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Abstract

In the framework of the BioSecure Network of Excellence
(http://www.biosecure.info), a talking-face identity verifi-
cation reference system was developed: it is open-source
and made of replaceable modules. This is an extension of
the BECARS speaker verification toolkit, implementing the
GMM approach. In this paper, the audio and visual features
extraction front-ends are presented. The performance of the
system on the Pooled protocol of the BANCA database are
described.

1. Introduction

In the framework of identity verification, it has been no-
ticed that it is very difficult (if not impossible) to compare
two different methods from two different articles in the lit-
erature, even though they deal with the very same task. It
poses a real problem when one wants to know if a new orig-
inal method performs better than the current state of the art,
for example. This can be explained by the fact that a lot
of research laboratories own their own test database and are
the only one performing experiments on it, which are subse-
quently impossible to reproduce. Reference systems bring
an easy yet efficient answer to this problem. Since they are
open-source and freely available for everybody, when pub-
lishing results on a specific database, experiments using the
reference system can be added as a way of calibrating the
difficulty of this particular database.

Developing a reference system made of replaceable
modules is also of great interest. Researchers often work
on a specific part of the system and do not have the time nor
the interest in building a complete system from A to Z. A
researcher could show the improvement of his new features
extraction algorithm simply by replacing the correspond-
ing module in the reference system and without having to
bother about the pattern recognition algorithm.

On a pragmatic side, using a reference system as a basis
for researching a specific area is also a good way to save

time, human resources and money and therefore to facilitate
advances of the state of the art.

This reference system addresses the relatively new area
of identity verification based on talking-faces. This bio-
metric modality is intrinsically multimodal. Indeed, not
only does it contain both voice and face modalities, but it
also integrates the combined dynamics of voice and lips
motion. Identity verification based on talking-faces is a
growing subject of research in the recent literature. In
[8], fusion of speech, face and visual speech information
for text-dependent identification is presented. In this pur-
pose, the authors use the HTK Speech Recognition Toolkit1

for speech features extraction and Hidden Markov Model
(HMM) modeling.

Since our system is designed to perform text-
independent identity verification, it uses the Gaussian Mix-
ture Model (GMM) approach for each of the three modali-
ties. GMM for speaker verification is well-known as being
very efficient [12]. However, GMM for video-based face
recognition is relatively new. It aims at improving robust-
ness of face recognition against light changes, pose varia-
tions, etc. In [8], the GMM approach for mouth-based iden-
tity verification was concluded to be sufficient (compared to
HMM) but not tested.

Therefore, our system mainly consists in an audiovisual
front-end extension of the existing open-source BECARS
speaker verification GMM toolkit [2]. It also includes a
module allowing the detection of basic replay attacks using
the synchronization between voice dynamics and lip motion
[3].

Section 2 quickly overviews the BECARS toolkit. The
new open-source GET-ENST Online Speech Processing
Evaluation Library (GOSPEL) is introduced in section 3.
It was developed in the aim of being portable to embedded
devices such as PDA and SmartPhones. The face and lips
visual front-end is described in section 4. It is made of mod-
ules allowing face and mouth tracking, eigenfaces features
and lips features extraction. A simple yet efficient algo-
rithm tackling replay attacks is quickly described in section

1http://htk.eng.cam.ac.uk/



5. A more detailed description of the algorithm and its per-
formance in simple replay attacks scenarios is available in
[3]. In section 6, the question of the fusion of these differ-
ent modalities is discussed. Sections 7 and 8 report about
the experiments and corresponding results performed on the
widely available audiovisual BANCA database. Section 9
draws conclusions and presents our plan and perspective to
improve the Biosecure Talking-Face Reference System.

