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Abstract

This article presents a clustering algorithm to determine

the optimal number of components in a Gaussian mixture.

The principle is to start from an important number of mix-

ture components then group the multivariate normal distri-

butions into clusters using the divergence, a weighted sym-

metric, distortion measure based on the Kullback-Leibler

distance. The optimal cut in the tree, i.e. the clustering,

satisfies criteria based on either the minimum amount of

available training data or dissimilarities between clusters.

The performance of this algorithm is compared favorably

against a reference system and a likelihood loss based clus-

tering system. The tree cutting criteria are also discussed.

About an hour of Ester, a French broadcast News database

is used for the recognition experiments. Performance are

significantly improved and the word error rate decreases by

about 4.8%, where the confidence interval is 1%.

1. Introduction

Nowadays, state of the art Hidden Markov Models based

large vocabulary speech recognition systems make use of a

important number of Gaussian distributions to improve their

acoustic modeling accuracy. One of the disadvantages of

this practice is the increase of the complexity of the system

making it unsuitable for practical, embedded or even real

time applications. Several criteria are generally used to stop

growing the mixture, i.e. the number of Gaussian distribu-

tions. Mainly a tradeoff is to be found between the model

precision and the ability to accurately estimate the model

parameters. In the literature three classes of approaches are

used to stop growing a mixture:

• when the amount of training data is insufficient (a

threshold is placed on the number of frames used to

estimate the mixture components),

• if no significant likelihood increase is observed,

• and when the Bayesian Information Criterion (BIC)

gain becomes negative or below a threshold. This cri-

terion controls the model complexity by penalizing the

likelihood with the number of parameters.

An alternative proposed by Messina [1] is to grow a mix-

ture only when it’s distance to a frame is important. So, dis-

tances between a frame and Gaussians are computed and the

minimum is selected. If this minimum distance is less than

a threshold the component is updated with this frame other-

wise a new mixture component is created. To decrease the

number of mixture components in a phonetically tied mix-

ture system, Digalakis [4] classifies the Gaussian distribu-

tions and re-estimates the obtained clusters. The clustering

metric is based on the increase of entropy due to merging

distributions. This way, the number of Gaussians is reduced

to less than 40% with a little degradation of performance.

Besides, this system is more accurate (+0.8%) than the ref-

erence one using the same number of Gaussians.

In the present work it is proposed to determine the optimal

number of components in a Gaussian mixture models using

a growing-clustering process, following the same principle

of clustering as Digalakis, and we introduce the weighted

cross entropy metric for better distributions classification.

The idea driving this procedure is to explore a large set of

components, then the set dimension is reduced by merging

close elements. So, for each Gaussian mixture, distributions

are grouped into a binary tree structure and every cut in the

tree defines a possible clustering. To determine the optimal

cut in the tree, two criteria are experimented: a data driven

one and a dissimilarity based other. For each criterion, the

weighted Kullback-Leibler divergence performance is com-

pared to the initial system and also to a loss likelihood based

clustering system.

The remainder of this paper is organized as follows: section

2 outlines the classification process, presents the proposed

weighted Kullback-Leibler metric and details the tree cut-

ting criteria, section 3 reports on tests protocols and results,

the conclusions and prospective work are described in sec-

tion 5.



2. Gaussian distributions classification

2.1. Clustering process

In order to build Gaussian trees, hierarchical bottom-up

classification algorithm is applied to each mixture. It per-

forms in many steps:

• Compute distances between all pairs of distribution.

• Merge the closest two distributions as follows:

Let g1(n1, µ1, σ1) and g2(n2, µ2, σ2) two Gaussians

to which n1 and n2 frames have been associated

during the training. If g1 and g2 are merged into

g3(n3, µ3, σ3) then :
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g3 replaces (g1, g2) in the set whose size is reduced by

one.

• If the number of Gaussians is greater than 1 go to

step1.

2.2. Metrics

Two distances are used: likelihood loss based distance

and weighted relative entropy based metric.

- Loss likelihood based metric: If g1 and g2 are merged into

g3 then the likelihood loss (pv) is the difference between

the likelihoods of g1 and g2 and the likelihood of g3 on the

training data:
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This metric is somewhat similar to the loss of entropy

based distance used by Digalakis [4]. It was successfully

used in model adaptation [2].

- The weighted symmetric Kullback Leibler divergence

(Klp): It is expressed as the distance between two proba-

bility density functions weighted by the amount of training

data.
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d is the dimension of the parameters vectors.

The use of the information provided by the amount of train-

ing data is advantageous if training and testing data have the

same proportions otherwise it can be harmful.

2.3. Tree cutting

From the root of the tree to the leaves, different cuts

can be defined allowing many classifications. Three cutting

ways are proposed:

• Fixed: We consider a constant number of classes for

each mixture. Beginning from the leaves, traverse each

level till the number of nodes at the corresponding

stage reaches the predefined value of classes and cut.

• Weight based: The number of classes depends on the

amount of the available data to estimate the distribu-

tions of each class. Starting from the root, the tree is

processed and we stop at node for which the children

weight is less than a predefined threshold.

• Distance based: tree cutting is performed when the

distance between two levels reach a maximum value.

Considering only the maximum can lead to a very little

(or large) number of clusters, besides many important

distances can be close to the maximum value. for all

these reasons, several cuttings per tree have been con-

sidered. Each cutting is operated in a particular level

of the tree.

For weight and distance criteria, as the number of Gaussians

per state can be different, a mean value is computed.

The resulting mixtures are re-estimated by means of Baum

Welch algorithm.

