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Abstract
We introduce a spatial color image retrieval method which

does not include any segmentation step. This method relies on
small image thumbnails and the Earth Mover’s Distance (EMD).
We then derive an unsupervised matching criterion using an a
contrario approach. Experiments are performed on a database
of illuminated manuscripts.

Introduction
Color image retrieval methods that do not take into account

any spatial layout miss important cues of human visual percep-
tion. Hence spatial color indexing retrieval has become a very
active research area. Some approaches augment histograms with
pixel localization or spatial color correlation, see e.g. [1, 2, 3, 4].
Other methods use points of interest in the image to include spa-
tial features [5, 6]. Region-based approaches first perform a seg-
mentation of images which is then used for image comparison.
The Blobworld image representation, for instance, uses multi-
dimensional Gaussian mixtures as the image model [7]. Many
other unsupervised segmentation methods have been used to in-
dex images, see e.g. [8, 9, 10]. A matching step follows the
segmentation and indexing steps, generally relying on a distance
or a similarity measure. One of the most efficient distance to
compare sets of features is the Earth Mover’s Distance (EMD)
[11], see e.g. [12, 8].

We propose a retrieval method that rely on the spatial or-
ganization of colors. The plan of the paper as follows. We first
define the features used to represent the spatial and color con-
tents of images. We then introduce a distance derived from op-
timal transportation problems, the Earth Mover’s Distance, and
discuss its use for the comparison of images signatures. Next
we derive an automatic criterion, enabling to decide whether two
images should be matched or not, using an a contrario approach.
We conclude with numerical experiments on a database of illu-
minated manuscripts.

Features
The proposed method uses coarsely sampled thumbnails to

represent images (Fig. 1). The total number of pixels of these
thumbnails is fixed to n, depending on the database content and
on computing constraints. Image subsampling is achieved by av-
eraging the image pixels. We choose the psychometric CIELab
color space to represent thumbnails, in order to use the Eu-
clidean distance to compare their color components. The signa-
ture for an image is composed of the n thumbnail pixel features
f i = {Li,ai,bi,X i,Y i}, where L,a,b are the color coordinates and
X ,Y the spatial positions.

Distance
To measure the distance between two pixel features f i

Q and

f j
T of a query image Q and a target image T respectively, a

Figure 1. A coarsely sampled thumbnail. Left: source image (3200×2200

pixels). Right: the thumbnail (10×15 pixels).

weighted exponential distance is used:
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The parameter α balances color and spatial contributions.
This weighted exponential distance supports the idea that beyond
a certain distance, two different images are just considered as not
similar. Parameters δc and δs are chosen according to the color
and spatial dynamics. Typical values that will be used in this pa-
per, are δc = 15 and δs a quarter of the thumbnails diagonal. This
nonlinear distance is adapted to an image retrieval task, where a
target image is close to a query, in which case the similarity is
measured, or is simply different and penalized.

We then use EMD [11] to measure the distance between the
signature of a query image and the signature of a target image.
EMD is defined as the minimum amount of work needed to map
one signature onto the other. The notion of work is defined as the
product of the ground distance de and the feature weight. In our
approach, each feature is given the same weight (since thumbnail
pixels correspond to a fixed area in the original image). It may
then be shown that each pixel of the query image is assigned
to exactly one pixel of the target image, see Figure 2. In this
particular case, the EMD distance between two images Q and T
is equal to
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φ

n
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)
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where φ belongs to the set of permutations of {1, . . . ,n}. Compu-
tation of the EMD is therefore simplified and can be achieved by
solving an optimal assignment problem. This problem is solved
by the Hungarian method, also called the Kuhn-Munkres algo-
rithm [13], in O(n3).

In contrast, when using EMD with region based methods,
each region is usually weighted according to its area. In this
case, EMD breaks apart the weights of the features when opti-
mizing the cost of the mapping. Therefore, the usefulness of a



segmentation step before EMD is questionable since pixels that
have been grouped into regions can be mapped separately to dif-
ferent target regions by EMD. Indeed no constraints are included
in EMD that take into account the fact that regions represent
pixels groups. Besides, segmentation methods require complex
tunings of the parameters. Furthermore, undersegmentation can
yield regions that are not well represented by, e.g., their mean
color, affecting the performances of the matching step. Our ap-
proach is simpler, more robust and takes full advantage of EMD
: we somehow oversegment the image into small and regularly
spaced regions, and then let the EMD distance resolve the match-
ing problem. The number of regions that are considered is only
limited by computation constraints.