2. Speaker Verification Algorithm

Speech is a biometric modality that may be used to verify
the identity of a speaker. The speech signal represents the
amplitude of an audio waveform as captured by a micro-
phone. To process this signal a feature extraction module
calculates relevant feature vectors on a signal window that
is shifted at a regular rate. In order to verify the identity of
the claimed speaker a stochastic model for the speech gener-
ated by the speaker is generally constructed. New utterance
feature vectors are generally matched against the claimed
speaker model and against a general model of speech that
may be uttered by any speaker called the world model. The
most likely model identifies if the claimed speaker has ut-
tered the signal or not. In text independent speaker recogni-
tion, the model should not reflect a specific speech structure,
i.e. a specific sequence of words. Therefore in state-of-the-
art systems, Gaussian Mixture Models (GMM) are used as
stochastic models.

Given a feature vectorx, the GMM defines its probability
distribution function as follows:
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This distribution can be seen as the realizations of two suc-
cessive processes. In the first process, the mixture compo-
nent is selected and based on the selected component the
corresponding Gaussian distribution defines the realization
of the feature vector. The GMM model is defined by the
set of parametersλ = ({wi}, {µi}, {Γi}). To estimate the
GMM parameters, speech signals are generally collected.
The unique observation of the feature vectors provides in-
complete data insufficient to allow analytic estimation, fol-
lowing the maximum likelihood criterion, of the model pa-
rameters, i.e. the Gaussian distributions weights, mean vec-
tors and covariance matrices. The Estimation Maximization
(EM) algorithm offers a solution to the problem of incom-
plete data [7]. The EM algorithm is an iterative algorithm,
an iteration being formed of two phases: the Estimation (E)
phase and the Maximization (M) phase. In the E phase the
likelihood function of the complete data given the previous
iteration model parameters is estimated. In the M phase new
values of the model parameters are determined by maxi-

mizing the estimated likelihood. The EM algorithm ensures
that the likelihood on the training data does not decrease
with the iterations and therefore converges towards a local
optimum. This local optimum depends on the initial values
given to the model parameters before training. Thus, the
initialization of the model parameters is a crucial step. The
LBG algorithm is used to initialize the model parameters.

The direct estimation of the GMM parameters using the
EM algorithm requires a large amount of speech feature
vectors. This causes no problem for the world model where
several minutes from several speakers may be collected for
this purpose. For the speaker model, this would constrain
the speaker to talk for a long duration and may not be ac-
ceptable. To overcome this, speaker adaptation techniques
may be used [2]. In the current work, BECARS [2] soft-
ware has been used for speaker recognition. BECARS im-
plements GMM and includes several adaptation techniques,
i.e. Bayesian adaptation, maximum likelihood linear regres-
sion (MLLR), and the unified adaptation technique defined
in [10]. Using the adaptation techniques few minutes of
speech become sufficient to determine the speaker model
parameters.

During recognition, feature vectors are extracted from
a speech utterance. The log likelihood ratio between the
speaker and world models is computed and compared to a
threshold. This allows to verify the identity of the claimed
speaker.

3. Audio Front-End

One of the goals of our research is the realization of
a real-time talking-face verification interface that can also
run on limited resource platforms such as PDAs or Smart-
Phones. To this purpose, we have developed and validated
a new software module for speech parameterization, named
“GOSPEL” (GET-ENST Online Speech Processing Embed-
ded Library for prototyping and evaluation).

This library, written in ANSI C, is compatible with
the UNIX, Windows and Windows CE platforms. The
GOSPEL programming interface has been specially de-
signed for being used within a reference system for scien-
tific evaluation and for being integrated, without extra ef-
forts, into demonstrators and commercial prototypes.

The current version of GOSPEL allows for MFCC fea-
ture extraction (including standard options such as delta cal-
culation, cepstral mean subtraction, or liftering) from online
or offline audio. It also provides buffering mechanisms suit-
able for multithreaded applications. A diagram representing
typical operations performed by the GOSPEL audio front-
end is shown in figure 1.

The “running-CMS” option of GOSPEL makes possible
to perform cepstral mean subtraction (CMS) without requir-
ing that a whole utterance is recorded. The online estima-



Figure 1. Audio front-end: GOSPEL

tion of cepstral mean is obtained by running-average over
the cepstral vector sequence.

