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ABSTRACT

Fluid limit techniques have become a central tool to analyze
queueing networks over the last decade, with applications to
performance analysis, simulation, and optimization.

In this paper some of these techniques are extended to a
general class of skip-free Markov chains. As in the case of
queueing models, a fluid approximation is obtained by scal-
ing time, space, and the initial condition by a large constant.
The resulting fluid limit is the solution of an ODE in “most”
of the state space. Stability and finer ergodic properties for
the stochastic model then follow from stability of the set
of fluid limits. Moreover, similar to the queueing context
where fluid models are routinely used to design control poli-
cies, the structure of the limiting ODE in this general setting
provides an understanding of the dynamics of the Markov
chain. These results are illustrated through application to
Markov Chain Monte Carlo.
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1 INTRODUCTION

Although fluid approximations for queueing networks were
advocated almost 25 years ago in the book of Newell [1], this
viewpoint has been slow to take hold in the queueing research
community. Beginning in the 1990s fluid models have been
used to address delay in complex networks [2] and bottleneck

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Valuetools’06, October 11-13, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-504-5 . . . $5.00.

analysis in [3]. The latter work followed an already extensive
research program on diffusion approximations for networks
(see [4] and the references therein).

In this paper we extend the application of fluid approxima-
tions for analysis of a general class of discrete-time Markov
chains {Φk} on d-dimensional Euclidean state-space. Re-
call that a Markov chain is called skip-free if the increments
(Φk+1−Φk) are uniformly bounded in norm by a determinis-
tic constant for each k and each initial condition. For exam-
ple, Markov chain models of queueing systems are typically
skip-free. Here we consider a relaxation of this assumption in
which the increments are assumed bounded in an Lp-sense.
Consequently, we find that the chain can be represented by
the additive noise model,

Φk+1 = Φk + ∆(Φk) + εk+1 , k ≥ 0 , (1)

where {εk} is a martingale increment sequence w.r.t. the
natural filtration of the process {Φk}, and ∆: X → X is
bounded. Associated to this chain, we consider the following
sequence of continuous time process

ηα
r (t; x)

def
= r−1Φbtr1+αc, ηα

r (0; x)
def
= r−1Φ0 = x , (2)

for r ≥ 0, α ≥ 0 and x ∈ X, obtained by interpolating and
scaling the Markov chain in space and time. b·c stands for
the lower integer part. A fluid limit is obtained as a sub-
sequential weak-limit, and the set of all such limits is called
the fluid limit model. In queueing network applications, a
fluid limit is easy to interpret in terms of mean flows; in most
situations it is a solution of a deterministic set of equations
depending on network characteristics as well as the control
policy (see e.g. [3, 5, 6, 7, 8]). The existence of limits and the
continuity of the fluid limit model may be established under
general conditions on the increments (see Theorem 2.2).

The fact that stability of the fluid limit model implies sta-
bility of the stochastic network was established in a limited
setting in [9], and then extended to a particular two-station,
two-class network in [10]. This technique was generalized to
a very broad class of multiclass networks in [5]. A key step in
the proof of these results is a multi-step state-dependent ver-
sion of Foster’s criterion introduced in [9] for countable state
space models, and later extended to general state-space in
[11, 12] (see also [13] for an in-depth discussion). The main
result of [5] only established positive recurrence. Moments
and rates of convergence to stationarity of the Markovian
network model were obtained in [6] based on an extension
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Figure 1: Blue lines: trajectories of the interpolated pro-
cess (2) for the Symmetric Random Walk Metropolis Hast-
ings (SRWM) algorithm for a set of initial conditions on the
unit sphere between (0, π/2) for the target density (23). Red
lines: flow of the associated ODE.
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Figure 2: Blue lines: trajectories of the interpolated pro-
cess (2) for the SRWM with target density (24) and initial
condition x = (1/

√
2, 1/

√
2). Red lines: support of the fluid

limits associated to this initial condition.

of [12] using the subgeometric f -ergodic theorem in [14] (re-
cently extended and simplified in work of [15].) Converse
theorems have appeared in [16, 17, 18] that show that, under
somewhat strong conditions, instability of the fluid model
implies transience of the stochastic network. The counterex-
amples in [19, 20] show that some additional conditions are
necessary to obtain a converse.

Under general conditions, including the generalized skip-
free assumption, a fluid limit η is a weak solution (in a sense
given below) to the homogeneous ODE,

µ̇ = h(µ) . (3)

The vector field h is defined as a radial limit of the function
∆ appearing in (1) under appropriate renormalization. Fig-
ures 1 and 2 illustrate convergence to the fluid model in the
MCMC model considered in example 3.2.

Provided that the increments {εk} in the decomposition
(1) are tight in Lp, stability of the fluid limit model implies

finite moments in steady state, as well as polynomial rates
of convergence to stationarity - see Theorem 2.4.

