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ABSTRACT

This paper presents an iterative blind source separation
method using second order statistics (SOS) and natural gra-
dient technique. The SOS of observed data is shown to be
sufficient for separating mutually uncorrelated sources pro-
vided that the considered temporal coherence vectors of the
sources are pairwise linearly independent. By applying the
natural gradient, an iterative algorithm is derived that has a
number of attractive properties including its simplicity and
’easy’ generalization to adaptive or convolutive schemes. As-
ymptotic performance analysis of the proposed method is
performed. Several numerical simulations are presented to
demonstrate the effectiveness of the proposed method and
to validate the theoretical expression of the asymptotic per-
formance index.

1. INTRODUCTION

Source separation aims at recovering multiple sources from
multiple observations (mixtures) received by a set of linear
sensors. The problem is said to be ’blind’ when the observa-
tions have been linearly mixed by the transfer medium, while
having no a priori knowledge of the transfer medium or the
sources. Blind source separation (BSS) has applications in
several areas, such as communication, speech/audio process-
ing, biomedical engineering, geophysical data processing,
etc [1]. BSS of instantaneous mixtures has attracted a lot
of attention due to its many potential applications [1] and
its mathematical tractability that lead to several nice and
simple BSS solutions [1–5].
In this paper, we present SOS based method for blind sepa-
ration of temporally coherent sources. We first present SOS-
based contrast functions for BSS. Then, to achieve BSS, we
optimize the considered contrast function using an iterative
algorithm based on the relative gradient technique. The gen-
eralization of this method to deconvolution and adaptive al-
gorithms is then discussed. Finally, a theoretical analysis of
the performance of the method has been derived and vali-
dated by simulation results.

2. PROBLEM FORMULATION

Assume that m narrow band signals impinge on an array of
n ≥ m sensors. The measured array output is a weighted
superposition of the signals, corrupted by additive noise, i.e.

x(t) = y(t) + η(t) = As(t) + η(t) (1)

where s(t) = [s1(t), · · · , sm(t)]T is the m× 1 complex source
vector, η(t) = [η1(t), · · · , ηn(t)]T is the n× 1 Gaussian com-
plex noise vector, A is the n × m full column rank mixing
matrix (i.e., n ≥ m), and the superscript T denotes the trans-
pose operator. The source signal vector s(t), is assumed to
be a multivariate stationary complex stochastic process.
In this paper, we consider only the second order statistics
and hence the signals si(t), 1 ≤ i ≤ m are assumed to be

temporally coherent and mutually uncorrelated, with zero
mean and second order moments:

S(τ)
def
= E (s(t + τ)s?(t))

= diag[ρ1(τ), · · · , ρm(τ)]

where ρi(τ)
def
= E(si(t + τ)s∗i (t)), the expectation operator

is E, and the superscripts ∗ and ? denote the conjugate of
a complex number and the complex conjugate transpose of
a vector, respectively. The additive noise η(t) is modeled
as a stationary white (temporally but not necessarily spa-
tially) zero-mean complex random process. In that case, the
source separation is achieved by decorrelating the signals at
different time lags. The purpose of blind source separation
is to find a separating matrix, i.e. a m× n matrix such thatbs(t) = Bx(t) is an estimate of the source signals.
Before proceeding, note that complete blind identification of
separating matrix B (or the equivalently mixing matrix A)
is impossible. The best that can be done is to determine B
up to a permutation and scalar multiple of its columns [3],
i.e., B is a separating matrix iff:

By(t) = PΛs(t) (2)

where P is a permutation matrix and Λ a non-singular di-
agonal matrix.

3. CONTRAST FUNCTION

The following theorems serve as the basis for our method for
blind separation of stationary sources.
We present here separation criteria for the stationary, tempo-
rally correlated source signals and their corresponding con-
trast functions. Let consider first the noiseless case. We have
the following result:

Theorem 1 Let τ1 < τ2 < · · · < τK be K ≥ 1 time
lags, and define ρi = [ρi(τ1), ρi(τ2), · · · , ρi(τK)] and ρ̃i =
[<e(ρi),=m(ρi)] where <e(x) and =m(x) denote the real
part and imaginary part of x, respectively. Taking advantage
of the indeterminacy, we assume without loss of generality
that the sources are scaled such that ‖ρi‖ = ‖ρ̃i‖ = 1, for
all i 1. Then, BSS can be achieved using the output correla-
tion matrices at time lags τ1, τ2, · · · , τK if and only if for all
1 ≤ i 6= j ≤ m:

ρ̃i and ρ̃j are (pairwise) linearly independent (3)

Interestingly, we can see from condition (3) that BSS can be

achieved from only one correlation matrix Rx(τk)
def
= E(x(t+

1We implicitly assume here that ρi 6= 0, otherwise the source
signal could not be detected (and a fortiori could not be estimated)
from the considered set of correlation matrices. This hypothesis
will be held in the sequel.



