormal
basis (en, n ≥ 1) of H. It follows from [7], that Ln is of the form 1

c
e−fn , where

fn is an H-convex function on W and c = E[e−f ]. We denote by ϕn, Λn, ψn the
maps associated to Ln, i.e., Tn = IW + ∇ϕn maps µ to the measure Ln · µ and
Sn = IW +∇ψn maps Ln · µ to µ. Besides, from [6], ∇ϕn is a 1-Lipschitz map,
i.e.,

|∇ϕn(x)−∇ϕn(y)| ≤ |x− y| ,
for any x, y ∈ IRn, here it is remarkable that the Lipschitz constant is one and
it is independent of the dimension of the underlying space. Hence Lϕn is a well-
defined element of L2(µ), |∇ϕ|2H is exponentially integrable, i.e., there exists some
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t > 0 such that
sup

n
E
[
exp t|∇ϕn|2H

]
<∞ . (5.8)

It follows in particular that (ϕn, n ≥ 1) ⊂ IDp,2 and it converges to ϕ in IDp,1 for
any p ≥ 1, cf., [9]. Moreover, from a result of McCann [14], we have

Λn = det2(IH +∇2ϕn) exp

{
−Lϕn −

1

2
|∇ϕn|2H

}
.

Since Λn = 1/Ln ◦ Tn, the sequence (Λn, n ≥ 1) is lower bounded. Hence
(− log Λn, n ≥ 1) is upper bounded, besides

E[| log Λn|p] ≤ CpE[|fn ◦ Tn|p] +Dp

= CpE[|fn|pLn] +Dp

≤ Cpe
pαE[|f |p] +Dp ,

where Cp and Dp are some constants. Since (− log Λn, n ≥ 1) converges in IL0(µ)
to − log Λ, it follows from the dominated convergence theorem that (log Λn, n ≥
1) converges to log Λ in ILp(µ). Therefore

− log det2(IH +∇2ϕn) + Lϕn +
1

2
|∇ϕn|2H → − log Λ

in ILp(µ). Since (ϕn, n ≥ 1) converges to ϕ in ∩pIDp,1, the sequence (Zn, n ≥ 1),
defined by

Zn = − log det2(IH +∇2ϕn) + Lϕn ,

converges in ILp(µ) to some Z ∈ ILp(µ). Again by the convergence of (ϕn, n ≥
1), the sequence (Lϕn, n ≥ 1) converges to the measure Lϕ in ID2,−1 (cf. [9]),
consequently the sequence (log det2(IH +∇2ϕn), n ≥ 1) converges to some D =
D(ϕ) in ID′. Since Z = Lϕ − D(ϕ) and Lϕ are measures, D(ϕ) should be a
measure, besides Z is absolutely continuous with respect to µ (it is a random
variable), hence Lsϕ −Ds(ϕ) = 0, where the subscript “s” denotes the singular
part of the measure D(ϕ). Consequently we have Z = Laϕ − Da(ϕ), where
the subscript “a” denotes the absolutely continuous part of the corresponding
measure. Therefore we have

Λ = lim Λn

= exp

{
Da(ϕ)− Laϕ−

1

2
|∇ϕ|2H

}
.

In fact we have a much better result of regularity:

Theorem 5.1 Assume further that f ∈ ID2,1, then ϕ ∈ ID2,2, in particular

Laϕ = Lϕ ∈ L2(µ)

and det2(IH +∇2ϕ) is a well-defined function.

14



Proof: Ln is µ-a.s. strictly positive by the hypothesis that we have done for L.
Consequently, the operator I+∇ϕn(x) is almost surely invertible. Besides, using
the commutation relation between the Gaussian divergence and an absolutely
continuous transformation of the Wiener measure (cf. [22], Appendix B) and the
relation δ ◦ ∇ = L, we get

Lψn ◦ Tn = δ(∇ψn ◦ Tn) + (∇ψn ◦ Tn,∇ϕn)H + trace (∇2ψn ◦ Tn · ∇2ϕn) . (5.9)

It is easy to see that

trace (∇2ψn ◦ Tn · ∇2ϕn) = − trace
(
(I +∇2ϕn)−1 · (∇2ϕn)2

)
.

Taking the expectation of both sides of (5.9) with respect to µ, we have

E
[

trace
(
(I +∇2ϕn)−1 · (∇2ϕn)2

)]
= E[|∇ϕn|2H ]− E[Lψn Ln] .