An advantage of the ODE approach over the usual Foster-
Lyapunov approach to stability is that the ODE model pro-
vides insight into Markov chain dynamics, especially tran-
sient behavior starting from a ‘large initial condition’. In
the queueing context, the ODE model has many other ap-
plications, such as simulation variance reduction [21] and
optimization [22].

The remainder of the paper is organized as follows. Sec-
tion 2.1 contains notations and assumptions, along with a
construction of the fluid limit model. The main result is
contained in Section 2.2, where it is shown that stability
of the fluid limit model implies the existence of polynomial
moments as well as polynomial rates of convergence to sta-
tionarity (known as (f, r)-ergodicity.) Fluid limits are char-
acterized in Section 2.3. Proposition 2.5 provides conditions
that guarantee that a fluid limit coincides with the weak so-
lutions of the ODE (3). The proofs are omitted due to lack
of space and can be found in [23].

These results are applied to establish (f, r)-ergodicity of
the random-walk Metropolis-Hastings algorithm for super-
exponential densities in Section 3.1 and for subexponential
densities in Section 3.2. In example 3.2 the fluid limit model
is stable, and any fluid limit is a weak solution of the ODE
(3), yet some fluid limits are non-deterministic.

2 ASSUMPTIONS AND STATE-
MENT OF THE RESULTS

2.1 Fluid Limit: definitions

We consider a Markov chain Φ
def
= {Φk}k≥0 on a d-

dimensional Euclidean space X equipped with its Borel
sigma-field X . The distribution of Φ is specified by its ini-
tial state Φ0 = x ∈ X and its transition kernel P . We write
Px for the distribution of the chain conditional on the initial
state Φ0 = x and Ex for the corresponding expectation.

Denote by C(R+, X) the space of continuous X-valued
functions on the infinite time interval [0,∞). We equip
C(R+, X) with the local uniform topology. Denote by
D(R+, X) the space of X-valued right-continuous functions
with left limits on the infinite time interval [0,∞), here-
after cadlag functions. This space is endowed with the Sko-
rokhod topology. For 0 < T < +∞, denote by C([0, T ], X)
(resp. D([0, T ], X)) the space of X-valued continuous func-
tions (resp. cadlag functions) defined on [0, T ], equipped
with the uniform (resp. Skorokhod) topology. For x ∈ X
and α > 0, consider the following interpolated process,

ηα
r (t; x)

def
= r−1Φbtr1+αc, ηα

r (0; x)
def
= r−1Φ0 = x . (4)

Denote by Qα
r;x the image probability on D(R+, X) of Px by

ηα
r (·; x). In words, the renormalized process is obtained by

scaling the Markov chain in space, time and initial condition.
This is made precise in the following,

Definition 2.1 (α-Fluid Limit). Let α ≥ 0 and x ∈ X. A
probability measure Qα

x on D(R+, X) is said to be an α- fluid
limit if there exist sequences of scaling factors {rn} ⊂ R+

and initial states {xn} ⊂ X satisfying limn→∞ rn = +∞ and
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limn→∞ xn = x such that Qα
rn;xn

converges weakly to Qα
x on

D(R+, X), which we denote Qα
rn;xn

⇒ Qα
x .

The set Lα def
= {Qα

x , x ∈ X} of all such limits is referred to
as the α-fluid limit model. An α-fluid limit Qα

x is said to be
continuous if Qα

x

�
C(R+, X)

�
= 1. An α-fluid limit Qα

x is said

to be deterministic if there exists a function g ∈ D(R+, X)
such that Qα

x = δg, the Dirac mass at g.
Assume that Ex[|Φ1|] < ∞ for all x ∈ X, and consider the

decomposition (1) where

∆(x)
def
= Ex[Φ1 − Φ0] = Ex [Φ1]− x for all x ∈ X , (5)

εk
def
= Φk − E[Φk|Fk−1] for all k ≥ 1 . (6)

In the sequel, we assume that

B1 There exists p > 1 such that

lim
K→∞

sup
x∈X

Ex[|ε1|p1{|ε1| ≥ K}] = 0 .

B2 There exists β ∈ [0, 1 ∧ (p− 1) ) such that

N(β, ∆)
def
= sup

x∈X

n
(1 + |x|β)|∆(x)|

o
< ∞ . (7)

The condition B2 implies that the function ∆ is bounded on
X.

A sequence of probability measure {Sn}n∈N on D(R+, X)
is said to be C-tight if it is tight in D(R+, X) and if every
weak limit S of a subsequence of {Sn}n∈N is continuous.

Theorem 2.2. Assume B1 and B2. Then, for any se-
quences {rn} ⊂ R+ and {xn} ⊂ X such that limn→∞ |rn| =
+∞ and limn→∞ xn = x, {Qα

rn;xn
}n∈N is C-tight for all

0 ≤ α ≤ β. Furthermore, for all 0 ≤ α < β, the α-fluid
limits are trivial in the sense that Qα

x = δg with g(t) ≡ x.

2.2 Stability of Fluid Limits and
Markov Chain Stability

There are several notions of stability that appeared in the
literature (see [24, Theorem 3] and the surrounding discus-
sion). We adopt the notion of stability introduced in [25].

