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Abstract— Oblivious Transfer(OT) is a primitive of asymmet-
rically distributing information between users, proposed to build
Secure Computations. In this letter, we propose an information-
theoretical variant of OT that requires weak assumptions and can
be therefore more easily implemented with transmission media.
We show then thatOne-out-of-two Oblivious Transfer(O-OT), the
central version of OT, can be reduced to this Weak OT (WOT)
with arbitrary small loss of security, i.e. secure O-OT can be
realised from our WOT.

Index Terms— Oblivious transfer, information-theoretic secu-
rity, reduction between protocols.

I. I NTRODUCTION

OBLIVIOUS TRANSFER (OT) is an important cryp-
tographic primitive which is used to build asymmet-

rical cryptographic protocols such as Coin Tossing, Zero-
Knowledge Proofs, ..., or more generally, Multi-party Secure
Computations [1].

Informally speaking, the original version, proposed by Ra-
bin and so calledRabin OT [2], is a transmission scheme
where a partner, named Alice, has an one-bit messageb to send
to another partner, named Bob, who has only a probability1=2
to receiveb. At the end of the execution, Bob knows if he has
got Alice’s message or not and Alice does not know what has
happened to Bob. Another fraternal protocol, named chosen
One-out-of-two Oblivious Transfer (O-OT), was introduced
in [3] where Alice has two bitsb0; b1 and Bob can choose
to get one and only one of them while Alice cannot discover
Bob’s choice. In spite of their equivalence [4], the chosen O-
OT has is more preferred thanks to its determinist nature. It
was also generalized to get chosen OTs, for instanceone-out-
of-two string OTwhereb0; b1 are two strings, andm-out-of-n
OT where Bob chooses to getm < n of n Alice’s messages.
We call these standard OTs.

Such asymmetrical information transmissions are not evi-
dent. Within the scope of Modern Cryptography, OTs can be
built upon the asymmetry in the field of computational com-
plexity and their security is based on theunprovenassumptions
of the hardness of some problems, such as the factoring of
large integers. The doubt about theircomputational security
has been increasing as soon as Shor found an efficient factor-
ing algorithm for quantum machine [5].

There nevertheless exists a provable security, theuncon-
ditional security based on Shannon’s theory of informa-
tion [6], that withstands attacks even by an adversary with
unlimited computational power [7]. Following Shannon, an
information appears to a person who is interested in it as
a random variableX that can take values in a finite set
fx1; ::; xNg with probability fp(x1); ::; p(xN )g: The degree
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of knowledge of that person about the informationX, or the
equivocationof X to the person, is defined as the entropy
H(X) = �

PN
i=1 p(xi) log(p(xi)): We denote here the en-

tropy of a binary variable (bit)X, the function that will be
used repeatedly in this article:

h2(p) = �p� log(p)� (1� p)� log(1� p) (1)

for p = p(X = 0) or p = p(X = 1) . If the person “knows”
the informationX by observing an evidenceE, a random
variable which would take value infe1; ::; eMg , then the
degree of knowledge aboutX, knowingE, is defined as the
conditional entropy

H(X=E) =
MX
i=1

p(ei)H(X=ei)

= �
X
i;j

p(xi; ej) log(xi=ej) � H(X)

A system that protects an informationX against a person is
unconditionally secure if all evidenceE that the system reveals
to this person does not influence the equivocation ofX, i.e.
H(X=E) = H(X) [7].

As the equivocation of information has a subjective sense,
i.e. two people can have different degrees of knowledge about
the same information, we would so usehA(X=f) to denote
the equivocation ofX to a personA given the factf , and
hA(X) for the equivocation ofX to A for implicitly all of
the given facts at the speaking moment.

We report here the definitions of the two main versions of
OT in the light of Shannon’s theory (cf. definitions I.1, I.2).

Definition I.1 Rabin OT
Alice has an one-bit messageb and sends to Bob. The exe-
cution e of the protocol appears as a random binary evidence
that takes two schemas1; 0 with equal probability. At the end,
Bob gets a messageb0 and knows which schemae has taken
value, i.e.hB(e) = 0:

� if e = 1, Bob knows that he has receivedb, i.e.
hB(b=b

0; e = 1) = 0.
� if e = 0, Bob knows that he did not receiveb, i.e.
hB(b=b

0; e = 0) = 1.

While Alice does not, i.e.hA(e) = 1.