Since (Ln, n ≥ 1) is uniformly essentially bounded by some K > 0, we have

E[Lψn Ln] = E[(∇ψn,∇Ln)H ]

= −E[(∇ψn,∇fn)HLn]

≤ K ‖∇ψn‖L2(µ,H)‖f‖2,1 .

Moreover, from the Young inequality

E[|∇ψn|2H ] = E[|∇ϕn|2H Λn] ≤ E[ε−1Λn log Λn] + E
[
exp ε|∇ϕn|2H

]
,

which is uniformly bounded with respect to n since ‖∇2ϕn‖op ≤ 1. Consequently

sup
n
E
[

trace
(
(I +∇2ϕn)−1 · (∇2ϕn)2

)]
<∞ .

Recalling that ‖IH +∇2ϕn‖op ≤ 1 almost surely, we finally get

sup
n
E
[

trace (∇2ϕn)2
]

= sup
n
E[‖∇2ϕn‖2

2]

≤ sup
n
E
[∥∥(IH +∇2ϕn)−1/2∇2ϕn

∥∥2

2

]
= sup

n
E
[

trace
(
(I +∇2ϕn)−1 · (∇2ϕn)2

)]
<∞ .

This implies that (∇2ϕn, n ≥ 1) is bounded in the space Hilbert-Schmidt valued
Wiener maps L2(µ,H ⊗ H), since (ϕn, n ≥ 1) converges to ϕ in ID2,1, ϕ should
be in ID2,2 and the other claims are now immediate.
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Corollary 5.1 Let λ be the function defined as

λ = det2(IH +∇2ϕ) exp

{
−Lϕ− 1

2
|∇ϕ|2H

}
.

Then λ is a sub-solution of the Monge-Ampère equation in the sense that

E[g ◦ T λ] ≤ E[g] , (5.10)

for any positive, measurable function g. In particular

λ ≤ Λ

almost surely.

Proof: Let (en, n ≥ 1) ⊂ W ∗ be a complete, orthonormal basis of H, denote
by Vn the sigma algebra generated by {δe1, . . . , δen}. Since, from Theorem 5.1,
φ ∈ ID2,2, the sequence (Fn, n ≥ 1), where Fn = E[ϕ|Vn] , converges to ϕ in ID2,2,
hence the sequence (Mn, n ≥ 1), where

Mn = det2(IH +∇2Fn) exp

{
−LFn −

1

2
|∇Fn|2H

}
,

converges to λ in probability. Since Fn is a 1-convex function, it follows from
Theorem 6.3.1 of [22] that

E[g ◦ (IW +∇Fn)Mn] ≤ E[g] ,

for any positive, measurable function g. The first claim follows from the Fatou
lemma. Since L > 0 almost surely, we have

E[g ◦ T Λ] = E[g] , (5.11)

for any positive, measurable g, where

Λ =
1

L ◦ T
.

As T is invertible, we get λ ≤ Λ by comparing the relations (5.10) and (5.11).

We can prove now the main theorem of this section:

Theorem 5.2 Let L be given as c−1 e−f , where f ∈ ID2,1 is a lower bounded,
finite, H-convex Wiener function and define the probability measure ν as dν =
Ldµ, where c = E[e−f ] is the normalization constant. Let T = IW + ∇ϕ be
the optimal transportation of µ to ν in the sense of Wasserstein distance, where
ϕ ∈ ID2,1 is the 1-convex potential function. Then ϕ ∈ ID2,2 and the Gaussian
Jacobian of T is equal to Λ = 1/L ◦ T and we have the following relation:

Λ = det2(IH +∇2ϕ) exp

{
−Lϕ− 1

2
|∇ϕ|2H

}
. (5.12)
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Proof: We have prepared everything necessary for the proof. First, we can form
a sequence, denoted by ϕ′n, n ≥ 1) such that each ϕ′n is obtained as a convex
combination from the elements of the tail sequence (ϕk, k ≥ n) and that the
sequence (ϕ′n, n ≥ 1) converges to ϕ in ID2,2. Let us denote the Jacobian written
with ϕ′n by Λn(ϕ′n) whose explicit expression is given as

Λn(ϕ′n) = det2(I +∇2ϕ′n) exp

{
−Lϕ′n −

1

2
|∇ϕ′n|2H

}
Let T ′n = IW + ∇ϕ′n and S ′n = IW + ∇ψ′n. Since A → − log det2(IH + A) is a
convex function on the space of symmetric Hilbert-Schmidt operators which are
lower bounded by −IH (cf. [3], p.63), we have

− log Λn(ϕ′n) = − log det2

(
IH +

∑
i

ti∇2ϕni

)

+
∑

i

tiLϕni
+

1

2

∣∣∣∣∣∑
i

ti∇ϕni

∣∣∣∣∣
2

H

≤
∑

i

−ti log Λni
.