τk)x?(t)) provided that the vectors [<e(ρi(τk)),=m(ρi(τk)]
and [<e(ρj(τk)),=m(ρj(τk)] are pairwise linearly indepen-
dent for all i 6= j.
Note also that, from (3), BSS can be achieved if at most one
temporally white source signal exists. In contrast, recall that
when using higher order statistics, BSS can only be achieved
if at most one Gaussian source signal exists.
Under the condition of Theorem 1, the BSS can be achieved
by decorrelation according to the following result:

Theorem 2 Let τ1, τ2, · · · , τK be K time lags and z(t) =
[z1(t), · · · , zm(t)]T be an m×1 vector given by z(t) = Bx(t).

Define rij(τk)
def
= E(zi(t + τk)z∗j (t)). If the identifiability

condition holds, then B is a separating matrix if and only if

rij(τk) = 0 and

KX
k=1

|rii(τk)| > 0 (4)

for all 1 ≤ i 6= j ≤ m and k = 1, 2, · · · , K.

Note that, if one of the time lags is zero, the result of The-
orem 2 holds only under the noiseless assumption. In that
case, we can replace the condition

PK
k=1 |rii(τk)| > 0 by

rii(0) > 0, for i = 1, · · · , m. On the other hand, if all the
time lags are non-zero and if the noise is temporally white
(but can be spatially colored with unknown spatial covari-
ance matrix) then the above result holds without the noise-
less assumption.
Based on Theorem 2, we can define different objective (con-
trast) functions for signal decorrelation. In [6], the following
criterion2 was used

G(z) =

KX
k=1

log |diag(Rz(τk))| − log |Rz(τk)| (5)

where diag(A) is the diagonal matrix obtained by zeroing
the off diagonal entries of A. Another criterion used in [5] is

G(z) =
KP

k=1

P
1≤i<j≤m

[|rij(τk) + rji(τk)|2+

|rij(τk)− rji(τk)|2] +
mP

i=1

|
KP

k=1

|rii(τk)| − 1|2
(6)

Equations (5) and (6) are non-negative functions which are
zero if and only if Rz(τk) = E(z(t + τk)z?(t)) are diagonal
for k = 1, · · · , K or equivalently if (4) is met.

4. ITERATIVE ALGORITHM

The separation criteria we have presented takes the form:

B is a separating matrix ⇐⇒ G(z(t)) = 0 (7)

where z(t) = Bx(t) and G is a given contrast function. The
approach we choose to solving (7) is inspired from [7]. It
is a block technique based on the processing of T received
samples and consists of searching the zeros of the sample
version of (7). Solutions are obtained iteratively in the form:

B(p+1) = (I + ε(p))B(p) (8)

z(p+1)(t) = (I + ε(p))z(p)(t) (9)

At iteration p, a matrix ε(p) is determined from a local lin-
earization of G(Bx(t)). It is an approximate Newton tech-

nique with the benefit that ε(p) can be very simply computed

2In that paper, only the case where τ1 6= 0 was considered.

(no Hessian inversion) under the additional assumption that

B(p) is close to a separating matrix. This procedure is illus-
trated as follows:
We first consider the noiseless case or eventually the non-
zero lag case (i.e. τi 6= 0 for i = 1, . . . , K). By using (9), we
have:

r
(p+1)
ij (τk) = r

(p)
ij (τk) +

mP
q=1

ε
∗(p)
jq r

(p)
iq (τk)+

mP
l=1

ε
(p)
il r

(p)
lj (τk) +

mP
l,q=1

ε
(p)
il ε

∗(p)
jq r

(p)
lq (τk)

(10)

where

r
(p)
ij (τk)

def
= E

�
z
(p)
i (t + τk)z

∗(p)
j (t)

�
(11)

≈ 1

T − τk

T−τkX
t=1

z
(p)
i (t + τk)z

∗(p)
j (t) (12)