Figure 2. Two images (left) and the associated thumbnails (middle), made

of n = 10× 15 pixels. Each pixel of a thumbnail is associated to a feature

in 5 dimensions (L,a,b,X ,Y ). All of them have the same weight. In this

context, EMD is equivalent to an assignment problem. Each pixel of the

query image (top left) is assigned to exactly one pixel of the target image.

To illustrate the EMD operation, the thumbnail on the right represents the

optimal permutation of the query pixels to match the target. The query pixels

of the red region are moved towards their location in the target image. The

white column of paper is also correctly moved from right to left.

Unsupervised matching criterion using an a
contrario approach.

In this section, we present a method to answer the ques-
tion of whether two color images should be matched or not.
Our approach is similar to the one in [14, 15] : we will match
two images as soon as their proximity is unlikely to be due to
chance. This is an application of the general principle of a con-
trario methods: we do perceive events that are unlikely in a white
noise situation. Such methods have been successfully applied to
several tasks in computer vision following the work of [16], see
[17]. We now detail how this principle is used in the framework
of the comparison of images.

Our setting is as follows. We write Q for a color query im-
age, and B = {T1, . . . ,Tm} for a database composed of m color
images. For two images Q and T , their EMD distance (as de-
tailed in the previous section) is denoted as d(Q,T ). For each
image Ti, we want to develop a statistical test for the hypothesis
H1 = {Ti is similar to Q} and we choose to rely on the quantity
d(Q,Ti). A usual approach to this problem would be to have a
probabilistic model for the images that are similar to the query
and, for example, to perform a Bayesian test. This implies the
development of specific models for each category of color im-
ages that we deal with. An a contrario approach to this test
consists in relying on a background model M of generic im-
ages, and then to fix the number of false alarms when testing H1
against H0 = {Ti follows the background model }. The general
idea is that if an image has been generated by the model M , then
it should not be paired with Q. Assume that we are able to com-
pute the probability PrH0(d(Q,T ) ≤C), for any C ≥ 0. We will
then say that

Ti is an ε-meaningful match of Q if d(Q,Ti)≤CB,

where CB is such that Pr(d(Q,T )≤CB)≤ εm−1, and where T is
distributed according to M . It can be shown that if all images Ti
from the database B follow the model M , then the expectation
of the number of ε-meaningful matches is less than ε (the proof
of this fact relies on the linearity of the expectation, see [15]).
In practice, we will always choose ε = 1, that is we will fix the
expected number of false matches to one. In what follows, we
use the term meaningful match instead of 1-meaningful match.

Of course, for this to be feasible, we need to choose a back-
ground model M . Since the distance d only take thumbnails into
account, we seek a background model for thumbnails. The first
model we tried was a uniform white noise model, in which all
pixels of a thumbnail are drawn independently and uniformly in
the Lab space. This was not satisfactory, since too many images
were then meaningful matches of the query. Our interpretation
of this fact is that, even when they are perceptually different, im-
ages share some common structure (e.g. the presence of homo-
geneous regions). Similar results were obtained with a model in
which thumbnails are white noise with color marginal learned on
the database B. We therefore need a more structured model, with
geometric features similar to the ones encountered in real images,
such as homogeneous regions and edges. The model we consider
is a dead leaves model ([18]), consisting in the superimposition
of random objects, together with a power law distribution for the
size of objects. This model has been experimentally proved to be
well adapted to the structure of natural images, [19, 20]. For the
sake of simplicity, we restrict ourselves to a model where objects
are simply disks. The radius of these disks are random variable
with density f (r) ∝ r−γ . The model is then characterized by
three parameters : the scaling parameter γ , an dr0, r1 the min-
imal and maximal sizes of objects1. We chose γ = 3, a typical
value for natural images, r0 = 1 and r1 of the same magnitude
as the dimensions of thumbnails. The distribution of the color
of objects is learned from the color distribution of pixels from
thumbnails of the database. Samples of the model (using color
marginals from the database of illuminated manuscripts used in
the experimental section) are displayed in Figure 3.