An online silence/voice detection function is also pro-
vided. Discrimination between speech and silence is based
on energy thresholding, with either fixed or exponential
adaptive thresholds.

Moreover, GOSPEL supports fixed-point arithmetic:
fixed-point optimization, that can be chosen at compile
time, is exploited to achieve faster processing throughput
on those platforms which do not provide a floating-point
unit (like nowadays SmartPhones and PDAs).

The GOSPEL library has been intensively tested and
evaluated in speaker verification experiments on the
BANCA database. Verification accuracy results, for all the
features described above (running-CMS, online silence de-
tection, fixed-point optimization), are given in section 8.

4. Visual Front-End

The visual front-end is divided into two parts, perform-
ing the features extraction for face and lips respectively,as
shown in figure 2. First, face is tracked in the video and face
features are extracted. Then, for each frame of the video,
within the detected face, lips are located and lips features
extraction is performed. It was developed using theOpen
CV open-source C/C++ library, freely available over the In-
ternet2.

Figure 2. Visual front-end

2http://www.intel.com/research/mrl/research/
opencv/

4.1 Face module

4.1.1 Face detection

TheOpenCVlibrary face detector algorithm is first used to
get a rough idea of the location of the face: it is an imple-
mentation of Viola’s algorithm [14], well-known for being
very efficient and very fast. The bounding box of the result-
ing face candidates is then used as a region of interest where
to look for a face in the second step of the algorithm. Figure
3 shows the face candidates and the corresponding bound-
ing box on a sample from the BANCA database [1]. Within

Figure 3. Face candidates bounding-box

this region of interest, a moving window scans every pos-
sible rectangle at every position with many sizes. For each
candidate, the Distance From Face Space (DFFS) [11] is
computed and the candidate with the lowest DFFS is cho-
sen as the location of the face. It is defined as the distance
between the face candidate and its projection in the eigen-
face space [13]. Figure 4 summarizes how this distance is
computed. A temporal median filter is then applied on the

Figure 4. Distance From Face Space

location and size of the detected faces in the video in order
to avoid local detection problems. Figure 5 shows the final
result of face detection on the same example as before.

These two steps need a preliminary training phase. We
used the frontal-face Haar cascade available inOpenCVto



find the first face candidates and its corresponding bounding
box. The principal component analysis (PCA) needed for
the computation of the DFFS is learned based on a training
set extracted from the BANCA database (see section 7 for
more details) and using the PCA-related functions available
in OpenCV.

Figure 5. Face and lips tracking

4.1.2 Face tracking

Since this exhaustive search for the best face candidate is
very CPU-consuming, a simple tracking algorithm is used:
given the location and size of the face in framen − 1, the
face in framen is searched in its neighborhood, allowing
only a small difference in size. To avoid any divergence in
tracking, the algorithm is reinitialized every 20 frames.

4.1.3 Features extraction

Once the face is detected, it is size-normalized to the size
of the previously learned eigenfaces. The decomposition of
the detected face on the eigenfaces is computed and used as
features for face recognition.

4.2 Lips module

4.2.1 Mouth Detection

The very same algorithm as in the first step of face track-
ing is applied for mouth detection. In each detected face,
its lower part is searched for a mouth candidate using
the Viola’s algorithm. Thus, no real tracking of the lips
is performed in this module: it would rather be consid-
ered as amouth area detector. Hence, a Haar cascade is
learned based on rectangle mouth images extracted from the
BANCA database: the effective lips contour tracking is still
being investigated since, in our knowledge, no open-source
libraries or software for this task is available yet. As one
can notice for face detection in figure 3, a lot of false mouth
candidates may be detected. Then, a simple algorithm is
applied: the biggest detected mouth candidate in the lower

part of the face is chosen as the right one. A temporal me-
dian filter is then applied in order to avoid local detection
problems. Figure 5 shows an example of the output of the
mouth detection module.

