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Abstract— Oblivious Transfer(OT) is a primitive of asymmet-
rically distributing information between users, proposed to build
Secure Computations. In this letter, we propose an information-
theoretical variant of OT that requires weak assumptions and can
be therefore more easily implemented with transmission media.
We show then thatOne-out-of-two Oblivious Transfe(O-OT), the
central version of OT, can be reduced to this Weak OT (WOT)
with arbitrary small loss of security, i.e. secure O-OT can be
realised from our WOT.

Index Terms— Oblivious transfer, information-theoretic secu-

of knowledge of that person about the informati&n or the
equivocationof X to the person, is defined as the entropy
H(X)=-% p(z;)log(p(z;)). We denote here the en-
tropy of a binary variable (bit)X, the function that will be
used repeatedly in this article:

ha(p) 1)
for p=p(X =0) or p=p(X =1) . If the person “knows”

—p x log(p) — (1 — p) x log(1 - p)

the information X by observing an evidencé&, a random
variable which would take value in{e,..,ex} , then the
degree of knowledge abol, knowing E, is defined as the
conditional entropy

rity, reduction between protocols.

I. INTRODUCTION

BLIVIOUS TRANSFER (OT) is an important cryp-

tographic primitive which is used to build asymmet-
rical cryptographic protocols such as Coin Tossing, Zero-
Knowledge Proofs, ..., or more generally, Multi-party Secure
Computations [1].

Informally speaking, the original version, proposed by Ra-
bin and so calledRabin OT [2], is a transmission schemeA system that protects an informatioi against a person is
where a partner, named Alice, has an one-bit messtmsend unconditionally secure if all evidendg that the system reveals
to another partner, named Bob, who has only a probaltiifity to this person does not influence the equivocationXofi.e.
to receiveb. At the end of the execution, Bob knows if he hadl (X/E) = H(X) [7].
got A|ice’s message or not and A|ice does not knOW What hasAS the equivocation of information has a SUbjeCtiVe sense,
happened to Bob. Another fraternal protocol, named chose® two people can have different degrees of knowledge about
One-out-of-two Oblivious Transfer (O-OT), was introduceéhe same information, we would so uaq(X/f) to denote
in [3] where Alice has two bitsh, 5 and Bob can choose the equivocation ofX' to a personA given the factf, and
to get one and only one of them while Alice cannot discovéra(X) for the equivocation ofY to A4 for implicitly all of
Bob’s choice. In spite of their equivalence [4], the chosen d?€ given facts at the speaking moment.

OT has is more preferred thanks to its determinist nature. 1tWe report here the definitions of the two main versions of
was also genera”zed to get chosen OTs, for instameeout- OT in the ||ght of Shannon'’s theory (Cf definitions 1.1, |2)
of-two string OTwherebg, b; are two strings, anehr-out-ofn
OT where Bob chooses to get < n of n Alice’s messages. Definition 1.1 Rabin OT

We call these standard OTs. Alice has an one-bit messageand sends to Bob. The exe-

Such asymmetrical information transmissions are not eutione of the protocol appears as a random binary evidence
dent. Within the scope of Modern Cryptography, OTs can BBat takes two schemds0 with equal probability. At the end,
built upon the asymmetry in the field of computational conBob gets a message and knows which schemahas taken
plexity and their security is based on theproverassumptions Value, i.e.hp(e) = 0:
of the hardness of some problems, such as the factoring oé if e 1, Bob knows that he has received i.e.
large integers. The doubt about theibmputational security hp(b/b',e=1) =0.
has been increasing as soon as Shor found an efficient factow if ¢ = 0, Bob knows that he did not receivig i.e.
ing algorithm for quantum machine [5]. hp(b/b',e =0) =1.

There nevertheless exists a provable security, theon- While Alice does not, i.eha(e) = 1.
ditional security based on Shannon’s theory of informas-

tion [6], that withstands attacks even by an adversary with However, we cannot build information-theoretically secure

_unllmlteql computational power [7]. FoII_ow!ng Shann(_)n,_ AdTs from scratch. Researchers look for reducing it to variants
information appears o a person who is mt_ereste_d_ IN 1t 88 5T that could be achieved by hypothetical asymmetries in
a random va_nabIeX th.a.t i L eI S(':'ttransmission,such as imperfect medianoisy channelsThere
{z1,..,en} with probability {p(z1),..,p(zn)}. The degree ergo exists a family of variants of OTs. The reductions between
Ecole Nationale Surieure des &lecommunications de Paris. Addr: 46 rueth€m are based on information theory and the realization of
Barrault, 75013 Paris, France. Emalng@infres.enst.fr one of them implies the others without or with negligible
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i,]




