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ABSTRACT

This work deals with the Harmonic+Noise decomposition and, as targeted application, to extract transient
background noise surrounded by a signal having a strong harmonic content (speech for instance). In that
perspective, a method based on the reassigned spectrum and a High Resolution subspace tracker are com-
pared, both on simulations and in a more realistic manner. The reassignment re-localizes the time-frequency
energy around a given pair (analysis time index, analysis frequency bin) while the High Resolution method
benefits from a characterization of the signal in terms of a space spanned by the harmonic content and a
space spanned by the stochastic content. Both methods are adaptive and the estimations are updated from
a sample to the next.

1. INTRODUCTION More precisely, the model is that of M slowly varying
complex exponentials, hence encompasses the case
of real data, summed with a stochastic process [3],

In the context of musical signal processing [1], or au- k
written down as:

dio coding (¢f. MPEG4-HILN coder), or in the case
of some specific forensic application where extract-
ing weak audio transients buried in a sinusoidal fore-

ground [2] is intended, one may need to efficiently
decompose the signal into a sinusoidal part (also de-
nominated as the harmonic part, or the determinis-
tic part) and a noisy part (also denominated as the
stochastic part or the residual).

NE

s(t) =) be(t)exp(j®r(t)) +w(t), (1)

k=1

where t € Z denotes the discrete time index, M the
order of the model —e.g. the number of complex
exponentials, being even, M = 2P, when data is
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composed of P real sinusoids —, by (¢t) > 0 the mod-
ulation law relative to the kth component magni-
tude (real). ®(t) is the instantaneous phase of the
component and is bound up to its instantaneous fre-
quency fi(t) by differentiation:

By (1) = 2mfi(t). (2)

Note that the frequencies are not assumed to be
multiples of some fundamental. The stochastic pro-
cess w(t) may describe several kinds of physical sig-
nals : background measurement noise, turbulence
noise imputable to air friction when dealing with
wind instruments or voice, impulse-shaped, tran-
sient noise when processing for instance the onset
of a piano or a percussion sound.

Estimation of the model. Since the instanta-
neous amplitudes and frequencies b;’s and fi’s are
expected to be varying, both the parameters of
the sinusoidal part and the statistical properties of
the stochastic process may be considered as non-
stationary. To overcome this difficulty, most meth-
ods (cf. [3, 4]) tend to use a sequential estimation
technique applied on overlapping segments of finite
length along which a definite sinusoidal model is es-
timated. For instance, the phase is often taken as a
polynomial of low degree (typ. 1 or 2) in the variable
t. The process w(t) is obtained as a residual, by sub-
tracting the estimated deterministic part. A broad
bulk of existing algorithms relies on a time-frequency
analysis of the signal, facing the challenging trade-
off of shortening the segments for more adequation
to the assumption of stationarity while loosing fre-
quency resolution and hence, leading to poor esti-
mates.

In this paper, both answers to this issue con-
cerning harmonic plus noise decomposition are com-
pared: one is based on the reassigned spectrum [5]
and the second one is an adaptive subspace based
analysis. The methods are described separately in
the following sections while the results are demon-
strated afterward. More specifically, this work fo-
cuses on the ability of each method to extract
the noise part while preserving its spectro-temporal
shape. Clues on frequency estimation performance
can be found in [6, 7, 8] and are not in the scope of
this work.

2. HARMONIC+NOISE DECOMPOSITION
WITH REASSIGNED SPECTRUM

2.1. Principles

Reassignment operators [5] . The derivation of
the so-called reassignment operators in time and fre-
quency relies on the continuous time definition of
the Short Time Fourier Transform (STFT). Let be
sa(t), t € R, the analyzed signal, the associated
STFT is formulated as:

Surd) = [ slme e (3)

When facing the problem of localizing amplitude and
frequency-modulated sinusoids, the performance
limitation is mainly due to the window length and its
spectral width (of referred to as the time-frequency
box). The reassignment tries to overcome this
Fourier-related constraint using the STFT phase in-
formation. The STFT is now rewritten in terms of
magnitude and phase:

Sa(r, f) = M(r, [)e??TD. (4)

The reassignment operators are derived from the
partial derivatives of (¢, f) with respect to each
of its variables, leading respectively to the instan-
taneous frequency

10
Fi(Taf):%%7 (5)
and to the group delay
1 Oyp(r,
7, ) = —5- 2. (©

These equations are often interpreted as follows.
When considering the energy M (7, fo)? spread
around a given point (79, fo) of the time-frequency
plane, its centroid is the point of normalized fre-
quency F;(7o, fo) and discrete time 7o + Tg(70, fo).
Each energy coefficient is said to be reassigned to
this centroid. The time-frequency content of the sig-
nal is then re-mapped on the plane.