4.2.2 Features extraction

Once the mouth area is detected, it is size-normalized to
64x64 and a Discrete Cosine Transform (DCT) is applied.
Among these 4096 DCT features available, only 50 are kept
as lips features. Their selection is performed based on a
training set: the ones with the highest energy are chosen.
DCT is performed using theOpenCVlibrary.

5. Replay Attacks Detection

The talking-face modality is one of the biometrics the
most likely to be defeated by replay attacks. As a matter of
fact, it is based on the identification of a person using his/her
voice and his/her face: two pieces of information which can
easily be recorded (which is not that easy for iris or finger-
print, for example). Thus, an imposter could show to the
camera a picture of the face of his/her target while playing
a recording of the latter’s voice previously acquired without
any consent nor knowledge of the impersonated person.

This particular scenario (calledPaparazzi) was proposed
in [3], along with theBig Brotherscenario where the im-
poster not only owns a picture of the face but a whole video
of his/her target. In this paper, a replay attacks detectional-
gorithm is also developed. It is based on a measure of corre-
lation between two streams: one representing the voice dy-
namics and the other one representing the lip motion. The
initial observation that led to this algorithm is presentedin
figure 6. The upper signal is the energy of speech and the

Figure 6. Speech energy vs. Mouth openness

bottom one is the openness of the mouth, both extracted
from the same audiovisual sequence. The shadowed parts
of the curves emphasize how similar and correlated these
two signals can be.

Preliminary results with features as simple as the log-
energy of the audio signal and the average value of gray
level pixel of the mouth area for the visual signal give en-



couraging results for future improvements (see [3] for more
details).

6. Fusion

6.1. Score fusion

Score fusion consists in the combination of the scores of
two or more monomodal identity verification algorithms. In
[6], this kind of fusion has already been studied using mul-
tiple face recognition algorithms on the BANCA database.
We used the open-source Support Vector Machine (SVM)
library libSVM [4] to perform fusion of speaker verification
and face recognition scores. More precisely, a Support Vec-
tor Classifier with a linear kernel is learned and applied in
the 2-dimensional bimodal score space, after a preliminary
normalization step.

6.2. Feature fusion

Feature fusion consists in the combination of two or
more monomodal feature vectors into one multimodal fea-
tures vector to be used as the input of a common multimodal
identity verification algorithm.

Audio and visual frame rates are different. Typically,
100 audio feature vectors are extracted per second whereas
only 25 video frames are available during the same period.
Therefore, one solution is to perform linear interpolationof
the visual feature vectors. Another one is to downsample
the audio features to reach the video frame rate.

Only simple concatenation of audio and visual feature
vectors has been investigated so far. As expected (yet, it
still had to be tested), the concatenation-based system is
worse than the best monomodal system (see results in sec-
tion 8). However, more elaborated combination methods
still need to be investigated. For example, a transformation
such as Principal Component Analysis, Independent Com-
ponent Analysis or Linear Discriminant Analysis might in-
trinsically model the correlation between voice dynamics
and lips motion. The open-source pattern classification li-
braries Torch3 or LNKnet4 will be used for this purpose.

7. Experiments

7.1 The BANCA database

The BANCA audiovisual database [1] contains 52 speak-
ers divided into 2 groups G1 and G2 of 26 speakers each
(13 females and 13 males). 12 sessions were recorded in 3
different conditions (controlled, adverse and degraded).In

3http://www.torch.ch/
4http://www.ll.mit.edu/SST/lnknet/

each session and for each speaker, 2 recordings were per-
formed: one client access where the speaker pronounces
digits and his/her (fake) own address and one impostor ac-
cess where he/she pronounces digits and the address of an-
other person.

7.2 The Pooled BANCA Protocol

The experiments are performed following the Pooled
BANCA protocol [1]. In each modality (voice, face, lips
and concatenation of voice and lips), for each subject, a
GMM is adapted from a world GMM using only the fea-
tures extracted from the client access of the first controlled
session. 312 imposter (one per client per session) and 234
(one per client per session, except the first one used for
training) client accesses are performed for each group. The
world GMM is learned on the features extracted from the
20 controlled videos of the world model (more than 11000
visual samples).