Under the assumption that B(p) is close to a separating ma-
trix, it follows that

|ε(p)
ij | � 1

and
|r(p)

ij (τk)| � 1 for i 6= j

and thus, a first order approximation of r
(p+1)
ij (τk) is given

by:

r
(p+1)
ij (τk) ≈ r

(p)
ij (τk) + ε

∗(p)
ji r

(p)
ii (τk) + ε

(p)
ij r

(p)
jj (τk) (13)

similarly, we have:

r
(p+1)
ji (τk) ≈ r

(p)
ji (τk) + ε

∗(p)
ij r

(p)
jj (τk) + ε

(p)
ji r

(p)
ii (τk) (14)

From (13) and (14), we have:

r
(p+1)
ij (τk) + r

(p+1)
ji (τk) ≈ 2r

(p)
jj (τk)<e(ε

(p)
ij )

+2r
(p)
ii (τk)<e(ε

(p)
ji ) + (r

(p)
ij (τk) + r

(p)
ji (τk))

r
(p+1)
ij (τk)− r

(p+1)
ji (τk) ≈ 2r

(p)
jj (τk)=m(ε

(p)
ij )

−2r
(p)
ii (τk)=m(ε

(p)
ji ) + (r

(p)
ij (τk)− r

(p)
ji (τk))

with  =
√
−1. By replacing the previous equation into

(6), we obtain the following least squares (LS) minimization
problem

min

hr(p)
jj , r

(p)
ii

i
E

(p)
ij +

�
1

2
(r

(p)
ij + r

(p)
ji ),

1

2
(r

(p)
ij − r

(p)
ji )

�
where

E
(p)
ij

def
=

"
<e(ε

(p)
ij ) =m(ε

(p)
ij )

<e(ε
(p)
ji ) −=m(ε

(p)
ji )

#
(15)

r
(p)
ij = [r

(p)
ij (τ1), · · · , r

(p)
ij (τK)]T (16)

A solution to the LS minimization problem is given by:

E
(p)
ij = −

h
r
(p)
jj , r

(p)
ii

i# �
1

2
(r

(p)
ij + r

(p)
ji ),

1

2
(r

(p)
ij − r

(p)
ji )

�
(17)

where A# denotes the pseudo-inverse of matrix A. Equa-

tions (15) and (17) provide the explicit expression of ε
(p)
ij for



i 6= j. For i = j, the minimization of (6) using the first order
approximation leads to:�����

KX
k=1

r
(p)
ii (τk)

�
1 + 2<e(ε

(p)
ii )

������− 1 = 0 (18)

Without loss of generality, we take advantage of the phase
indeterminacy to assume that εii are real-valued and hence
<e(εii) = εii. Consequently, we obtain:

ε
(p)
ii =

1−
KP

k=1

|r(p)
ii (τk)|

2
KP

k=1

|r(p)
ii (τk)|

(19)

In the case of real-valued signals, the LS minimization be-
comes:

min
H(p)

ij e
(p)
ij +ψ

(p)
ij


where

H
(p)
ij =

�
1
1

�
⊗
h
r
(p)
jj , r

(p)
ii

i
(20)

e
(p)
ij =

h
ε
(p)
ij , ε

(p)
ji

iT

(21)

ψ
(p)
ij =

"
r
(p)
ij

r
(p)
ji

#
(22)

and ⊗ denotes the Kronecker product. A solution to the LS
minimization problem is given by:

e
(p)
ij = −H

(p)#
ij ψ

(p)
ij (23)

Remark: A main advantage of the above algorithm is its
flexibility and easy implementation in the adaptive case. In-
deed, the adaptive version of this algorithm consists simply
in replacing the iteration index p by the time index t and the

correlation coefficient r
(p)
ij (τk) by their adaptive estimates

r
(t)
ij (τk) = βr

(t−1)
ij (τk) + zi(t)z

∗
j (t− τk) if k ≥ 0 or otherwise

r
(t)
ij (τk) = βr

(t−1)
ij (τk) + zi(t + τk)z∗j (t) where 0 < β < 1 is

a forgetting factor. This algorithm can also be extended to
deal with BSS of convolutive mixtures as shown next.