—— ¢ b(] —— I ——
b= Rabin OT _ oot
, o ife=1
~ |random ife =0 b be
hale) =1 li =1 hp(by o) =1
() ha(b/V,e = 0) = 1 (0 tabr
Fig. 1. Rabin’s oblivious transfer and One-out-of-two bit oblivious transfer
Definition 1.2 O-OT I1l. BUILDING O-OTFROM (a,3) WOT

Alice has two one-bit messagég, b; that she sends to Bob.
Bob has a selection bitc € {0,1} to choose to receivé,.
The executiore has only one schema:
» Bob gets the bib. but cannot get;, ., i.e; hp(b./e) =0
and hg(bi_./e) = 1.
o Alice does not know the choicec of Bob,

Le. ha(c/e) =1. Protocol 1.1 O-OT(by, b,)(c) from (a,3)WOT
1) Alice and Bob agree on security parameiér
2) Alice chooses at randorfy bits m;,...,mg.
loss of security [4], [8]-[13]. This helps to build OTs, when 3) Fori = 1 to K: Alice uses a («, 3)WOT protocol
an hypothetical transmission medium is realized, with the to send m; to Bob who getsm) and the execution
provable unconditional security. eli] € {0,1} of it" WOT.

This paper aims at contributing to this movement. The idea4) Bob selects two subsets Iy = {iy,...,i,} and
is to adjust new members into the family of OTs with weaker I = {iqy41, -0yl } of {1,2,...,K} such
assumptions which could match real physical media. that Ion/i =0 and Vielye[i]l=1, where

The remaining of the paper is organized as follows. In vy=min{|2.K.8/3],|K/2|}

Section |l, we extend @peau’s OT protocol [4], which is 5) Bob sends (I.,I;_.) to Alice.

a generalized variant of Rabin OT, to a more general case. Weé) Alice  receives (Ley Iy—c) , computes
show then, in Section IlI, that the standard OTs can be reduced bo =bo © P;c;. mi and by = by © Dy, ™M,
to this variant by building a secure O-OT protocol upon it. and sends(?)o,?)l) to Bob.

Some concluding discussions will be exposed in Section IV. 7) Bob _ receives (bo, by) and computes

b. =b. @ ®i610 m;

Due to the equivalence of standard OTs, we can reduce these
to our variant by only doing it on one of them. We show here
that our WOT is suited for building secure One-out-of-two
Oblivious Transfer (O-OT) protocol. The construction of O-
OT from WOT can be described as in Protocol IIl.1.

1. AWEAK OT PROTOCOL(WOT)

We introduce here a Weak OT (WOT), that is a variant of As a cryptographic protocol, the scheme should guarantee

Rabin OT, such as the executienf WOT protocol takes value its privacy and correctness. The correctness means that the
1 with probability 3 €]0,1[ and if e = 0 then Bob knows .protocoll works correctl_y when all users respect the protpcol’s
that he gets a non-zero equivocation €]0,1[ of Alice’s instructions and t_he privacy of the protocol is analyzed in the
message. The particular case with = 1 has been studied S€NS€ that one dishonest user tries to cheat the other user who

by Crépeau [4]. Our WOT is thus parameterized by (cf. 1S honest.

Definition 11.1). « Correctness: Bob gets the selected Hit if Alice and Bob
follow the protocol.
Definition 1.1 (o, 3)WOT o Privacy:
Alice has an one-bit messagethat she sends to Bob. The — At Alice’s side: Alice gains no information about
executione of the protocol is a random binary variable with Bob’s choice.
p(e = 1) = B. At the end of the protocol, Bob receives a — At Bob’s side: Bob gets no more than one bit of
messagé’, the value that has taken and knows: {bo, b1}
e« hp(b/t,e=1)=0
s hp(b/t,e=0)=a A. Correctness and Privacy at Bob’s side
While Alice gets no more informatiorfi4 (e) = ha(5). Now, the execution of WOT rounds can be expressed as

a random variablee = (e[1], ..e[K]) € {0,1}¥ , and ase][i]
This WOT is a case of asymmetrical transmission, whichie independent each of the otheg (m;/e) = hp(m;/eli])
is more general than Crepeau’s instance and Rabin OT amewingm;. Let ko = @, mi and ky = @, ;, mi, then
requires weaker assumptions, is obviously more easily realfz—: b. ® kg and ?)1,0 =bi_.D k. Atthe end of Proto-
able. col 11.1, Bob receivesb. and b,_. and has the equivocations



Annex lIl.1 Privacy amplification via entropy accumulation

Let V=&, , ,v where thev; are random binary variables (bits) with entropyand p, €]0,1/2] is the probability
associated with binary entropy: i.e. @ = H(v;) = ha(p,). We assume without loss of generality that is the probability
that eachw; takes the valud. V' takes the valud if an odd number of the; takes the valud. Thus:

p1=p(V =1)= Clpa(1 — po)* ' 4 ... + C2nHip2ntl( _pye=2n=t 4 |

«

po=p(V =0)= C%1 = pa)® + ... + C2"p2"(1 — pa)* 2" + ...