The face space (used for the face tracking algorithm and
the eigenface projection) is built using the manually lo-
cated face from the world model of the English still images
BANCA dataset (300 faces from 30 different subjects).

7.3 Extracted features

In our experiments the BANCA audio (from the first,
high-quality, microphone) has been resampled to 16kHz.
Speech preprocessing is performed on 20 ms Hamming-
windowed frames, with 10 ms overlap. For each frame, 15
MFCC coefficients and their first-order deltas are extracted
in the full frequency range, with 20 MEL-scaled triangular
filters.

Automatic face tracking is performed on every video of
the BANCA database and 80 eigenface coefficients are ex-
tracted from each frame (about 400 frames or more per
video). Similarly, 50 DCT coefficients are extracted from
the mouth area (size-normalized to 64x64), for each frame
of each video. Among the 4096 DCT coefficients, the 50
with highest energy (in the world model) are kept as the
most significant.

7.4 Score normalization and fusion

In order to achieve good results during the score fusion
process, scores have to be normalized so that scores from
different modalities vary in the same predefined range of
values.

For that purpose, we used the fact that groups G1 and
G2 are two completely distinct sets of subjects: no cross
access is performed between them. A linear transformation
is learned on scores from G2 to constrain them between−1
and1 and the SVM classifier is trained on G2. Then, the



same linear transformation is applied on scores from G1,
on which the SVM classifier is applied.

8. Results

8.1 Voice

Several “online” speech preprocessing techniques (pro-
vided by our audio front-end and described in section 3)
have been evaluated. All the speaker verification experi-
ments have been performed following the BANCA P pro-
tocol and using our BECARS-based GMM classifier, with
128 gaussians. Speaker models are obtained by MAP adap-
tation (adapting just the mean of the distributions) from
a gender-independent world model (trained on the “con-
trolled” part of BANCA world model data). The GMM
training/testing is done only on frames detected as speech,
that is frames whose total energy exceeds a given threshold.
Unless otherwise stated this threshold is fixed to a very low
value (corresponding to an average signal power of about
-70 dB compared to full saturation).

Validation of the GOSPEL library Some tests have
been conducted to validate our new audio front-end
GOSPEL against the previously adopted HTK speech pa-
rameterization module, using the same configuration for
both of them. The GOSPEL module produced a small im-
provement for the equal error rate (+0.6% averaged on both
BANCA speaker groups).

Thus, we concluded that the two software modules are
equivalent for standard MFCC parameterization, within sta-
tistical errors.

Online CMS The “running-CMS” algorithm, imple-
mented in GOSPEL, as been tested and compared to stan-
dard offline CMS. Results show that online cepstral mean
estimation does not deteriorate verification performance.
On the contrary an increased accuracy is obtained on both
BANCA groups (5.8% EER against 6.4% EER on group
G1, 7.4% EER against 7.7% EER on group G2). Figure 7
shows DET curves for the G1 case. The grey regions in the
plot represent 95% confidence intervals for our tests. The
darkest region correspond to a large-sample approximation
of the confidence interval (which is optimistic, considering
the size of the BANCA database). The lighter grey shad-
ing corresponds to the most pessimistic limit (the so-called
Chernoff limit [9]), for the confidence interval.

Considering confidence intervals, we can conclude that
running-CMS performs as well as standard CMS on
BANCA protocol P.