2.2. Discrete-time implementation
The Short Time Fourier Transform (STFT) of the
sampled data sequence s(t), t € Z is defined as

T+N-1

S(ryue) = Y s()h(t—7)e 2t (7)

t=1
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where 7 € Z is the analysis time lag, v, = k/K the
frequency bin and h(t) the window applied, assumed
to be of finite length N. The order K of the trans-
form has to be greater or equal to IV, and is chosen
as K = 2N in our practical implementations. The
STFT is then rewritten in its polar form as

S(r,vi) = M(r,v3,)el?T5), (8)

To approximate the continuous variable derivatives
needed in equations (5) and (6) in the context of
numerical processing, a numerical filter is used. This
filter can be for instance designed with the help of
a Remez-Parks-McLellan algorithm for linear phase
Finite Impulse Response (FIR) filter. In this work,
a different technique is employed, the starting point
of which is a polynomial fitting of the sequence [9].

(7, vk) is then extracted and unwrapped for each
channel k£ and derivated to obtain the instantaneous
frequency F;(7,k). The same procedure is applied
along the frequency axis, yielding the group delay
Ty(T, k).

Adaptive computation. The algorithm is in-
tended to work with a hop size of only one sample
((N —1)—samples overlap). To lower the complexity
from the well-known O(N log(NN)) cost per sample
to a linear one (O(N)) the STFT derivation is made
adaptive [10, 11]. This gain benefits from the fact
that a number of common windows are built with
sines and thus, can be written as a sum of geometric
sequences of the complex exponential form.

Let for instance the window h(t) be the Hann win-
dow:

h(t) = %( 1- cos(%rt) ). 9)

This is rewritten as

1 1
h(t) = 5(1 - E(W]t\/ +W§t))a te [Oa N — 1]a
where Wy = e727/N which leads to a decomposition
of the STFT:

S(r,v1) = 0.580(7, i) — 0.25( 51 (1, %) + Sa (7, 1) ),

] (10)
where So(7,vy) is the STFT using the rectangular
window un(t) = 1, t € [0, N — 1] and un(t) =
0 otherwise, and where Sy (7,v,) and So(T,vy) are

the STFT respectively windowed by W,uy(t) and
W&tuN(t).

Defining the simple increment
As(r, k) = e 72T ((=1)*s(7 + N) — (7)), (11)
an update of each STFT is readily obtained as

So(r +1,vk) = So(7,vk) + As(7, k)
Si(r + Lvg) = Si(r,vg) + WytAs(r, k) (12)
Sa(r+ 1vg) = Sa(r,vi) + Wy As(T, k)

The update of the whole STFT then results from the
equation (10).

Harmonic+noise decomposition

The reassignment principles have been applied for
enhancing the time-frequency representation, for fre-
quency estimation [5, 12] and also for source/filter
modeling in speech processing [13]. As the formu-
lae 5 and 6 cited above result in the precise local-
ization of the frequency estimates, a reconstruction
technique is to be determined to extract the har-
monic part on one side and the noise on the other.
As in many other works, the former is obtained at
first and subtracted afterward from the original to
get the latter.