Definition 2.3 (Stability). The α-fluid limit model Lα is
said to be stable if there exist T > 0 and ρ < 1 such that for
any x ∈ X with |x| = 1,

Qα
x

�
η ∈ D(R+, X), inf

0≤t≤T
|η(t)| ≤ ρ

�
= 1 . (8)

Let f : X → [1,∞) be a function and {r(n)}n∈N be a se-
quence of positive real numbers. Denote by ‖·‖f the f -total
variation norm, defined for any finite signed measure ν as
‖ν‖f = sup|g|≤f |ν(g)|. When f ≡ 1, ‖ · ‖1 = ‖ · ‖TV is the
total variation norm. An aperiodic phi-irreducible positive
Harris chain with stationary distribution π is called (f, r)-
ergodic if limn→∞ r(n) ‖P n(x, ·)− π‖f = 0 for all x ∈ X. If
P is positive Harris recurrent with invariant probability π,

the fundamental kernel Z is defined as Z
def
= (Id−P +Π)−1,

where the kernel Π is Π(x, ·) ≡ π(·), for all x ∈ X and Id
is the identity kernel. For any measurable function g on

X, the function ĝ = Zg is a solution to the Poisson equa-
tion, whenever the inverse is well defined. The unfamiliar
reader car refer to [11]) for the definitions of aperiodicity,
phi-irreducibility, positive Harris chain, · · · .

Let f ≥ 1 be a finite valued function on X and let
Lf
∞ denote the vector space of all measurable functions g

on X such that supx∈X |g(x)|/f(x) is finite. This vector

space is a Banach space with the associated norm |g|f
def
=

supx∈X |g(x)|/f(x). The following theorem may be seen as
an extension of [6, Theorem 5.5], which relates the stability
of the fluid limit to the (f, r)-ergodicity of the original chain.

Theorem 2.4. Let {Φk}k∈N be a phi-irreducible and aperi-
odic Markov chain such that compact sets are petite. Assume
B1 and B2 and the β-fluid limit model Lβ is stable. Then,
for any 1 ≤ q ≤ (1 + β)−1p,

(i) the Markov chain {Φk}k∈N is (fq, rq)-ergodic with

fq(x)
def
= 1 + |x|p−q(1+β) and rq(n) = nq−1.

(ii) the fundamental kernel Z is a bounded linear transfor-

mation from L
fq
∞ to L

fq−1
∞ .

2.3 Characterization of the fluid limits

Theorem 2.4 relates the ergodicity of the Markov chain to
the stability of the fluid limit and begs the question: how can
we determine if the β-fluid limit model is stable ? To answer
this question we first characterize the set of fluid limits.

In addition to Assumptions B1-B2 we require conditions
on the limiting behavior of the function ∆.

B3 There exist an open set O ⊆ X \ {0} and a continuous
function ∆∞ : O → X such that, for any compact subset
H ⊆ O,

lim
r→+∞

sup
x∈H

���rβ |x|β∆(rx)−∆∞(x)
��� = 0 ,

where β is given by B2.

The characterization of fluid limits is elementary when O =
X \ {0}, in which case the radial limit limr→∞ rβ |x|β∆(rx)
exists for x 6= 0. Though this condition is met in many
examples, there are cases where radial limits do not exist for
directions belonging to some low-dimensional manifolds of
the unit sphere.

We consider the ODE (3), where the function h is given
by

h(x)
def
= |x|−β ∆∞(x) . (9)

A function µ : I → X (where I ⊂ R+ is an interval which
can be open or closed, bounded or unbounded) is said to be
a solution of the ODE (3) on I with initial condition x if
µ is continuously differentiable on I, for all t ∈ I µ(t) ∈ O,
µ(0) = x and µ̇(t) = h ◦ µ(t). The following proposition
shows that the fluid limit in O coincides with the solutions
of the ODE.

Proposition 2.5. Assume B1, B2 and B3. Let Qβ
· be a

β-fluid limit and for any 0 ≤ s ≤ t, define

A(s, t)
def
=

�
η ∈ C(R+, X) : η(u) ∈ O for all u ∈ [s, t]

	
.

(10)
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Then, on A(s, t),

sup
s≤u≤t

����η(u)− η(s)−
Z u

s

h ◦ η(v)dv

���� = 0 , Qβ
· − a.s.

Under very weak additional conditions one may assume
that the solutions of the ODE (3) with initial condition x ∈ O
exist and are unique on a non-vanishing interval [0, Tx]. In
such case, Proposition 2.5 provides a handy description of
the fluid limit.

B4 Assume that for all x ∈ O, there exists Tx > 0 such
that the ODE (3) with initial condition x has a unique
solution, denoted µ(·; x) on an interval [0, Tx].