However, we cannot build information-theoretically secure
OTs from scratch. Researchers look for reducing it to variants
of OT that could be achieved by hypothetical asymmetries in
transmission, such as imperfect media ornoisy channels. There
ergo exists a family of variants of OTs. The reductions between
them are based on information theory and the realization of
one of them implies the others without or with negligible
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Fig. 1. Rabin’s oblivious transfer and One-out-of-two bit oblivious transfer

Definition I.2 O-OT
Alice has two one-bit messagesb0; b1 that she sends to Bob.
Bob has a selection bitc 2 f0; 1g to choose to receivebc.
The executione has only one schema:

� Bob gets the bitbc but cannot getb1�c, i.e; hB(bc=e) = 0
and hB(b1�c=e) = 1:

� Alice does not know the choicec of Bob,
i.e. hA(c=e) = 1:

loss of security [4], [8]–[13]. This helps to build OTs, when
an hypothetical transmission medium is realized, with the
provable unconditional security.

This paper aims at contributing to this movement. The idea
is to adjust new members into the family of OTs with weaker
assumptions which could match real physical media.

The remaining of the paper is organized as follows. In
Section II, we extend Crépeau’s OT protocol [4], which is
a generalized variant of Rabin OT, to a more general case. We
show then, in Section III, that the standard OTs can be reduced
to this variant by building a secure O-OT protocol upon it.
Some concluding discussions will be exposed in Section IV.

II. A W EAK OT PROTOCOL(WOT)

We introduce here a Weak OT (WOT), that is a variant of
Rabin OT, such as the executione of WOT protocol takes value
1 with probability � 2]0; 1[ and if e = 0 then Bob knows
that he gets a non-zero equivocation� 2]0; 1[ of Alice’s
message. The particular case with� = 1 has been studied
by Cŕepeau [4]. Our WOT is thus parameterized by�; � (cf.
Definition II.1).

Definition II.1 (�; �)WOT
Alice has an one-bit messageb that she sends to Bob. The
executione of the protocol is a random binary variable with
p(e = 1) = �. At the end of the protocol, Bob receives a
messageb0, the value thate has taken and knows:

� hB(b=b
0; e = 1) = 0

� hB(b=b
0; e = 0) = �

While Alice gets no more information:hA(e) = h2(�).

This WOT is a case of asymmetrical transmission, which
is more general than Crepeau’s instance and Rabin OT and
requires weaker assumptions, is obviously more easily realiz-
able.

III. B UILDING O-OT FROM (�; �) WOT

Due to the equivalence of standard OTs, we can reduce these
to our variant by only doing it on one of them. We show here
that our WOT is suited for building secure One-out-of-two
Oblivious Transfer (O-OT) protocol. The construction of O-
OT from WOT can be described as in Protocol III.1.

Protocol III.1 O-OT(b0; b1)(c) from (�; �)WOT
1) Alice and Bob agree on security parameterK.
2) Alice chooses at randomK bits m1; : : : ;mK :
3) For i = 1 to K: Alice uses a (�; �)WOT protocol

to send mi to Bob who getsm0
i and the execution

e[i] 2 f0; 1g of ith WOT.
4) Bob selects two subsets I0 = fi1; :::; i
g and

I1 = fi
+1; :::; i2
g of f1; 2; : : : ;Kg such
that I0 \ I1 = ; and 8i 2 I0; e[i] = 1; where

 = min fb2:K:�=3c ; bK=2cg

5) Bob sends (Ic; I1�c) to Alice.
6) Alice receives (Ic; I1�c) , computes

b̂0 = b0 �
L

i2Ic
mi and b̂1 = b1 �

L
i2I1�c

mi;

and sends(b̂0; b̂1) to Bob.
7) Bob receives (b̂0; b̂1) and computes

bc = b̂c �
L

i2I0
m0
i:

As a cryptographic protocol, the scheme should guarantee
its privacy and correctness. The correctness means that the
protocol works correctly when all users respect the protocol’s
instructions and the privacy of the protocol is analyzed in the
sense that one dishonest user tries to cheat the other user who
is honest.

� Correctness: Bob gets the selected bitbc if Alice and Bob
follow the protocol.