3. Experiments and results

3.1. Resources

All the experiments are conducted using parameter vec-

tors with 12 MFCC coefficients, energy, and their first

and second derivatives. The 40 acoustic models are con-

text independent with 3 states per model. For the train-

ing task, about 82 manually transcribed hours of the Ester

train database [3] are used. The dictionary contains 118000

words (with 65000 distinct words). The language model is

formed by 4 millions of bigrams and trigrams. Tests are

conducted using an hour of Broadcast News extracted from

the Ester test data set.

The initial system contains 256 Gaussians per state. For

each mixture, the 256 Gaussians are classified by a bottom

up hierarchical algorithm. Depending on the experiments,

likelihood loss or weighted cross entropy based metric is

used for clustering. Then classes are obtained by cutting

the binary tree following a criterion: fixed, weight based or

distance based number of clusters.

In order to compare the different systems, several reference

systems 32, 64, 80, 128, 180, 256, 220 and 512 Gaussians

per mixture are produced and evaluated.



3.2. Fixed classes

The number of classes is fixed and is the same for the

reference (Ref), the loss likelihood (pv) and the weighted

Kullback-Leibler (klp) based systems. After clustering, the

obtained pv and klp models are trained. We find that au

maximum two iterations are needed to estimate these mod-

els parameters. Results within a confidence interval of 1%

are as follows:

Table 1. wer for Ref, PV, and KLp systems
Gaussians nbr Ref (%) PV (%) KLp (%)

32 42.6 40.6 39.5

64 40.4 38.0 37.5

80 38.3 37.4 36.9

128 37.3 36.2 36.2

180 36.4 36.1 36.2

220 36.3 35.8 35.5

256 36.3 - -

512 35.5 - -

Table1 and figure1 show that both pv and klp systems

outperform the reference one, with a little advantage for the

latter. Especially, for the klp models with 32 and 64 Gaus-

sians per state, the word error rate (wer) decreases by about

3% compared to the reference system. With a large number

of clusters differences are less interesting.

Performance of the klp system using 220 Gaussians per

state are similar to the 512 reference one.
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Figure 1. wer vs number of Gaussians, for ref,

pv and klp systems

3.3. Weight based classes

By using this criterion, the number of clusters in the dif-

ferent mixtures is variable and depends on the acoustic vari-

ability of each state. Besides, this way we ensure that each

Table 2. pv and klp weight based cutting
Metric Gaussians wer (%)

KLp 28 40.0

53 36.6

150 35.9

195 36.0

PV 53 39.5

101 36.8

156 36.5

cluster has sufficient amount of training data to estimate it.

So, in each level of the tree, when a node reaches the global

minimum of this level, we cut at his parent level. Results

are as reported in table 2 and figure 2.

We notice that using the weight criterion, the klp system

outperforms both pv and the reference system. Especially,

with only a mean of 53 Gaussians per state, it’s performance

is close to that of the reference system with 256 Gaussians.

Besides, the wer decreases by about 4.8% compared to the

initial system using the same number of Gaussians.

For klp system with 28 Gaussians per state, the wer is also

better than the initial 64 Gaussians one. Finally, klp models

with 150 Gaussians are quite performing as the 512 refer-

ence system.
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Figure 2. Weight based tree cutting

3.4. Distance based classes

This criterion prevents clustering too distant Gaussians:

• if distributions are too different in the case of klp dis-

tance

• or merging them leads to a big likelihood loss if pv

based metric is employed

We consider several levels of the tree and cut when the dis-

tance between two clusterings is the maximum in this level.

The obtained results are reported in table 3.



Table 3. pv and klp distance based cutting
Metric Gaussians nbr wer (%)

KLp 30 40.7

59 37.7

101 36.1

196 35.9

PV 44 39.4

94 36.7

204 35.8

Once again, we see that pv and klp systems outperform

the reference one, and that the klp divergence based sys-

tem is the best. Applying klp or pv clustering process, we

obtain globally the same performance as the reference sys-

tem using only about 40% of the total number of Gaussians.

These results are interesting but they remain less important

than the previous experiments (53 Gaussians) in which this

number is reduced to 20%.
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Figure 3. Distance based tree cutting

3.5. Weight versus distance

To compare distance and weight criteria we plot the cor-

respondent curves using either klp or pv metric.
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Figure 4. Weight and distance based tree cut-

ting for respectively klp and pv systems

In the klp system, the weight criterion performs better

than distance one, especially when the number of clusters is

low. In the case of pv clustering, it is the opposite situation

and the distance is better. These results can be interpreted

as follows:

- when klp clustering metric is used, no particular attention

is given to the amount of training data available for each

cluster. Only resembling Gaussians are merged, ensuring

that at each level clusters are as distant as possible. So in

some levels many clusters could not have enough training

data, and cutting at these levels is not interesting.

- In the case of pv based clustering, the loss of likelihood

is minimum at each level. So the resulting clusters are as

representative as possible of the training data. Knowing that

no information about similarity of clusters to each others is

taken into account, many resemblant clusters can be present

in the same level. In this case the distance based cutting

criterion can remove the redundant information.

4. Conclusion and discussion

An hierarchical Gaussians clustering algorithm for opti-

mal mixture dimension determination based on a weighted

Kullback Leibler distance (klp) is described. Experiments

varying the tree cutting criterion show that in all the cases

the proposed metric outperforms the loss likelihood based

clustering (pv) system and the initial one. We also notice

that the tree cutting criterion depends of the clustering dis-

tance. While the weight based tree cutting criterion is better

for the klp system, the distance based cutting is more inter-

esting for the pv system. In both cases, the good criterion

of cut is that which brings information the distance does

not take in consideration. As a perspective to this work, a

linear discriminant analysis per state can be deduced from

the Gaussian classification. This way, more separate and

hence discriminant parameter vectors can be constructed

and tested for better recognition.
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