Then, we have:

|p0 a p1|:|01(1)(1 _pa)a + ...+ anpin(l _pa)a—Qn ¥
Gl (1= = = G =

a—1
=D Ci(=pa)' (1 = pa)® | = (1 = pa) = pal® = |1 = 2pa|® = (1 — 2p,)"
1=0

and the entropy oV is Hy ,(a) = ha(po) = h2(p1). Thus, given a €]0,1[ , Hy, is an increasing function of, i.e
Ofve > 0. We can define the reversed, !, as H,»(z) =1—1 where I = min{a|Hy,(a) >z}, for = €]0,1[. We
can say Hy,(a) <z ifand only if a < H;’}l(m). Whene is very small, we can estimatsH;jl(l —¢) as F1(1-¢

where F(a) =1 — (1 —2p,)® and then Hy (1 —¢€) ~a where (1 —2p,)* S e

hg(b.) = hp(ko), hp(bi_.) = hg(k;) depending on his Proof: We denote a random variableX; = Z;Zl elj]
setting of Iy, I [7]. The analyses of equivocation @&f, k; that represents the number of bitg known by Bob after the

are exposed in Annex IlI-A. executione. We can write
We define two variablesC, P, : {0,1}¥ — {0,1} repre-
senting the correctness and the privacy of the protocol. For p(C=1)=p(Xk >7)=1-p(Xk <7) 2

each executiore € {0,1}¥ of WOT rounds,C(e) = 1 if . , ,
Bob receives enough biis; to honestly set ugy, sharingk, Given an occurrence of, we defineone.(I;) = 3 ;cy, eld]
with Alice; andP. () = 1 if Bob cannot has enough; with ~ 2ndzeroe(I;) = v —one.(I;) for any partition Io, I, of Bob.
hp(m;) = 0 to reduce the entropies of bothky, k; below a As hp(kj) = hp(@icrnein=o Mi) = Hv,a(zeroe(l;)) and
privacy thresholdl — ¢, i.e. maz{hs(ko), hp(ki)} >1—c Maz{zeroe(lp),zero()} > [(2y — Xk)/2],  we have

whatever his repartition ofly, I; . maz{hp(ko), hi(k1)} > Hy,a([(2y — Xk)/2]). Therefore
We recall here Bernshtein’s Law of Large Numbers that will %y — Xi
be used in our security demonstrations. p(Pe=0) < GQW < H;}l(l — e))

IN

Annex I1I.2 Bernshtein’s Law of Large Numbers p (27_XK < Hyl(1- 6))

Let Xy, X, ..., X,, be independent random variables following 2 ’

a Bernoulli distribution withp as the probability parameter. = p (27 - Xk < 2H‘7’}1(1 — e)) 3
Then for any 0 < o < p(1 — p),

noy,
p (‘2’21 —p‘ > u> < 2e7
n

We consider the two different cases pfas follows.

a) Case 1:v=|2.K.5/3]| when g < 3/4
Following Bernshtein’s Law of Large Numbers, we choose

. _p="2 and have
From this law of large numbers, we can assume with a

signification probability that, afte< rounds of WOT, the Xk _4l> B < 9e—KB2/16 s
number ofm; successfully received by Bob, i.e[i]] = 1, P\I'k =)= =€
is sufficient to set upy indexes inly and not sufficient to set

up 2v indexes in bothly, I; (cf. Figure IlI-A). for K > 16(In(2) + 5)/8%. We can rewrite (2) as
We considerp(C = 1) the probability that after the execu- 2.K.8

tion of WOT rounds the honest Bob géts and p(P. = 0) pC=1))=1-p (XK < {D

the probability that after the execution of WOT rounds, a dis- 3

honest Bob can set ugy, I; reducing both the equivocations >1-p| Xk < 2'K'5)

of two bits b, andb;_. below1 — . - -3

) plC=1)>1—e""%.