Figure 3. Samples of the background model M using color marginals

from the illuminated manuscript database used in the experimental section.

The last point, in order to be able to compute meaningful
matches of a given query image, is to compute the constant CB
such that Pr(d(Q,T ) ≤CB) ≤ ε/m where T follows M . Since
this quantity would be very tricky to compute exactly, we rely
on numerical simulations. That is, we sample r realizations Fj
of the model and then approximate CB by the empirical quan-
tile of order m−1ε of {d(Q,Fj)} j=1,...,r. The choice of r will be
addressed in the experimental section.

Let us stress that an advantage of this approach to the match-
ing problem is that the threshold automatically adapts to both the

1One can get rid of r0 by considering a limit model yielding the same
small scale structure as natural images, [21], but this model is too in-
volved for the modeling of coarse representations of images.



query and the database. In particular, the threshold is expected
to get more conservative as the database gets larger, which can
be crucial when dealing with very large databases. Also observe
that the threshold is driven by parameter ε , which has the intu-
itive meaning of a number of false detections when submitting a
query and is therefore easier to choose than a bound on distances.
In all experiments to be performed in this paper, we choose ε = 1.

Experimental evaluation
Tests have been performed on an illuminated manuscript

database provided by the Institut de Recherche et d’Histoire des
Textes (IRHT)2. This database contains 1500 high quality and
color-calibrated illuminations. Experiments use n = 150 (10×15
or 15×10 thumbnails). Tests are performed using a query image.
We then compute the distances between the query thumbnail and
all the thumbnails in the database and return the nearest matches.
Except where mentioned, all tests are performed using α = 0.5,
δc = 15 and δs = 5. Distances between the query thumbnail and
the background model are also computed in order to estimate the
matching criterion. The parameters of the background model we
use are γ = 3, r0 = 1 and r1 = 30. A point that is rarely discussed
and that concerns all spatial color methods is how to manage dif-
ferent image ratios. Various choices are available to handle this
problem. In the experiments, we chose to treat separately portrait
and landscape orientations. However EMD has no constraints on
signature length and total weight, and therefore we could also
compare images with different ratios. A query on a PC Pentium
IV 4.3 gHz has a runtime of approximately 10 seconds. More
results are visible on website [22].

Distance
We use EMD to measure the distance between signatures of

images. The weighting parameter α ∈ [0,1] used in the distance
between two features (see Eq. 1) allow us to support either spa-
tial or color constraint. If the user wish to be severe on spatial
organization (pixels cannot move freely on the image), α must
be set to a low value. The higher the value, the more objects can
move and be split apart. The extreme case where α = 1 is equiv-
alent to a color histogram method, with EMD similarity measure.
Two results are displayed on Fig. 4, using different α values.

Comparison with blobworld + EMD
Newt we compared our method with a region-based method

using EMD for the matching step. We chose Blobworld seg-
mentation3 [7] that represents regions as Gaussian mixtures. The
original method uses texture and location to extract blobs. We
only use color and location information to be directly compara-
ble with our method. Nevertheless we observe similar retrieval
results on the illuminations database when also using texture.
Blobs tend to represent objects in the image. Hence the num-
ber of blobs to find in an image is an important parameter. This
parameter is set by an MDL method (see [7] for details). For the
sake of coherence, we also use EMD to measure the distance be-
tween two blob signatures. In this case, the weight of each blob
is chosen as its area and EMD breaks apart the weights of the
features when optimizing the cost of the mapping.

Two comparative results are displayed on Figure 5 and Fig-
ure 6. Among all our tests, the blobs+EMD method performs
well on queries where simple objects stand on a homogeneous
background. In this case our method will perform similarly be-
cause, as mentioned earlier, blobs will be split apart by EMD.