Since (− log Λn, n ≥ 1) converges to− log Λ in any Lp and since (− log Λn(ϕ′n), n ≥
1) converges to − log λ, it follows from the above inequality that

− log λ ≤ − log Λ

almost surely, consequently Λ ≤ λ almost surely. It follows then from Corollary
5.1 that λ = Λ almost surely and this completes the proof.

Let us give an interesting result about the upper bound of the interpolated
density whose proof makes use also the convexity results as in the proof of The-
orem 5.2 :

Proposition 5.1 Assume the hypothesis of Theorem 5.2, in particular the rela-
tion f ≥ −α. Denote by Tt = IW + t∇ϕ, t ∈ [0, 1], then the Radon-Nikodym
density Lt the measure Ttµ with respect to µ, satisfies the following inequality:

Lt ≤
1

c
expαt

almost surely, where c = E[exp−f ].
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Proof: Let g be any positive, measurable function on W , by the convexity of
t→ − log Λt, we have − log Λt ≤ −t log Λ. Therefore

E[Lt logLt g] = E[− log Λt g ◦ Tt]

≤ E[−t log Λ g ◦ Tt]

= E[−t(f ◦ T + log c)g ◦ Tt]

≤ E[(tα− log c)g ◦ Tt]

= E[(tα− log c)Lt g] .

Consequently
Lt logLt ≤ (tα− log c)Lt

almost surely.

Remark 5.1 In the finite dimensional case, if L is log-concave, it follows from
[6] that ∇ϕ is a Lipschitz map (w.r.to l1-norm). This implies that, for any
0 ≤ t < 1, the transport map Tt defined as Tt(x) = x + t∇ϕ(x) is strongly
monotone and continuous. The Theorem of Minty implies that Tt is bijective,
hence from the Jacobi formula we have∫

IRn

f ◦ Tt Λtdµ =

∫
IRn

fdµ . (5.13)

This implies in particular that

E[Λt] = 1 ,

where

Λt = det2(IIRn + t∇2ϕ) exp

{
−tLϕ− t2

2
|∇ϕ|2

}
.

Consequently µ{Lt = 0} = 0 where Lt is the Radon-Nikodym derivative of Ttµ
with respect to µ. Consequently Ttµ is equivalent to µ even if Tµ may not. The
reasoning about the bijectivity of Tt passes to the infinite dimensions without any
difficulty, in fact to apply the Minty’s theorem, it suffices to show the feeble-
continuity in the H-direction (cf. [16] and [22]) and then to show that {x :
Tt ◦ St(x) = x} is an H-invariant set.

5.1 An application to logarithmic Sobolev inequality

Assume now that L is H-log concave, cf. [7], then, due to the positivity improving
property of the Ornsetin-Uhlenbeck semigroup, Ln = P1/nL is strictly positive,
H-log-concave Wiener functional, hence of the form (1/c)e−f with f ∈ ID2,1.
Consequently the corresponding transport map Tn and ∇ϕn are Lipschitz maps
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in operator norms and their norms are both bounded by one almost surely. Denote
the measure Lndµ by dνn. Using the logarithmic Sobolev inequality of L. Gross
for the Gauss measure, we have for any nice function g (cf., also [23]):

Eνn

[
g2 log

g2

Eνn [g2]

]
= E

[
g2 ◦ Tn log

g2 ◦ Tn

E[g2 ◦ Tn]

]
≤ 2E

[
|∇(g ◦ Tn)|2H

]
≤ 2E

[
|∇g ◦ Tn|2H‖IH +∇2ϕn‖2

op

]
≤ 2E

[
|∇g ◦ Tn|2H

]
= 2Eνn

[
|∇g|2H

]
,

We can then pass to the limit as n → ∞ to obtain the logarithmic Sobolev
inequality for the measure ν with the minimal constant 2. Here we do not need
any regularity for L, in fact, we have a similar result for the positive distributions
on the Wiener space with total mass equal to one (they are Radon measures, [21]).
We say that such a distribution θ is log-concave if θt = Ptθ is a log-concave Wiener
functional for any t > 0. Using the above result, we have a logarithmic Sobolev
inequality for θt, then the inequality for θ follows by a limiting procedure, cf. [7].