� Privacy:
– At Alice’s side: Alice gains no information about

Bob’s choice.
– At Bob’s side: Bob gets no more than one bit of
fb0; b1g:

A. Correctness and Privacy at Bob’s side

Now, the execution of WOT rounds can be expressed as
a random variablee = (e[1]; ::e[K]) 2 f0; 1gK , and ase[i]
are independent each of the other,hB(mi=e) = hB(mi=e[i])
knowingm0

i. Let k0 =
L

i2I0
mi and k1 =

L
i2I1

mi; then
b̂c = bc � k0 and b̂1�c = b1�c � k1: At the end of Proto-
col III.1, Bob receiveŝbc and b̂1�c and has the equivocations



Annex III.1 Privacy amplification via entropy accumulation

Let V =
L

i=1::a vi where thevi are random binary variables (bits) with entropy� and p� 2]0; 1=2] is the probability
associated with binary entropy�: i.e. � = H(vi) = h2(p�): We assume without loss of generality thatp� is the probability
that eachvi takes the value1. V takes the value1 if an odd number of thevi takes the value1. Thus:

p1= p(V = 1)= C1
ap�(1� p�)

a�1 + :::+ C2n+1
a p2n+1

� (1� p�)
a�2n�1 + :::

p0= p(V = 0)= C0
a(1� p�)

a + :::+ C2n
a p2n� (1� p�)

a�2n + :::

Then, we have:

jp0 � p1j=
��C0

a(1� p�)
a + :::+ C2n

a p2n� (1� p�)
a�2n + ::

�C1
ap�(1� p�)

a�1 � :::� C2n+1
a p2n+1

� (1� p)a�2n�1 � :::
��

=

�����
a�1X
i=0

Ci
a(�p�)

i(1� p�)
a�i

����� = j(1� p�)� p�j
a
= j1� 2p�j

a
= (1� 2p�)

a

and the entropy ofV is HV;�(a) = h2(p0) = h2(p1): Thus, given � 2]0; 1[ , HV;� is an increasing function ofa, i.e
@HV;�

@a > 0: We can define the reversedH�1
V;� as H�1

V;�(x) = l � 1 where l = minfajHV;�(a) � xg; for x 2]0; 1[: We
can say HV;�(a) < x if and only if a � H�1

V;�(x): When � is very small, we can estimateH�1
V;�(1� �) as F�1(1� �)

where F (a) = 1� (1� 2p�)
a and then H�1

V;�(1� �) � a where (1� 2p�)
a / �:

hB(bc) = hB(k0); hB(b1�c) = hB(k1) depending on his
setting of I0; I1 [7]. The analyses of equivocation ofk0; k1
are exposed in Annex III-A.

We define two variablesC;P� : f0; 1gK 7! f0; 1g repre-
senting the correctness and the privacy of the protocol. For
each executione 2 f0; 1gK of WOT rounds,C(e) = 1 if
Bob receives enough bitsmi to honestly set upI0 sharingk0
with Alice; andP�(e) = 1 if Bob cannot has enoughmi with
hB(mi) = 0 to reduce the entropies of bothk0; k1 below a
privacy threshold1� �; i.e. maxfhB(k0); hB(k1)g � 1� �
whatever his repartition ofI0; I1 .

We recall here Bernshtein’s Law of Large Numbers that will
be used in our security demonstrations.

Annex III.2 Bernshtein’s Law of Large Numbers
LetX1; X2; :::; Xn be independent random variables following
a Bernoulli distribution withp as the probability parameter.
Then for any 0 < � < p(1� p);

p

�����
Pn

i=1Xi

n
� p

���� � �

�
� 2e�n�

2

From this law of large numbers, we can assume with a
signification probability that, afterK rounds of WOT, the
number ofmi successfully received by Bob, i.e.e[i] = 1,
is sufficient to set up
 indexes inI0 and not sufficient to set
up 2
 indexes in bothI0; I1 (cf. Figure III-A).

We considerp(C = 1) the probability that after the execu-
tion of WOT rounds the honest Bob getsbc, and p(P� = 0)
the probability that after the execution of WOT rounds, a dis-
honest Bob can set upI0; I1 reducing both the equivocations
of two bits bc andb1�c below 1� �.