For a given segment of analyzed data located in the
interval [r, 7 + N — 1], the Harmonic part of the
signal is computed following the steps:

1. STFT computation and peak-picking of its
magnitude,

2. derivation of F;(7, k) and Ty(7, k) for each peak
k,

3. selection among this collection of peaks of the
bins | where the instantaneous frequency and
the bin frequency match, i.e F; must lie in the
vicinity of the frequency center of the channel,
for instance:

Fy(r ) — /K| < g(l/QK). (13)

This stage can be post-processed by a median
filtering to remove isolated points,

AES 120t Convention, Paris, France, 2006 May 20-23
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4. for each selected bin [, a complex exponential
at the frequency F;(7,l) is computed with an
amplitude taking into account the phase and
amplitude distorsion due to windowing at the
frequency F;(7,1),

5. the synthetized component is added to the out-
put segment, windowed by a Hann window cen-
tered on the time-instant 7 + N/2 + T,(7,1).

It is worth making mention here that the Hann
window utilized for the synthesis is not of constant
length, since it depends on the reallocation time in
the analyzed interval. Let Lj(7,1) be this length,
this is expressed as:

Ly(7,l) = N —2|Ty(r,1)|. (14)

In addition, for approaching perfect reconstruction,
the synthesis window h(t) is weighted by the factor
( tL:’I(;l hs(t) )~! to be made unitary.

Once the steps 1-5 have been repeated all along the
analyzed signal, the harmonic part sp(t) is derived.
The noise part is then deducted as:

sn(t) = s(t) — sn(t) (15)

3. ADAPTIVE HIGH RESOLUTION HNM DE-
COMPOSITION

Since the end of the 18th century [14, 15], Fourier
analysis and High Resolution (HR) methods have
been both complementary and competitors. While
the former developed into the prominent tool in the
field of the spectral analysis, the latter has revealed
himself in the two last decades to be one of the most
valuable estimation technique in the so-called Di-
rection Of Arrival problem [16]. Notwithstanding
its remarkable resolution properties, its use remains
marginal in audio processing tasks, even though the
underlying model is well adapted for tracking slow
varying line spectra [17].

3.1. Theoretical background

Subspace analysis. Subspace decomposition is
the theoretical foundation of a number of methods
(Pisarenko [18], MUSIC [19], Matrix Pencil [7], ES-
PRIT [20]). The subspace analysis relies on the fol-
lowing remark. Let z(t), t € Z be a complex signal,
linear combination of M complex exponentials:

x(t) = bozh + b1zt + ...+ by12h, (16)

where the z’s, kK = 0,1,..., M — 1, are the com-
plex poles of the signal and b;’s the associated com-
plex amplitudes. More precisely, zx = exp(dx +
j2mvy) where 8, € R is the damping or grow-
ing factor and v, € [—0.5 0.5] is the normalized
frequency. Expanding this definition to the vec-
tor of the n (n > M) subsequent samples x =

[ﬂc(O) x(l) x(n — 1)]T
' ' X = Vb, (17)

where b = [by b bar—1]" and V is the Van-
dermonde matrix defined as:

leads to the matrix

1 1 - 1
20 21 ZM -1
2 2 2
V=] % 2] ZM—1 (18)
T AT 271\7711
For M  distinct poles, the M  vectors
{v(zk)}k=0,1,... . m—1, defined as the column vectors
. 11T
of the matrix V, v(zx) = [1 2 . 2 1] , are

linearly independant. Thus the range space of V is
of dimension M. In short, a vector of n subsequent
samples of a signal combining linearly M complex
exponential belongs to a M dimensional subspace,
the so-called signal subspace. When dealing with
a noisy signal model : s(t) = x(t) + w(t), the
vector s = [s(0) s(1) s(n — 1)]T belongs to
a n-dimensional subspace. Under the hypothesis
of a Wide Sense Stationary (WSS) white noise,
this subspace can be decomposed as the direct
sum of the M-dimensional signal subspace and its
orthogonal complementary, of dimension n — M,
referred to as the noise subspace.

Harmonic+noise decomposition. Let W be a
n X M matrix, conveniently chosen as orthonor-
mal, whose range space is the signal subspace. The
projection matrices onto the signal subspace and
onto the noise subspace are thus respectively P, =
WWH and P, = I - P,, where the subscript H
denotes the hermitian transpose. For a given vector
of data s, the harmonic part is then obtained by:

s, = Pgs (19)
while the noise part is the reminder:

S, = Pps (20)
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These expressions need two remarks:

e even in the ideal case of stable signal compo-
nents (neither amplitude nor frequency modu-
lation) and WSS white noise, this decomposi-
tion does not lead to sp(t) = z(t), simply be-
cause considering a noise vector of n subsequent
samples w, this vector usually belongs to a n-
dimensional space in which the noise subspace
as defined above is included;

e neither estimation of the parameters (frequen-
cies, damping factors, amplitudes) has to be
made explicitly.