5.2 Application to the exponential integrability of the
Wiener functionals

The exponential integrability of the square of a random variable is an important
property for applications like the large deviations. Here we give a situation which
is not standart:

Theorem 5.3 Assume that F ∈ ID2,1 and suppose that A is a measurable subset
of W which is H-convex,i.e., its indicator function is H-log-concave, such that
|∇F |H ≤ c almost surely on A. Denote by µA the probability measure which
corresponds to the restriction of µ to A. Then we have

µA {|F − EA[F ]| > t} ≤ 2 e−
t2

2c2 ,

for any t > 0, where EA denotes the expectation with respect to µA. In particular

EA

[
etF 2

]
<∞ ,

for any t < 1
2c

.
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Proof: Let T = IW + ∇ϕ be the transport map of Theorem 3.2. Since the
set A is H-log-concave, it follows from what we have explained above that ∇2ϕ
exists as an operator valued map with ‖IH +∇2ϕ‖op ≤ 1. Hence |∇(F ◦ T )|H ≤
|∇F ◦ T |H ≤ c almost surely since T (x) ∈ A µ a.s. Consequently, from the
standart results of exponential integrability of Wiener functionals, we have

µ {|F ◦ T − E[F ◦ T ]| > t} ≤ 2 e−
t2

2c2 ,

and the first part of the proof is completed since Tµ = µA. The second assertion
follows easily from the first one.

6 Itô-solutions of the Monge-Ampère equation

In the following calculations we shall take W as the classical Wiener space
W = C0([0, 1], IR), H = H1, i.e., the Sobolev space W2,1([0, 1]). We note that this
choice does not entail any restriction of generality as indicated in [22], Chapter
2.6. Suppose we are given a positive random variables L = 1

c
e−f whose expecta-

tion is equal to one, c being the normalization constant. Define the measure ν
as dν = Ldµ. We shall suppose that the Wasserstein distance dH(µ, ν) is finite,
hence the conclusions of Theorem 3.1 are valid. In order to simplify the discus-
sion we shall assume that L is strictly positive. The transport map T can be
represented as T = IW +∇φ again with φ ∈ ID2,1. Define now

Λ =
1

L ◦ T
.

We have ∫
g ◦ T Λ dµ =

∫
g dµ ,

for any g ∈ Cb(W ). This implies that the process (Tt, t ∈ [0, 1]) defined on
[0, 1]×W by

(t, x) → Tt(x) = x(t) +

∫ t

0

Dτϕ(x)dτ ,

is a Wiener process under the measure Λdµ with respect to its natural filtration
(FT

t , t ∈ [0, 1]), where Dtϕ represents the Lebesgue density of the map t →
∇ϕ(x)(t) ∈ H on [0, 1]. Since T is invertible, we have also∨

t∈[0,1]

FT
t = B(W ) ,

upto µ-negligeable sets. Since Λdµ is equivalent to the Wiener measure, the
process (Tt, r ∈ [0, 1]) is a µ-semimartingale with respect to its natural filtration.
It is clear that it has a decomposition of the form

Tt = BT
t + At ,
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with respect to µ, where BT is a µ-Brownian motion and A is a process of finite
variation. Since we are dealing with the Brownian filtrations, (At, t ∈ [0, 1])
should be absolutely continuous with respect to the Lebesgue measure dt of [0, 1].
In order to calculate its density it suffices to calculate the limit

lim
h→0

1

h
E
[
Tt+h − Tt|FT

t

]
.

To calculate this limit, it is enough to test it on the functions of the type g ◦ Tt:

E [(Tt+h − Tt) g ◦ Tt] = E [(Wt+h −Wt) g ◦Wt L]

= E
[
(δU[t,t+h])g ◦Wt L

]
= E

[
(U[t,t+h],∇(Lg ◦Wt))H

]
= E

[
g ◦Wt

∫ t+h

t

DτLdτ

]
,

where U[t,t+h] is the element of H whose Lebesgue density is equal to the indicator
function of the interval [t, t+ h]. Hence we have

lim
h→0

1

h
E
[
Tt+h − Tt|FT

t

]
= −E[Dtf ◦ T |FT

t ]

= −Eν [Dtf |Ft] ◦ T ,

dt×dµ-almost surely, where the last inequality follows from the fact that T−1 (Ft) =
FT

t . Hence we have proven

Proposition 6.1 The transport process (Tt, t ∈ [0, 1]) is a (µ, (FT
t ))-semimartingale

with its canonical decomposition

Tt = BT
t −

∫ t

0

Eν [Dτf |Ft] ◦ T dτ

= BT
t −

∫ t

0

E[Dτf ◦ T |FT
t ] dτ .