5. GENERALIZATION TO CONVOLUTIVE
MIXTURE CASE

In the convolutive mixture case, the signal can be modeled
by the following equation:

x(t) = y(t) + η(t) =

LX
`=0

A(`)s(t− `) + η(t), (24)

where A(k) are n×m matrices for ` ∈ [0, L] representing the
impulse response coefficients of the channel. The polynomial
matrix A(z) =

PL
`=0 A(`)z−` is assumed to be irreducible

(i.e. A(z) is of full column rank for all z).
In this section, one will determinate the rational matrix
B(z) =

P̀
B(`)z−` such that B(z) is a separating matrix,

i.e.

w(t) =
X

`

B(`)x(t− `) = [diag(c1(z) . . . cm(z))] s(t) (25)

where c1(z) . . . cm(z) are m given scalar rational functions.
To achieve this BSS, we consider a decorrelation criterion :

eG(w) =

KX
k=1

X
1≤i<j≤m

|rij(τk)|2 +

mX
i=1

|
KX

k=1

|rii(τk)| − 1|2 (26)

so that

B(z) is a separating matrix ⇐⇒ eG(w(t)) = 0 (27)

Solutions are obtained iteratively in the form:

B(p+1)(z) =
�
I + ε(p)(z)

�
B(p)(z) (28)

w(p+1)(t) = w(p)(t) +

1X
`=0

ε(p)(`)w(p)(t− `) (29)

where ε(p)(z)
def
= ε(p)(0) + ε(p)(1)z−1.

Similarly to the instantaneous mixture case, a first order

approximation of r
(p+1)
ij (τk) is given by:

r
(p+1)
ij (τk) ≈ r

(p)
ij (τk) +

1P
l=0

ε
∗(p)
ji (`)r

(p)
ii (τk + `)

+
1P

l′=0

ε
(p)
ij (`′)r

(p)
jj (τk − `′)

(30)

Replacing (30) into (27) leads after straight forward deriva-
tion to:

min
E(p)

ij

�
‖Φ(p)

ij E(p)
ij + r

(p)
ij ‖

2 + ‖Φ(p)
ji ME∗(p)

ij + r
(p)
ji ‖

2
�

(31)

where

E(p)
ij = [ε

(p)
ij (0) ε

(p)
ij (1) ε

∗(p)
ji (0) ε

∗(p)
ji (1)]T (32)

Φ
(p)
ij = [φ

(p)
jj (0) φ

(p)
jj (−1) φ

(p)
ii (0) φ

(p)
ii (1)] (33)

φ
(p)
ii (k) = [r

(p)
ii (τ1 + k), . . . , r

(p)
ii (τK + k)]T , k ∈ Z (34)

and M is the matrix verifying E(p)
ji = ME∗(p)

ij , i.e.

M =

�
0 1
1 0

�
⊗
�

1 0
0 1

�
(35)

Finally, one obtains the solution:24 <e
�
E(p)

ij

�
=m

�
E(p)

ij

� 35 = −

"
Θ

(p)
ij

Θ
(p)
ji

##

ν
(p)
ij (36)

where

Θ
(p)
ij =

24 <e
�
Φ

(p)
ij

�
−=m

�
Φ

(p)
ij

�
=m

�
Φ

(p)
ij

�
<e

�
Φ

(p)
ij

� 35 (37)

Θ
(p)
ji =

24 <e
�
Φ

(p)
ji M

�
=m

�
Φ

(p)
ji M

�
=m

�
Φ

(p)
ji M

�
−<e

�
Φ

(p)
ji M

� 35 (38)

and

ν
(p)
ij =

h
<e(r

(p)
ij )T=m(r

(p)
ij )T<e(r

(p)
ji )T=m(r

(p)
ji )T

iT

(39)

For i = j, we take again advantage of the problem indetermi-
nacy to assume without loss of generality that the diagonal

entries of ε
(p)
ii (0) are real-valued and those of ε

(p)
ii (1) are zero.

This assumption leads to the ε
(p)
ii (0) given by equation (19).



6. ASYMPTOTIC PERFORMANCE

In this section, asymptotic (i.e. for large sample sizes) per-
formance analysis results of the proposed method in instan-
taneous real case is given. We consider the case of instan-
taneous mixture with i.i.d real-valued sources satisfying, in
addition to the identifiability condition

P
k∈Z |ρi(k)| < +∞

for i = 1, . . . , m. The noise is assumed Gaussian with vari-
ance σ2I. Assuming that the permutation indeterminacy is
P = I, one can write:

BA = I + δ (40)

and hence, the separation quality is measured using the mean
rejection level criterion [3] defined as:

Iperf
def
=

X
p 6=q

E
�
|(BA)pq|2

�
ρq(0)

E (|(BA)pp|2) ρp(0)
(41)

=
X
p 6=q

E
�
|δpq|2

� ρq(0)

ρp(0)
(42)

Our performance analysis consists in deriving the closed-
form expression of the asymptotical variance errors:

lim
T→+∞

T E
�
|δpq|2

�
(43)

By using a similar approach to that in [7] based on the
central-limit and continuity theorems, one obtains the fol-
lowing result (the proof is omitted due to space limitation).