Tracking of W. In a number of methods, a matrix
W, the columns of which form a basis of the signal
subspace, is derived by means of a Singular Value
Decomposition of the covariance matrix Cgzs of the
data. Conversely, the subspace method used in this
work is adaptive, referred to as the Fast Approxi-
mated Power Iteration in the literature [21]. Start-
ing from a rank one update of the covariance matrix,

Cus(t) = BCss(t = 1) +s(t)s(), (21

where § < 1 is a real positive forgetting factor and
s(t) = [s(t) s(t+1) s(t+n— 1)]T7 it con-
duces in 3nM + O(M?) operations! to a rank one
update of the form:

W(t) = W(t—1)+e(t)gt)” (22)

where e(t) and g(t) are column vectors. The whole
description of the algorithm is beyond the scope of
this paper and can be found in [21].

3.2. Preprocessing

As the method relies on a model comprehending
an additive white stationary noise process, its per-
formances lower when dealing with real signals the
stochastic part of which is usually not white. In ad-
dition of the coloration of the noise, it is not rare
in the audio field to encounter large dynamics. The
estimation of the weak harmonic components, of-
ten settled in the upper part of the spectrum as low
as 40 or 60 dB under the maximum, is then made
dubious. The preprocessing designed for applying
successfully the subspace tracker described above in-
cludes 3 steps:

Lan operation being defined as a Multiply and ACcumulate
operation, MAC.

1. pre-emphasis of the entire signal,
2. subband decomposition,

3. whitening in each subband.

Pre-emphasis and whitening. The first and
third preprocessing steps are based on the same prin-
ciple. The Power Spectral Density (PSD) of the con-
sidered sequence is estimated (for instance by means
of a Welch-averaged periodogram) and an estimator
of the noise PSD is derived as the non-linear median
filtering of it. The corresponding AR coefficients are
computed for a pre-defined model order K. As the
aim of the pre-emphasis is a spectrum detrending, a
low order K is chosen for the first step. In each sub-
band, on the contrary, K will be of order 10 to 20,
for the noise coloration must be drastically reduced.
An exemple of the pre-emphasis of voice segment is
given in figure 1. The original signal has then been
filtered by a Finite Impulse Response (FIR) filter of
length 5 to obtain the pre-emphasized signal.

Power Spectral Density
0 T T T

— original
= AR-model
— filtered

101

—20k

!

@

=]
T

magnitude (dB)

60

~70
0

I I I I |
1000 2000 3000 4000 5000 6000
frequency (Hz)

Fig. 1: Pre-emphasis of a voice segment of one sec-
ond length. The model order is K = 12.

Filter bank. The subband decomposition is com-
pleted using a quasi-perfect reconstruction cosine-
modulated filter bank [22]. Each subband signal is
maximally decimated. The adjustment of the sub-
band number depends on the sampling frequency
and on the density of harmonic components in the
resulting subband. Usual values vary from 4 to 16.
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It can be noticed that even if in this work, only uni-
form filter banks are considered, an extension to non-
uniform ones is readily obtained by dyadic iteration.
An exemple of uniform 4-subbands decomposition is
displayed on the figure 2.

20

magnitude (dB)

-100

| | I | I
0 0.05 01 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
normalized frequency

~120 L L L L

Fig. 2: Cosine modulated analysis filter bank, with
4 subbands.

4. EXPERIMENTS

The aim of this section is to demonstrate the abili-
ties of both algorithms (Reassigned Spectrum-based
or Subspace-based) in the task of extracting a back-
ground stochastic process and especially a transient
(highly non-stationary process) from a signal includ-
ing a strong harmonic content, speech being the tar-
get example of such a kind of signal. To be able to
assess the results, a procedure for bringing into ex-
istence a non-stationary, impulsive-like process with
known characteristics has been defined. The algo-
rithms are then applied to various simulations to
give some clues on the parameters tuning according
to the context.