Assumption B4 is satisfied if ∆∞ is locally Lipschitz on O; in
such case, h is locally Lipschitz on O and it then follows from
classical results on the existence of solutions of the ODE (see
e.g. [26]) that, for any x ∈ O, there exists Tx > 0 such that,
on the interval [0, Tx], the ODE (3) has a unique solution µ
with initial condition µ(0) = x. In addition, if the ODE (3)
has two solutions µ1 and µ2 on an interval I which satisfy
µ1(t0) = µ2(t0) = x0 for some t0 ∈ I, then µ1(t) = µ2(t) for
any t ∈ I.

An elementary application of Proposition 2.5 shows that,
under this additional assumption, a fluid limit starting at
x0 ∈ O coincides with the solution of the ODE (3) with
initial condition x0 on a non-vanishing interval.

Theorem 2.6. Assume B1 to B4. Then, for each x0 ∈
O there exists Tx0 > 0 such that Qβ

x0 = δµ(·;x0) on
D([0, Tx0 ], X).

If we can take O = X\{0} in B3 then all β-fluid limits are
deterministic and solve the ODE (3). Furthermore, for any
ε > 0 and x ∈ X, and any convergent sequences {rn} ⊂ R+

and {xn} ⊂ X,

lim
n

Prnxn

�
sup

0≤t≤Tx

���ηβ
rn

(t; xn)− η(t; x)
��� ≥ ε

�
= 0 .

Hence, the fluid limit only depends on the initial value x and
does not depend upon the choice of the sequences {rn} and
{xn}.

The last step is to relate the stability of the fluid limit
(see (8)) to the behavior of the solutions of the ODE when
such solutions are well-defined. From the discussion above,
we may deduce a first elementary stability condition which
holds under B3 with O = X \ {0}. In this case, the stability
of the fluid limit is implied upon assuming that the solution
of the ODE with initial condition x of modulus |x| = 1 enters
a sphere of radius ρ < 1 before a given time T .

Theorem 2.7. Let {Φk}k∈N be a phi-irreducible and ape-
riodic Markov chain such that compact sets are petite. Let
ρ ∈ (0, 1) and T > 0. Assume that B1 to B4 hold with
O = X \ {0}. Assume in addition that, for any x0 satisfying
|x0| = 1 the solution µ(·; x) is such that

inf
0≤t≤T∧Tx0

|µ(·; x)| ≤ ρ . (11)

Then, the β-fluid limit model is stable and the conclusions
of Theorem 2.4 hold.

When B3 holds for a strict subset of the state space
O ( X \ {0}, the situation is more difficult, because some
fluid limits are not solutions of the ODE. Regardless, under
general assumptions stability of the ODE implies stability of
the fluid limit model.

Theorem 2.8. Let {Φk}k∈N be a phi-irreducible and aperi-
odic Markov chain such that compact sets are petite. Assume
that B1 to B4 hold with O ( X \ {0}. Assume in addition
that

(i) there exists T0 > 0 such that, for any x, |x| = 1,

Qβ
x (η : η([0, T0]) ∩ O 6= ∅) = 1 . (12)

(ii) for any K > 0, there exist TK and ρK < 1 such that
for any x ∈ {y ∈ X, |y| ≤ K} ∩ O,

inf
[0,TK∧Tx]

|µ(·; x)| ≤ ρK . (13)

(iii) for any compact set H ⊂ O and any K,

ΩH
def
= {µ(·; x), x ∈ H}

is a compact subset of O.

Then, the set of all β-fluid limits is stable and the conclusions
of Theorem 2.4 hold.

The first condition (i) implies that each β-fluid limit
reaches the set O in finite time. When the initial point x
of the fluid limit lies in the set O, this condition is automati-
cally fulfilled. When x 6= 0 does not belong to O, this condi-
tion typically requires that there is a force driving the chain
away from the singular set. The verification of this property
generally requires some problem-dependent and sometimes
intricate constructions (see e.g. Example 3.2). The second
condition (ii) implies that the solution µ(·; x) of the ODE
with initial point in x ∈ O reaches a ball inside the unit
sphere before approaching the singularity. This also means
that the singular set is repulsive for solutions of the ODE.

3 THE ODE METHOD FOR THE
METROPOLIS-HASTINGS ALGO-
RITHM

The Metropolis-Hastings (MH) algorithm is a popular com-
putational method for generating samples from virtually any
distribution π (see [27] and the references therein). In par-
ticular there is no need for the normalising constant to
be known and the space X = Rd on which it is defined
can be high dimensional (i.e. the integer d can be large).
The method consists of simulating an ergodic Markov chain
{Φk}k≥0 on X with transition probability P such that π is
the stationary distribution for this chain, i.e πP = π.

The MH algorithm requires the choice of a proposal ker-
nel q. In order to simplify the discussion, we will here as-
sume that π and q admit densities with respect to Lebesgue
measure λLeb, denoted with an abuse of notation π and q
hereafter. The rôle of the distribution q consists of propos-
ing potential transitions for the Markov chain {Φk}. Given
that the chain is currently at x, a candidate y is accepted
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with probability α(x, y) defined as α(x, y) = 1 ∧ π(y)
π(x)

q(y,x)
q(x,y)

.