Theorem 1:Let constants � 1, we can chooseK such that
1) p(C = 1) � 1� e�s:
2) given � > 0 , p(P� = 0) � e�s:

Proof: We denote a random variableXi =
Pi

j=1 e[j]
that represents the number of bitsmi known by Bob after the
executione. We can write

p(C = 1) = p(XK � 
) = 1� p(XK < 
) (2)

Given an occurrence ofe, we defineonee(Ij) =
P

i2Ij
e[i]

andzeroe(Ij) = 
�onee(Ij) for any partition I0; I1 of Bob.
As hB(kj) = hB(

L
i2Ij^e[i]=0mi) = HV;�(zeroe(Ij)) and

maxfzeroe(I0); zeroe(I1)g � d(2
 �XK)=2e ; we have
maxfhB(k0); hB(k1)g � HV;�(d(2
 �XK)=2e): Therefore

p(P� = 0) � p

��
2
 �XK

2

�
� H�1

V;�(1� �)

�

� p

�
2
 �XK

2
� H�1

V;�(1� �)

�

= p
�
2
 �XK � 2H�1

V;�(1� �)
�

(3)

We consider the two different cases of
 as follows.

a) Case 1:
 = b2:K:�=3c when � � 3=4

Following Bernshtein’s Law of Large Numbers, we choose
� = �

4 and have

p

�����XK

K
� �

���� � �

4

�
� 2e�K�2=16 � e�s

for K � 16(ln(2) + s)=�2. We can rewrite (2) as

p(C = 1) = 1� p

�
XK <

�
2:K:�

3

��

� 1� p

�
XK �

2:K:�

3

�

= 1� p

�
� �

XK

K
�

�

3

�

� 1� p

�
� �

XK

K
�

�

4

�
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Fig. 2. Correctness and Privacy at Bob’s side assumed by Law of Large Numbers

With K � 16(ln(2) + s)=�2 , we assume

p(C = 1) � 1� p

������ � XK

K

���� � �

4

�
� 1� e�s

Aside, we have

p(P� = 0) � p

�
2

�
2:K:�

3

�
�XK � 2H�1

V;�(1� �)

�

� p

�
2
2:K:�

3
� 2�XK � 2H�1

V;�(1� �)

�

= p

 
XK

K
� � �

�

3
�

2(H�1
V;�(1� �) + 1)

K

!

If we choose K �
24(H�1

V;�
(1��)+1)

� such that
2(H�1

V;�
(1��)+1)

K � 12
� then

p(P� = 0) � p

�
XK

K
� � �

�

4

�
� p

�����XK

K
� �

���� � �

4

�
� e

�s

for K � 16(ln(2)+s)
�2 : Therefore, we can assume

p(C = 1) � 1� e�s and p(P� = 0) � e�s by choosing

K � max

(
16(ln(2) + s)

�2
;
24(H�1

V;�(1� �) + 1)

�

)
(4)

b) Case 2:
 = bK=2c when � > 3=4
(2) can be rewritten as

p(C = 1) = 1� p

�
XK <

�
K

2

��

� 1� p

�
XK �

K

2

�
� =

3

4

�

� 1� e�s for K �
16(ln(2) + s)

(3=4)2

We should rewrite (3) as

p(P� = 0) � p

�
2

�
K

2

�
�XK � 2H�1

V;�(1� �)

�

� p
�
K � 2�XK � 2H�1

V;�(1� �)
�

= p

 
XK

K
� � � 1� � �

2(H�1
V;�(1� �) + 1)

K

!

Following Bernshtein’s Law of Large Numbers, we can choose
� = 3(1��)

4 and have

p

�����XK

K
� �

���� � 3(1� �)

4

�
� 2e�K9(1��)2=16 � e�s

for K � 16(ln(2)+s)
9(1��)2 . If we chooseK �

8(H�1
V;�

(1��)+1)

(1��) such

that
2(H�1

V;�
(1��)+1)

K � 1��
4 , then

p(P� = 0) � p

�
XK

K
� � �

3(1� �)

4

�

� p

�����XK

K
� �

���� � 3(1� �)

4

�
� e�s

for K � 16(ln(2)+s)
9(1��)2 � 16(ln(2)+s)

(3=4)2 , when
 > 3=4. Therefore,
we can assumep(C = 1) � 1� e�s andp(P� = 0) � e�s by
choosing

K �

(
16(ln(2) + s)

9(1� �)2
;
8(H�1

V;�(1� �) + 1)

(1� �)

)
(5)

In conclusion, we can chooseK to assumep(C = 1) � 1�e�s

andp(P� = 0) � e�s as shown in (4) and (5).

B. Privacy at Alice’s side

Theorem 2:Protocol III.1 is unconditionally secure at Al-
ice’s side.