XK

=1- - 2R

Theorem 1:Let constant > 1, we can choosé&’ such that P (6 K -
Xr
2) given ¢ >0, p(P.=0)<e " K
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Margins assumed by Law of Larges Numbers
Fig. 2. Correctness and Privacy at Bob's side assumed by Law of Large Numbers
With K > 16(In(2) + s)/8* , we assume Following Bernshtein’s Law of Large Numbers, we can choose
p=321"8) and have
pe=nz1-p([p- 222 2) 20
ﬁ - 8> u < 90— K9(1-5)%/16 <e®
; P\|'x 4
Aside, we have
2.K. n 8(Hy L (1—e)+1
p(P.=0)<p (2 {?)BJ Xi <2H,, (1 — e)) for K > % If we chooseK > % such
2.K.3 that% < 2, then
<p (23—2—XK < 2H;; (1—6))
Xk 3(1-5)
(xK - 2<Hv7a<1—e>+1>> p<7’6:°)fp<f(‘524
= p —_— —_—
K K X 1-
<o -s)2 D) <o
-1 e
If we choose K > w such that
217, (1-05D) _ 13 gl for K > 169%(22;5) > 16((’5/(4))2 , when~ > 3/4. Therefore,
K =B we can assumg(C =1) > 1—e % andp(P. =0) < e * by

hoosi
p(PE=0)§p<X7’<_ﬁ>ﬂ> p(‘XK B‘ ><€_S choosing

160n(2) +5) S(HA1 =9 +1)
K=z 91 —48)2 ~’ (1-5) (5)

for Kz%. Therefore, we can assume

C=1)>1-¢°% and . =0) < e * by choosin .
ol )z © p( )se y g In conclusion, we can choogé to assume(C =1) > 1—e *®

16(in(2) +5) 24(Hyo(1—€) +1) andp(P. = 0) < e—* as shown in (4) and (5). n
62 ’ : 6 (4)

szam{

B. Privacy at Alice’s side
b) Case 2:v = |K/2| when 8 > 3/4

(2) can be rewritten as Theorem 2:Protocol Ill.1 is unconditionally secure at Al-

ice’s side.
K
p(C=1)=1- (XK < { D Proof: All information that Alice has are the probability
distribution D of the executione of WOT rounds, with
>1- (XK < — /ﬁ == > p(e[i] = 1) = § and the pair (I.,I; _.) returned from Bob.
16(1 ( V4 8) She can so guesswith
(In(2) + s
>1—e® for K > —-"——~
S (3/4)2 ple = 0/(Uu. 1), D) = PUe=1)s (hi—c = 1) /D)p(c = 0)

(
We should rewrite (3) as p((f Ii—c/D)

p((Iczll)a I —c —IO)/D)p(c:]')

ple=1/(c, i), D) =

K
p(P.=0)<p (2 \‘QJ — Xy < QH;;(l _ 6)) p(Ie,Ii—¢/D)
o where p(i.,I,_./D) is the probability that Bob returns
<p <K —2-Xg <2Hy (1~ 5)) (I.,I,_.) to Alice, given D. We suppose that honest Bob
X (H;}I(l_e)Jrl) randomly selectsl, as any subset ofy members from_
=p| % ~ g>1—-p5-— : e {i | e[i] = 1} when he receives an occurrence of the execution
e of WOT rounds, andl; is randomly chosen from the



remaining indexes. The above equations can be rewritten asIn conclusion, inspired from contributions to reducing be-
9 tween variants of Oblivious Transfer, notably from [4], [12],
__ ple=1o/D) we have d i d the OT family b
= o proposed a new variant to extend the OT family by
2p(Le, Il*C/D)CKﬂ showing that existing variants can be reduced to it. This would

plc=0/(I.,I1_¢), D)

(c=1/(I,_.),D) = p(hi-. = Iy/D)? make OTs be near, or even match, mathematical and physical
Pe= e =), B) = 2p(I., 11—/ D)CY _, realizations (cf. figure 3).
For a > +, we usee® to denote any occurrence ef such Mathematical realizations

that>", e[i] = a and, for each’ C {1,.., K} with |I| = ~,

we defineed as anye® with Vi € I,e%[i] = 1. We state that
the distribution D is “bit-sum” uniform, i.e. all occurrence

e with the same bit-sum are assigned a same probability:
p(e?/D) = B*(1 - B)X—2. As Bob selectsl in a random
manner, we haves(I = Iy/e}) = c%z meanwhilep(l =

[0/6“) =0 if e® is not aej,‘. We have Physical realizations

— . aQ —_ a
p(I = 1o/D) = Z Zp(eI/D)p(I = Io/ef) Fig. 3. Realizations of OTs
K>a>~ e}
1
= Z mﬁa(l - B)K_a
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IV. MORE EXTENSIONS AND CONCLUDING REMARKS