Otherwise it is rejected and the Markov chain stays at its
current location x. The transition kernel P of this Markov
chain takes the form for x ∈ X and A ∈ B(X)

P (x, A) =

Z
A−x

α(x, x + y)q(x, x + y)λLeb(dy)

+ 1A(x)

Z
X−x

{1− α(x, x + y)}q(x, x + y)λLeb(dy) , (14)

where A − x
def
= {y ∈ X, x + y ∈ A}. The Markov chain P

is reversible with respect to π, and therefore admits π as in-
variant distribution. For the purpose of illustration, we focus
on the symmetric increments random-walk MH algorithm
(hereafter SRWM), in which q(x, y) = q(y−x) for some sym-
metric distribution q on Rd. Under these assumptions the
acceptance probability simplifies to α(x, y) = 1∧[π(y)/π(x)].
For any measurable function V : X → X,

Ex [V (Φ1)]− V (x) =

Z
Ax

{V (x + y)− V (x)}q(y)λLeb(dy)

+

Z
Rx

{V (x + y)− V (x)}π(x + y)

π(x)
q(y)λLeb(dy) ,

where Ax
def
= {y ∈ X, π(x + y) ≥ π(x)} is the acceptance

region (moves toward x + Ax are accepted with probability

one) and Rx
def
= X\Ax is the potential rejection region. From

[28, Theorem 2.2], we obtain the following basic result.

Theorem 3.1. Suppose the target density π is positive
and continuous and that q is bounded away from zero, i.e.
there exist δq > 0 and εq > 0 such that q(x) ≥ εq for
|x| ≤ δq. Then, the random-walk-based Metropolis algorithm
on {X,X} is λLeb-irreducible, aperiodic and every non-empty
bounded set is small.

In the sequel, we assume that q has a moment of order
p > 1. To apply the results presented in section 2, we must
first compute ∆(x) = Ex[Φ1] − x, i.e. to set V (x) = x in
the previous formula. Since q is symmetric and therefore
zero-mean, the previous relation boils down to

∆(x) =

Z
Rx

y

�
π(x + y)

π(x)
− 1

�
q(y)λLeb(dy) . (15)

Note that, for any x ∈ X, |ε1| ≤ |Φ1−Φ0|+m Px-a.s. , where
m =

R
|y|q(y)λLeb(dy). Therefore, for any K > 0,

Ex [|ε1|p1{|ε1| ≥ K}]
≤ 2pEx[(|Φ1 − Φ0|p + mp)1{|Φ1 − Φ0| ≥ K −m}]

≤ 2p

Z
|y|p1{|y| ≥ K −m}q(y)λLeb(dy) .

showing that assumption B1 is satisfied as soon as the
increment distribution has a bounded p-th moment. Be-
cause on the set Rx, π(x + y) ≤ π(x), we similarly have
|∆(x)| ≤

R
|y|q(y)λLeb(dy) showing that B2 is satisfied with

β = 0; nevertheless, in some examples, for β = 0, ∆∞ can
be zero and the fluid limit model is unstable. In these cases,
it is required to use larger β (see section 3.2).

Figure 3: Geometry of the contour manifold for a super-
exponential density

3.1 Super-exponential target densities

In this section, we focus on target density π on Rd which are
super-exponential.

Definition 3.2 (Super-exponential pdf). A probability den-
sity function π is said to be super-exponential if π is positive
with continuous first derivatives and is such that

lim
|x|→∞

〈n(x), `(x)〉 = −∞ ,

where n(x) = x/|x| and

`(x)
def
= ∇ log π(x) . (16)

The condition implies that for any H > 0 there exists
R > 0 such that

π(x + an(x))

π(x)
≤ exp(−aH) for |x| ≥ R, a ≥ 0 , (17)

that is, π(x) is at least exponentially decaying along any ray
with the rate H tending to infinity as |x| goes to infinity.
It also implies that for x large enough the contour manifold

Cx
def
= {y ∈ X, π(x+y) = π(x)} can be parameterized by the

unit sphere S, since each ray meets Cx at exactly one point.
(see Fig. 3). Denote by A 	 B the symmetric difference
of the sets A and B and for any measurable set A, denote
Q(A) =

R
A

q(y)λLeb(dy).

Definition 3.3 (Radial limit). We say that the family of
rejection regions {Rrx, r ≥ 0, x ∈ O} has radial limits over
the open cone O ⊆ X \ {0} if there exists a collection of sets
{R∞,x, x ∈ O} such that, for any compact subset H ⊆ O,
limr→∞ supx∈H Q (Rrx 	R∞,x) = 0.

Proposition 3.4. Assume that the target density π is super-
exponential. Assume in addition that the family {Rrx, r ≥
0, x ∈ O} has a radial limit over an open cone O ⊆ X \ {0}.
Then, for any compact set H ⊂ O, limr→∞ supx∈H |∆(rx)−
∆∞(x)| = 0, where ∆∞(x)

def
= −

R
R∞,x

yq(y)λLeb(dy).