Proof: All information that Alice has are the probability
distribution D of the executione of WOT rounds, with
p(e[i] = 1) = � and the pair (Ic; I1�c) returned from Bob.
She can so guessc with

p(c = 0=(Ic; I1�c); D) =
p((Ic = I0); (I1�c = I1)=D)p(c = 0)

p(Ic; I1�c=D)

p(c = 1=(Ic; I1�c); D) =
p((Ic = I1); (I1�c = I0)=D)p(c = 1)

p(Ic; I1�c=D)

where p(Ic; I1�c=D) is the probability that Bob returns
(Ic; I1�c) to Alice, givenD. We suppose that honest Bob
randomly selectsI0 as any subset of
 members from
fi j e[i] = 1g when he receives an occurrence of the execution
e of WOT rounds, andI1 is randomly chosen from the



remaining indexes. The above equations can be rewritten as

p(c = 0=(Ic; I1�c); D) =
p(Ic = I0=D)2

2p(Ic; I1�c=D)C

K�


p(c = 1=(Ic; I1�c); D) =
p(I1�c = I0=D)2

2p(Ic; I1�c=D)C

K�


For a � 
, we useea to denote any occurrence ofe such
that

P
i e[i] = a and, for each I � f1; ::;Kg with jIj = 
,

we defineeaI as anyea with 8i 2 I; ea[i] = 1. We state that
the distributionD is “bit-sum” uniform, i.e. all occurrence
e with the same bit-sum are assigned a same probability:
p(ea=D) = �a(1� �)K�a: As Bob selectsI in a random
manner, we havep(I = I0=e

a
I ) = 1

C

a

meanwhilep(I =
I0=e

a) = 0 if ea is not aeaI . We have

p(I = I0=D) =
X

K�a�


X
ea
I

p(eaI=D)p(I = I0=e
a
I )

=
X

K�a�


1

C

a
�a(1� �)K�a

which is constant for anyI with jIj = 
. Therefore
8Ic; I1�c; p(Ic = I0=D) = p(I1�c = I0=D) and so
p(c = 0=(Ic; I1�c); D) = p(c = 1=(Ic; I1�c); D): We con-
clude that after the executionE of the protocol, if Alice
receives (Ic; I1�c) then the equivocation of Bob’s choice
hA(c) = h2(c=(Ic; I1�c); D) = 1: We say that the protocol
is secure against Alice whatever received(Ic; I1�c):

IV. M ORE EXTENSIONS AND CONCLUDING REMARKS

In a WOT as described in Definition II.1, the equivocation
of Alice’s message is fixed to� when Bob does not receive
the message. We can remark that the reduction in Protocol
III.1 remains secure for more general cases of WOT. For
example, suppose that with the WOT, the honest Bob has a
chance� to get Alice’s bit while any dishonest Bob must get
an equivocation� � �0 > 0 of Alice’s bit with probability
�0 � (1 � 4�

3 ) + �. With this new extended WOT, the O-
OT protocol is secure because we can assume that honest
Bob can get enough bitsmi to set up
 indexes inI0 while
dishonest Bob can not set up2
 indexes in bothI0; I1 with
zero equivocation.

The above extended WOT can be simulated by a quantum
transmission where Alice is honest as follows. Alice prepares
one of two non-orthogonal quantum states to encode her bit
and sends to Bob who freely chooses any measurement to
discover Alice’s message. Due to thequantum uncertainty
principle, the honest Bob can successfully get Alice’s message
with a maximally bounded probability while any dishonest
Bob has always a minimally bounded probability to get a non-
zero equivocation. This constrained quantum WOT is suited
for the reduction described in Protocol III.1 [14]. Unfortu-
nately, in the case where Alice is dishonest, she can control
the probability distribution at Bob’s side and get information
aboutc, based on returnedIc; I1�c (see [14] for more details).
Moreover, the insecurity of such a quantum O-OT is confirmed
by the theorems on the insecurity of general Quantum Bitcom-
mitment and Quantum Secure Computations [15]–[17].

In conclusion, inspired from contributions to reducing be-
tween variants of Oblivious Transfer, notably from [4], [12],
we have proposed a new variant to extend the OT family by
showing that existing variants can be reduced to it. This would
make OTs be near, or even match, mathematical and physical
realizations (cf. figure 3).

Variants of OT

Mathematical realizations

Physical realizations

�




Fig. 3. Realizations of OTs
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