We can give now the Itô solution of the Monge-Ampère equation:

Theorem 6.1 Assume that f ∈ ID2,1 be such that c = E[exp(−f)] <∞, denote
by L the probability density defined by 1

c
e−f and by ν the probability dν = Ldµ.

Assume that dH(µ, ν) < ∞ and let T = IW + ∇ϕ be the transport map whose
properties are announced in Theorem 3.2. We have then

Λ = exp

{∫ 1

0

Eν [Dtf |Ft] ◦ TdBT
t −

1

2

∫ 1

0

Eν [Dtf |Ft]
2 ◦ T dt

}
. (6.14)
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Proof: From the Itô representation formula [20], we have

L = exp

{
−
∫ 1

0

Eν [Dtf |Ft]dWt −
1

2

∫ 1

0

Eν [Dtf |Ft]
2 dt

}
.

Since the Girsanov measure for T has the density Λ given by

Λ =
1

L ◦ T
,

we have, using the identity T−1(Ft) = FT
t and Proposition 6.1,

L ◦ T = exp

{
−
∫ 1

0

Eν [Dtf |Ft] ◦ TdTt −
1

2

∫ 1

0

Eν [Dtf |Ft]
2 ◦ T dt

}
= exp

{
−
∫ 1

0

Eν [Dtf |Ft] ◦ T
(
dBT

t − Eν [Dtf |Ft] ◦ Tdt
)

−1

2

∫ 1

0

Eν [Dtf |Ft]
2 ◦ T dt

}
,

which is exactly the inverse of the expression given by the relation (6.14).

Let us give some immediate consequences of these results whose proof follows
immediately from the results of this section and from Theorem 5.2 :

Corollary 6.1 We have the following identity

− logE[e−f ] = E

[
f ◦ T +

1

2

∫ 1

0

Eν [Dtf |Ft]
2 ◦ T dt

]
= E

[
f ◦ T +

1

2

∫ 1

0

E[Dtf ◦ T |FT
t ]2 dt

]
.

If, furthermore, f is H-convex, then we also have

− logE[e−f ] = E

[
f ◦ T − log det2(IH +∇2ϕ) +

1

2
|∇ϕ|2H

]
.

In particular we have the exact characterization of the Wasserstein distance be-
tween µ and ν:

1

2
d2

H(µ, ν) = E
[
log det2(IH +∇2ϕ)

]
+

1

2
Eν

[∫ 1

0

Eν [Dtf |Ft]
2 ◦ T dt

]
.
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7 Laplace’s asymptotics and measure transporta-

tion

Let (Ω,F , P ) be a be a probability space and let f be a nice random variable.
Then there is a well-known variational formula which says that

− log

∫
Ω

e−fdP = inf
Q∈M1(Ω)

{
R(Q|P ) +

∫
Ω

fdQ

}
,

where M1(Ω) denotes the set of probability measures on (Ω,F) and R(Q|P ) is
the relative entropy, i.e.,

R(Q|P ) =

∫
log

dQ

dP
dQ ,

whenever this quantity has a sense, otherwise it is defined as to be identically
infinity. Besides, the above infimum is attained at the probability whose Radon-
Nikodym derivative is given by

dQ

dP
= e−f 1∫

e−fdP
.

Assume now that we are working in an abstract Wiener space (W,µ,H) and
let the probability P be the Wiener measure µ. The above problem can be
transformed to the minimization problem

inf
{
E[K logK] + E[f K] : K ∈ IL1

1,+

}
.

Since the above infimum will be calculated necessarily between the random vari-
ables K ∈ IL1

1,+ with E[K logK] <∞, for any such K, from Theorem 3.2, there
exists a unique 1-convex F ∈ ID2,1, such that

d(I +∇F )µ

dµ
= K .

Therefore

E[K logK] + E[f K] = E [− log ΛF + f ◦ (I +∇F )] ,

where

ΛF =
1

K ◦ (I +∇F )
.

In the finite dimensional case, without any further regularity assumption on f ,
we can write ΛF as (cf., [14, 24] and [9]):

ΛF = det2(I +∇2
aF ) exp

{
−LaF − 1

2
|∇F |2

}
,
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where the subscript refers to the Alexandrov version of the corresponding op-
erations. Let us show that the infimum above is attained and calculate it: let
T = I + ∇ϕ be the optimal transport of the measure dµ to Ldµ, where L is
defined by

L = e−f 1∫
e−fdµ

.