The definition of the limiting field ∆∞ becomes simple
when the rejection region radially converges to an half-space.
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Definition 3.5 (regularity in the tails). We say that the
target density π is regular in the tails over O if the family
{Rrx, r ≥ 0, x ∈ O} has radial limits over an open cone
O ⊆ X \ {0} and there exists a continuous function `∞ :
X \ {0} → X such that, for all x ∈ O,

Q (R∞,x 	 {y ∈ X, 〈y, `∞(x)〉 < 0}) = 0 . (18)

Regularity in the tails holds when the curvature of the
contour manifold Crx goes to zero as r → ∞; nevertheless,
this condition may still hold in situations where the curva-
ture of the contour manifolds can grow to infinity in some
directions (see Fig. 5).

Assume that:

q(x) = det−1/2(Σ) q0(Σ
−1/2x) , (19)

where Σ is a positive definite matrix and q0 is a rotationally
invariant distribution, i.e. q0(Ux) = q0(x) for any unitary
matrix U .

Proposition 3.6. Assume that the target density π is
super-exponential and regular in the tails over the open cone
O ⊆ X \ {0}. Then, the SRWM algorithm with proposal q
given in (19) satisfies assumption B3 on O with

∆∞(x) = m1(q0)
Σ`∞(x)

|
√

Σ`∞(x)|
, (20)

where `∞ is defined in (18) and m1(q0)
def
=R

X
y11{y1≥0}q0(y)λLeb(dy) > 0, where y = (y1, . . . , yd).

If Σ = Id and `∞(x) = limr→∞ n(`(rx)) then the ODE
is a version of steepest ascent algorithm to maximize log π.
It may appear that convergence would be faster if m(q0) is
increased. While it is true for the ODE, we cannot reach
such a positive conclusion for the algorithm itself (because
we do not control the fluctuation of the algorithm around its
limit). The tail regularity condition and the definition of the
ODE limit are more transparent in a class of models which
are very natural in many statistical contexts, namely, the
exponential family. Following [28], define the class P to con-
sist of those everywhere positive densities with continuous
second derivatives π satisfying

π(x) ∝ g(x) exp {−p(x)} , (21)

where

• g is a positive function slowly varying at infinity, i.e.
for any K > 0,

lim sup
|x|→∞

inf
|y|≤K

g(x + y)

g(x)
= lim sup

|x|→∞
sup
|y|≤K

g(x + y)

g(x)
= 1 ,

(22)

• p is a positive polynomial in X of even order m and
lim|x|→∞ pm(x) = ∞, where pm denotes the polynomial
consisting only of the p’s m-th order terms.

Proposition 3.7. Assume that π ∈ P and let q be given
by (19). Then, π is super-exponential, regular in the tails
over X \ {0} with `∞(x) = −n [∇pm (n(x))]. For any x ∈
X \ {0}, there exists Tx > 0 such that the ODE µ̇ = ∆∞(µ)
with initial condition x and ∆∞ given by (20) has a unique
solution on [0, Tx) and lim

t→T−x
µ(t; x) = 0. In addition, the

fluid limit Q0
x is deterministic on D([0, Tx], X), with support

function µ(·; x).

Because all the solutions of the initial value problem µ̇ =
−m1(q0)

√
Σn[

√
Σ∇pm(n(µ))], µ(0) = x are zero after a fixed

amount of time T for any initial condition on the unit sphere,
we may apply Theorem 2.7. We have, from Theorems 3.1
and 3.7

Theorem 3.8. Consider the SRWM Markov chain with tar-
get distribution π ∈ P and increment distribution q having
a moment of order p > 1 and satisfying (19). Then for any
1 ≤ u ≤ p, the SRWM Markov chain is (fu, ru)-ergodic with

fu(x) = 1 + |x|p−u, ru(t) ∼ tu−1 .

Example 3.1. To illustrate our findings, consider the target
density, borrowed from [29, example 5.3]

π(x1, x2) ∝ (1 + x2
1 + x2

2 + x8
1x

2
2) exp

�
−(x2

1 + x2
2)
�

. (23)

The contour curves are illustrated in Figure 4. They are
almost circular except from some small wedges by the x-
axis. Due to the wedges, the curvature of the contour
manifold at (x, 0) is (x6 − 1)/x and therefore tends to in-
finity along the x-axis. Since π ∈ P, Proposition 3.7
shows that π is super-exponential, regular in the tails and
`∞(x) = −n(x). Taking q ∼ N (0, σ2I), ∆∞(x) =
−σn(x)/