2IRHT, CNRS, 40 avenue d’Iena, 76116 Paris.
3Code available at URL: http://elib.cs.berkeley.edu/blobworld/

a)

b)
Figure 4. Color spatial weighting using parameter α . A query image (red

framed on the left) is followed by its three nearest matches on first lines of

figure a) and b), with α = 0.5. The same query is visible on the second line of

figure a) et b) with α = 1 (no spatial constraint). This situation is equivalent

to color histogram retrieval methods with EMD distance. We clearly see on

these last examples that the color content remains constant, but the spatial

organization is lost.

Such an situation is displayed on Fig. 5. On the other hand, we
observed that our method perform better on images where seg-
mentation methods generally fail, i.e. quite complex and hetero-
geneous images. Indeed, wrong segmentation yield regions that
are not well represented, highly affecting the performances of the
matching step. Figure 6 illustrates this drawback.

Statistical framework
We analyze in this section the robustness of the proposed

unsupervised matching criterion. We then present more image
retrieval results using this criterion. Recall that CB the thresh-
old on distances enabling to define meaningful matches, is es-
timated thanks to samples of the background model. In order to
investigate the effect of the number of samples that are generated,
we performed the following experiment. Background databases
of m×Nbg realizations of the background model M (m being
the number of images in the database B) are synthesized, for
Nbg = 1, . . . ,9. Then, for a query image IQ, we count how many
images from B are meaningful matches of IQ. Figure 7 shows
the standard deviation of this number of meaningful images as a
function of Nbg, when considering ten background databases for
each Nbg. This experiment suggests that, despite the high vari-
ability of realizations of the dead leaves model, Nbg = 3 is enough
to obtain consistent results with different background databases,
and is therefore the numerical value retained in this paper.

Retrieval results are displayed on Fig. 8 to Fig. 13. For
each query we display the nearest target images and indicate the
automatic threshold by a grey thumbnail. Let us stress that the
threshold value can greatly vary from one query to the other. The
number of returned results vary from 0 (second result of Figure
12) to 23 (Figure 10) according to the query and the content of the
database. The criterion is not perfect: it sometimes stops beyond



a) blobs+EMD

b) our method
Figure 5. Comparison between a blobs + EMD method, and our method. A

query image (red framed) followed by its three nearest matches are shown

on first lines of figure a) and b), according to each method. The blob repre-

sentations and the thumbnails (10×15) of respective images are shown on

the second line of figure a) and b) respectively. Here the blob segmentation

is relatively satisfactory and our method performs similarly.

a) blobs+EMD

b) our method
Figure 6. Same layout as on Figure 5. Here the blob segmentation fails

to give a satisfactory representation of the color spatial organization of each

image. Images are clearly undersegmented, yielding large regions with av-

erage colors of different patterns, leading to unsatisfactory matching.
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Figure 7. Variability of the automatic threshold. Each colored line corre-

spond to a different query image. The retrieval is made on a database of m

images. The (empirical) standard deviation of the rank of the last meaningful

match is shown for background databases of size m×Nbg, for Nbg = 1, . . . ,9.

For each Nbg, ten background databases have been generated in order to

estimate the standard deviation.

or before where a human would exactly stops the list of results.
It also moderately depends on the background model occurrence,
see Fig. 7. But results are relevant most of the time. The crite-
rion is a good indication of where the results should stop, and
also inform the user on the quantity of relevant images present in
the database. Here, we use a small database, and results seldom
exceed a hundred, but this type of information can be crucial with
much bigger databases.

Conclusion and future work
We propose a spatial color image retrieval method without

initial segmentation, based on thumbnails and EMD. Its main
interest is its robustness and its ability to fully use the EMD
efficiency compared to region-based approaches. Experimental
comparisons with a classic spatial color method is promising and
confirm that complex segmentation methods are not necessary at
best, misleading at worst. Future work will use more elaborated
features for each thumbnail pixel including local vector quanti-
zation and texture characteristics. One drawback of our method
is that EMD computing cost is high, and that querying can be
slow for large databases. A possible solution could be to adapt a
recent EMD approximation proposed in [23] which claims a two
order magnitude speedup. This would allow for fast retrieval in
databases having several hundreds thousands images.

We also propose an automatic matching criterion relying on
a contrario. Future work will study the behavior of the threshold
on much larger databases, and investigate in more details the way
it adapts to the query and database specificities.
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