Then we have

Λϕ =
1

L ◦ T
= ef◦TE

[
e−f
]

= det2(I +∇2
aϕ) exp

{
−Laϕ−

1

2
|∇ϕ|2H

}
.

Solving E[e−f ] from above, we get

− logE[e−f ] = f ◦ T − log det2(I +∇2
aϕ) + Laϕ+

1

2
|∇ϕ|2 . (7.15)

Taking the expectation of the both sides of (7.15), we obtain

− logE[e−f ] = E
[
f ◦ T − log det2(I +∇2

aϕ) + Laϕ
]
+

1

2
d2

H(µ, L · µ) ,

where L · µ denotes the measure whose density with respect to µ is L. Assume
now that f is a convex function, i.e., that L is a log-concave function. Then from
[6], the potential function ϕ is in ID2,2, in fact ∇ϕ is 1-Lipschitz, i.e.,

|∇ϕ(x+ h)−∇ϕ(x)|H ≤ |h|H ,

for any x ∈ W, h ∈ H. Hence in the above expressions we can replace ∇2
aϕ and

Laϕ with ∇2ϕ and Lϕ respectively and since E[Lϕ] = 0, we get

− logE[e−f ] = E
[
f ◦ T − log det2(I +∇2ϕ)

]
+

1

2
d2

H(µ, L · µ) . (7.16)

Remark 7.1 In this latter case we have

− logE[e−f ] = f ◦ T +
1

2
|∇ϕ|2 + Lϕ− log det2(I +∇2ϕ) . (7.17)

Since the left hand side of this equality is constant, taking the (distributional)
derivative of this relation, we see that the expression

Lϕ− log det2(I +∇2ϕ)

has the same regularity as the term f ◦ T + 1/2|∇ϕ|2.
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Let now

a(n) =

∫
IRd

exp
{
−nf(x/

√
n)
}
dµ(x) ,

for n ∈ IN. It follows from Laplace’s method, cf.,for instance [17], that

lim
n→∞

[
− 1

n
log a(n)

]
= inf

x∈IRd

{
1

2
|x|2 + f(x)

}
.

Let now νn be the measure defined by

dνn(x) =
1

a(n)
exp

{
−nf(x/

√
n)
}
dµ(x) .

Denote by Tn = IIRd + ∇ϕn the transport map such that Tnµ = νn. It follows
from the relation (7.16) that

lim
n→∞

{∫
IRd

[
f

(
Tn(x)√

n

)
− 1

n
log det2(I +∇ϕn(x))

]
µ(dx)

+
1

2n
d2

H(Tnµ, µ)

}
= inf

x∈IRd

{
1

2
|x|2 + f(x)

}
.

Note that the right hand side of the above equality is nothing but the negative
of the dual potential function at y = 0, i.e., if we define g as

g(y) = − inf
x∈IRd

{
1

2
|x− y|2 + f(x)

}
,

then

lim
n→∞

[
− 1

n
log a(n)

]
= −g(0) .

Let us now pass to the infinite dimensional situation: assume that f satisfies
the hypothesis of Theorem 5.2, then with the notations of this theorem, using
exactly the same arguments as above we conclude that

− logE[e−f ] = E [f ◦ T −Da(ϕ) + Laϕ] +
1

2
d2

H(L · µ, µ) . (7.18)

Since, from the proof of Theorem 5.2, we have Lϕ − D(ϕ) = Laϕ − Da(ϕ), we
can write the relation (7.18) also as

− logE[e−f ] = E [f ◦ T ]− 〈D(ϕ), 1〉+
1

2
d2

H(L · µ, µ) , (7.19)

where the brackets correspond to the duality (ID, ID′) (or to (ID2,1, ID2,−1)).
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Remark 7.2 The following relation is proven in [5] in the frame of the classical
Wiener space, equipped with its usual filtration,

− logE
[
e−f
]

= inf
u
E

[
1

2
|u|2H + f ◦ (IW + u)

]
,

where u =
∫ ·

0
u̇sds, and u̇ runs in the set of adapted ( progressively measurable)

processes. Again if f is reasonably regular, then there exists a minimizing process,
say um which satisfies the following equation:

u̇m(t) + E [(Dtf) ◦ (IW + um)|Ft] = 0 , (7.20)

dt × dµ-almost surely. Using the fixed point theorem, it is easy to show that the
equation (7.20) has a unique solution in ID2,0(H) if ∇f has a derivative bounded
by some c < 1,
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