√
2π and the (Caratheodory) solution of the ini-

tial value problem µ̇ = ∆∞(µ), µ(0) = x are given by
µ(t; x) = (|x| − σt/

√
2π)1{σt ≤

√
2π|x|}n(x). Along the se-

quence {xk
def
= (k,±k−4)}k≥1, the normed gradient n[`(xk)]

converges to (0,±1), showing that whereas `∞ is the ra-
dial limit of the normed gradient n[`] (i.e. for any
u ∈ S, limλ→∞ n[`(λu)] = `∞(u) ), lim sup|x|→∞ |n[`(x)] −
`∞(x)| = 2. Therefore, the normed gradient n[`(x)] does
not have a limit as |x| → ∞ along the x-axis. Nevertheless
the fluid limit exists, and is extremely simple to determine.
Hence, the ergodicity of the SRWM sampler with target dis-
tribution (23) may be established (note that for this example
the theory developed in [28] and [29] does not apply). The
functions ∆ and ∆∞ are displayed in Figure 5. The flow
of the initial value problem µ̇ = ∆∞(µ) for a set of initial
conditions on the unit sphere between (0, π/2) are displayed
in Figure 1.

Example 3.2 (Mixture of Gaussian densities). In this ex-
ample (also borrowed from [29]), we consider the mixture of
two Gaussian distributions on R2. For some a2 > 1 and
0 < γ < 1, set

π(x) ∝ γ exp
�
−0.5x′Γ−1

1 x
�
+

(1− γ) exp
�
−0.5x′Γ−1

2 x
�

, (24)

where Γ−1
1

def
= diag(a2, 1), and Γ−1

2
def
= diag(1, a2). The con-

tour curves for π with a = 4 are illustrated on Figure 6. The
contour curves have some sharp bends that do not disappear
in the limit even though the contour curves of the two com-
ponents of the mixtures are smooth ellipses. [29, Eq. (51)]
have shown indeed that the curvature of the contour curves
on the diagonals tend to infinity. As shown in the following
Lemma, this target density is however regular in the tails
over O = X \ {x = (x1, x2) ∈ R2, |x1| = |x2|} (and not over
X \ {0}). More precisely:
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Lemma 3.9. For any ε > 0, there exist M and K such that

sup
|x|≥K,| |x1|−|x2| |≥M

|∆(x)−∆∞(x)| ≤ ε , (25)

where ∆∞(x)
def
= −

R
1R∞,x(y) yq(y)λLeb(dy) with R∞,x

def
=

{y, 〈y, Γ−1
2 x〉 ≥ 0} if |x1| > |x2| and R∞,x

def
= {y, 〈y, Γ−1

1 x〉 ≥
0} otherwise.

Since q satisfies (19), when Σ = Id, for any x ∈ O, ∆∞
may be expressed as: ∆∞(x) = −cqn(Γ−1

2 x) if |x1| > |x2|
and ∆∞(x) = −cqn(Γ−1

1 x) if |x1| < |x2|, where cq is a con-
stant depending on the proposal distribution q. This is illus-
trated in Figure 7 which displays the functions ∆ and ∆∞
and shows that these two functions are asymptotically close
outside a band along the main diagonal. The flow of the ini-
tial value problem µ̇ = ∆∞(µ) for a set of initial conditions
on the unit sphere are displayed in Figure 8 together with
trajectories of the interpolated process.

If we assume that q is rotationally invariant and with com-
pact support, it may be shown that B4, and conditions (i),
(ii), and (iii) of Proposition 2.8 hold. The proof of condi-
tion (i) is certainly the most difficult to check, and requires
the construction of a local Lyapunov function to show that
the fluid limit does not stay in a neighborhood of the diag-
onal. Note that the fluid limit model is not deterministic
in this example: for x on the diagonal in X, the support
of the fluid limit Qβ

x consists of two trajectories, which are
each solutions of the ODE. This is illustrated in figure 2. By
Proposition 2.8 and the discussions above, we may conclude
that, if the increment distribution q is compactly supported,
the SRWM Markov chain with target distribution π given by
(24) is (fu, rs)-ergodic with fu(x) = 1 + |x|u and rs(t) ∼ ts

for any u ≥ 0 and s ≥ 0.

3.2 Subexponential density

In this section, we focus on target density π on X = Rd which
are subexponential. We assume that q satisfies (19) and has
moment of order p ≥ 2.

Definition 3.10 (subexponential pdf). A probability den-
sity function π is said to be subexponential if π is positive
with continuous first derivatives, 〈n(x), n(`(x))〉 < 0 for all
x sufficiently large, and lim|x|→∞ |`(x)| = 0.

The condition implies that for any R < ∞,
lim|x|→∞ sup|y|≤R π(x + y)/π(x) = 1, which implies that
lim|x|→∞ |∆(x)| = 0. subexponential target densities pro-
vide examples that require the use of positive β in the nor-
malization to get a non-trivial fluid limit model.

The condition 〈n(x), n(`(x))〉 < 0 for all sufficiently large
|x| implies that for ε small enough the contour manifold Cε

can be parameterized by the unit sphere (see the discussion
above) and that for sufficiently large |x|, the acceptance re-
gion Ax is the set enclosed by the contour manifold Cπ(x)

(see Fig. 3).