Fixed-point processing Fixed-point voice feature extrac-
tion (using an approximated representation of fractional
numbers on 16-bit integers) has also been tested. As fig-
ure 7 shows, we observe a degradation in terms of verifica-
tion performance (about -3.5%, averaged on both BANCA
groups), compared to the floating-point case. This differ-
ence has the same order of magnitude as the confidence in-
tervals. This loss in accuracy corresponds to a considerable
gain in terms of processing speed on limited resource de-
vices. We have tested our library on a SmartPhone equipped
with an Intel PXA263 processor that does not provide a
floating-point unit. On this platform, the optimized part of
the algorithm runs about 3.5 times faster than its floating-
point correspondent.
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Figure 7. Running-CMS and fixed-point pro-
cessing

Adaptive silence thresholding The experiments pre-
sented in this section compare verification accuracy for both
fixed and adaptive silence thresholding. Firstly, a baseline
threshold as been estimated on the world model data, by fit-
ting the distribution of frame energy with two gaussians.
Then, the energy threshold for silence deletion has been
fixed to µs − 2σs, whereµs andσs are the mean and the
standard deviation of the rightmost gaussian. This threshold
value has been either kept fixed or used as an initialization
for the adaptive thresholding (thresholding is reinitialized
for each sentence). Figure 8 shows that, for the BANCA P
protocol, adaptive thresholding performs significantly bet-
ter than a fixed threshold approach, giving 5.4% EER on
G1 and 4.8% EER on G2.

8.2 Face and lips

Figures 9 and 10 present the performance of GMM mod-
eling for identity verification based on face and lips respec-
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Figure 8. Different silence detection methods

tively. For face recognition, using 32 or 64 gaussians gives
the best result: around28% Equal Error Rate (EER). These
relatively poor results can be explained by the simplistic
features used to model face: eigenfaces with no normaliza-
tion of any kind (rotation of the head, light changes, etc.).
Lips-based recognition reaches at best34% EER for 64
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Figure 9. GMM on face features

gaussians, whereas all the other systems with less or more
gaussians stand around38−39%. The same kind of perfor-
mance was achieved on G2 (not plotted).

8.3 Feature fusion

Figure 11 presents the result of the experiments we per-
formed about feature fusion. Lips feature vectors were lin-
early interpolated to reach the audio frame rate. Then, a
simple concatenation of lips feature vectors and voice fea-
ture vectors was performed. Voice only (with 64 gaussians)
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Figure 10. GMM on lips features
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Figure 11. Fusion of voice and lips features

gives an EER of8.5%, lips only (still with 64 gaussians)
gives an EER of34%. Combining them strongly degrades
the performance (compared to voice only) and gives an EER
of 32%.

8.4 Score fusion

Following the process described in section 7, we per-
formed score fusion using an SVM classifier with linear
kernel: results are presented in figure 12. Voice only (with
256 gaussians) gives an EER of8.1%, face only (with 256
gaussians) gives an EER of31%. Performing score fusion
brings a non-significant improvement over the voice only
systems:7.7% EER.
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Figure 12. Score fusion with SVM

9. Conclusion and future work

The BioSecure Talking-Face reference system has been
introduced in this paper. It is based on the open-source soft-
ware BECARS initially developed for speaker verification.
Our new audio front-end performs “live” feature extraction,
including online CMS and silence deletion. Moreover it is
implemented both with floating and fixed point operations,
which makes it usable on portable devices such as PDA or
SmartPhones. The usability of the GMM approach for face-
and lips-based recognition was also demonstrated. The ref-
erence system makes extensive use of open-source libraries
and is freely available on request to the authors. An original
way of using the intrinsic bimodal nature of talking-faces
has been reported: the detection of a lack of correspondence
between the voice and the lips motion is of great help when
dealing with simple replay attacks.

In the future, using this reference system as a basis, we
plan to improve some of the modules. More precisely, much
more efficient face tracking algorithms based on Active Ap-
pearance Modelling (AAM) [5] can be investigated. For
that purpose, we plan to use the open-source AAM library
available on the internet5. This might as well help to lead to
an improved lips tracking algorithm and consequently the
replay attacks detection module. Finally, though eigenface
coefficients have been used as a reference in the field of
face recognition, better features can be extracted: promis-
ing KCFA [15] shall be investigated, for example.
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