Theorem 3 Vector δij
def
= [δij δji]

T is asymptotically
Gaussian distributed with asymptotic covariance matrix

∆ij
def
= lim

T→+∞
T E

�
δijδ

T
ij

�
(44)

= lim
T→+∞

T

�
E
�
δ2

ij

�
E (δijδji)

E (δjiδij) E
�
δ2

ji

� �
(45)

= H#
ijΨijH#T

ij (46)

where

Hij =

�
1
1

�
⊗
�
ρi ρj

�
(47)

Ψij =

"
Γ

(ij)
11 Γ

(ij)
12

Γ
(ij)
21 Γ

(ij)
22

#
(48)

with

Γ
(ij)
11 (k, k′) =

X
τ∈Z

rii(k + τ)rjj(k
′ + τ) (49)

Γ
(ij)
22 (k, k′) =

X
τ∈Z

rii(k
′ + τ)rjj(k + τ) (50)

Γ
(ij)
12 (k, k′) =

X
τ∈Z

rii(k + τ)rjj(k
′ − τ) (51)

rii(k) = ρi(k) + δ(k)σ2bib
T
i (52)

and Γ
(ij)
21 = Γ

(ij)T
12 and bi represents the ith row of B = A#.

7. SIMULATION RESULTS

We present here some numerical simulations to evaluate the
performance of our algorithm. We consider in our simulation
an array of n = 4 sensors receiving two signals in the presence
of stationary real temporally white noise. The two source sig-
nals are generated by filtering real white Gaussian processes

by an AR model of order 1 with coefficient a1 = 0.95 and
a2 = 0.50 (except for Figure 4). The sources arrive from
the directions θ1 = 30 and θ2 = 45 degree. The number of
time lags is K = 5 (except for Figure 5). The signal to noise
ratio is defined as SNR = −10 log10 σ2, where σ2 is the noise
variance. The mean rejection level is estimated over 1000
Monte-Carlo runs.
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Figure 1: Mean Rejection Level in dB versus the sample size
T for 2 autoregressive sources, 4 sensors and SNR=40dB.

In Figure 1, The mean rejection level Iperf is plotted in
dB against the sample size. The figure is for SNR = 40dB.
This figure shows that the asymptotic closed form expres-
sions of the rejection level are pertinent from snapshot length
of about 100 samples. In the plots E

�
δ2

ij

�
and E

�
δ2

ji

�
are

replaced by ∆ij(1, 1)/T and ∆ij(2, 2)/T respectively. This
means that asymptotic conditions are reached for short data
block size.
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Figure 2: Mean Rejection Level in dB versus the SNR for 2
autoregressive sources, 4 sensors and T=1000.

Figure 2 shows the mean rejection level against the signal
to noise ratio SNR. We compare the empirical performance
with theoretical performance for T = 1000 sample size.
Figure 3 shows the mean rejection level versus the number of
sensors using the theoretical formulation for T = 1000 sam-
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Figure 3: Mean Rejection Level in dB versus the number of
sensors n for 2 autoregressive sources and T=1000.

ple size. We observe that, the greater the number of sensors,
the lower the rejection level is in the low SNR case. For high
SNRs the number of sensors has negligible effect on the sep-
aration performance.
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Figure 4: Mean Rejection Level in dB versus the spectral
shift δa for 2 autoregressive sources, 4 sensors and T=1000.

Figure 4 shows Iperf versus the spectral shift δa. the
spectral shift δa represents the spectral overlap of the two
sources. In this figure, the noise is assumed to be spatially
white and its level is kept constant at 10dB and 30dB. We let
a1 = 0.4 and a2 = a1 + δa. The plot evidences a significant
increase in rejection performance by increasing δa.
The plots in Figure 5 illustrate the effect of the number of
time lags K for different SNRs. In this simulation the sources
arrive from the directions θ1 = 10 and θ2 = 13 degree.

8. CONCLUSION

This paper presents a blind source separation method for
temporally correlated stationary sources. An SOS-based
contrast function is introduced and iterative algorithm based
on relative gradient technique is proposed to minimize it and
perform BSS. Generalization to adaptive and convolutive
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Figure 5: Mean Rejection Level in dB versus the number
of time lags K for 2 autoregressive sources, 4 sensors and
T=1000.

cases are discussed. A theoretical analysis of the asymptotic
performance of the method has been derived. Numerical
simulations have been performed to evidence the usefulness
of the method and to support our theoretical performance
study.
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