Definition 3.11 (Regularity in the tails (subexponential)).
We say that π is regular in the tails over an open cone O ⊆
X\{0} if there exists a continuous function `∞ : O → X and
β ∈ (0, 1) such that, for any compact set H ⊂ O and any

K > 0,

lim
r→∞

sup
x∈H

Z
Rrx∩{y,|y|≤K}

����rβ |x|β
�

π(rx + y)

π(rx)
− 1

�

−〈`∞(x), y〉|λLeb(dy) = 0 ,

lim
r→∞

sup
x∈H

λLeb (Rrx 	 {y, 〈`∞(x), y〉 ≥ 0}) = 0 .

Proposition 3.12. Assume that the target density π is
subexponential and regular in the tails over an open cone
O ⊆ X\{0} and that q satisfies (19). Then, for any compact
set H ⊂ O, limr→∞ supx∈H |rβ |x|β∆(rx)−∆∞(x)| = 0, with

∆∞(x)q
def
=

Z
{y,〈`∞(x),y〉≥0}

y〈`∞(x), y〉q(y)dy

= m2(q0)Σ`∞(x) ,

where m2(q0)
def
=

R
X

y2
11{y1≥0}q0(y)dy > 0.

Once again, if the curvature of the contour curve goes to
zero at infinity, `∞(x) is for large x asymptotically colinear to
n(∇ log π(x)). However, whereas |∇ log π(x)| → 0 as |x| →
∞, the renormalization prevents `∞(x) to vanish at ∞; on
the contrary, it converges radially to a constant along each
ray. As above, the tail regularity condition may still hold
even when the curvature goes to infinity; see example 3.3.
As above, the subexponential tail regularity condition and
the definition of the ODE limit are more transparent in the
weibullian family. Mimicking the construction above, define
for δ > 0 the class Pδ to consist of those everywhere positive
densities with continuous second derivatives π satisfying

π(x) ∝ g(x) exp
n
−pδ(x)

o
, (26)

where g is a positive function slowly varying at infinity (see
(22)), p is a positive polynomial in X of even order m with
lim|x|→∞ pm(x) = +∞.

Proposition 3.13. Assume that π ∈ Pδ for some 0 < δ <
1/m and let q be given by (19). Then, π is subexponen-
tial, regular in the tails with β = 1 − mδ and `∞(x) =
−δpδ−1

m (n(x))∇pm (n(x)). For any x ∈ X \ {0}, there exists
Tx > 0 such that the ODE µ̇ = h(µ) with initial condition x
and h given by

h(x) = −δ|x|−(1−mδ)m2(q0)p
δ−1
m (n(x)) Σ∇pm(n(x)) , (27)

has a unique solution on [0, Tx) and lim
t→T−x

µ(t; x) = 0. In

addition, the fluid limit Qβ
x is deterministic on D([0, Tx], X),

with support function µ(·; x).

Example 3.3. Consider the subexponential weibullian fam-
ily derived from example 3.1

π(x1, x2) ∝ (1+x2
1 +x2

2 +x8
1x

2
2)

δ exp
�
−(x2

1 + x2
2)

δ
�

. (28)

The contour curves are displayed in Figure 9. Since π ∈ Pδ,
Proposition 3.13 shows that π is subexponential, regular in
the tails with β = 1− 2δ and `∞(x) = −2δn(x). Taking q ∼
N (0, σ2I), ∆∞(x) = −(σ2δ)n(x) and the (Caratheodory) so-
lution of the initial value problem µ̇ = |µ|−(1−2δ)∆∞(µ),
µ(0) = x are given by µ(t; x) = [|x|2(1−δ) − 2σ2δ(1 −
δ)t]0.5(1−δ)−1

n(x)1|x|2(1−δ)−2σ2δ(1−δ)t≥0. Here again, the
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gradient `(x) (even properly normalized) does not have a
limit as |x| → ∞ along the x-axis, but the fluid limit model
is simple to determine. Hence, the ergodicity of the SRWM
sampler with target distribution (28) may be established (note
that for this example the theory developed in [30] and [15] do
not apply). The functions ∆ and ∆∞ are displayed Fig-
ure 10. The flow of the initial value problem µ̇ = hµ) for a
set of initial conditions on the unit sphere between (0, π/2)
are displayed in Fig. 1.
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Figure 4: Contour curves of the target density (23).
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Figure 6: Contour plot of the target density (24).
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Figure 7: Blue lines: ∆∞; Green lines: ∆ for the target
density (24).
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Figure 8: Blue lines: interpolated process for a set of initial
conditions on the unit sphere for the target density (24).
Red lines: flow of the initial value problem µ̇ = h(µ) with h
given in Lemma 3.9.
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Figure 9: contour curves of the target density (28)
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Figure 10: Blue lines: ∆∞; Green lines: ∆ for the target
density (28)
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Figure 11: Blue lines: interpolated process ηβ
1000 for a set of

initial conditions on the unit sphere for the target density
(28) with δ = 0.4. Red lines: support of the fluid limits
associated to these initial conditions
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