4.1. Creating a synthetic non stationary noise

The time-frequency profile of the process is defined
as follows.

1. the spectrum at ¢t = 0, the initial time instant is
defined with the help of a set of poles, leading
to an AutoRegressive (AR) spectrum,

2. a low f; and a high f; spectral limits are set,
and a damping factor a(f;) is defined for the
low limit, owing to which the decreasing of the
process around the frequency f; is of the form

d(t) oc exp(—a(fi)t),

3. a damping law is given, as a power function of
frequency, i.e. a(f) = a(ﬁ)(%)p

The whole operation is implemented by FFT-
filtering of a white stationary noise. An example
is drawn on figure 3, obtained at a sampling fre-
quency of 8kHz with the following parameters: a
solely pole of 0.99 magnitude at the frequency of
500 Hz, f; = 150 Hz and f;, = 3500 Hz, a(f;) = 457!
and p=1

spectrogram of the noise

IS
S
S
S

N w w
a =] &
=} S =]
S S S

frequency (Hz)
8
8

1500

=
1)
3
S

a
=}
3

o

. 1
time (s)

Fig. 3: Time-frequency (256 pts-FFT, Hann win-
dowed) representation of the non-stationary noise.

4.2. lllustrative simulations

All the simulations of this section include a transient
noise generated as described above in the section 4.1,
and a white background stationary noise around
50 dB below the maximal signal power (this cor-
responds to an overall Signal To Noise Ratio around
-25dB for the whole observation window). In the
following, the Fourier-based method is referred to
as RF-HND (Reassigned Fourier-Harmonic+Noise
Decomposition), while the Subspace analysis-based
method is abbreviated as HR-HND.

AES 120t Convention, Paris, France, 2006 May 20-23
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For each case, the time-frequency representation of
the results are given, derived with a Hann windowed
256-points-FFT and jointly scaled to be comparable.

original signal

2500

frequency (Hz)
& 8
8 S

=
1)
3
3

0 0.2 0.4 0.6 0.8 1 12 14 16 18
time (s)

Fig. 4: Time-frequency representation of the original
signal.

Pure Sine 4+ noise. In this example, a 300 Hz-
sinusoid is added to the noise, leading to a signal
whose time-frequency representation is given in the
figure 4.

Analysis parameters.

The HF-HND is applied with a window length N =
256 samples (32ms) and an order (number of fre-
quency bins) K = 512.

The HR-HND is applied with the parameters

preprocessing | filter analysis
AR-order bank | (length P, order M)
order 12 no P =256 (32ms)
M=1

Results and interpretation. The representation of
the noise part respectively extracted by the RF-
HND and the HR-HND methods is displayed in the
figures 5 and 6.

In both cases, a satisfying extraction of the transient
noise is performed. This results from the steadiness
of the sinusoidal component which matches exactly
the estimated model in both cases. Nevertheless the
window length cannot be shortened without increas-
ing the variance of the HR-HND estimator or lessen-

noise part

frequency (Hz)

0 0.2 0.4 0.6 0.8 1 12 14 16 18
time (s)

Fig. 5: Time-frequency representation of the noise
part obtained by the RF-HND method.

noise part

frequency (Hz)

time (s)

Fig. 6: Time-frequency representation of the noise
part obtained by the HR-HND decomposition.

ing the resolution capability of the RF-HND estima-
tor. Both influences imply a notching effect on the
whole extracted stochastic part, around the sinusoid
frequency. A manner of this effect can be observed
on the RF-noise as a "hole” in the transform around
300 Hz.

FM-modulated sine + noise. The sinusoid of
this example is now modulated, leading to a 4 Hz
vibrato of a semi-tone frequency deviation. Its rep-

AES 120" Convention, Paris, France, 2006 May 20-23
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resentation is given in figure 7.

frequency (Hz)
b} 8
S 8

=
o
IS}
3

0.8
time (s)

Fig. 7: Time-frequency representation of the original
signal.

Analysis parameters.

The HF-HND is applied with a window length N =
256 samples and an order (number of frequency bins)
K =512.

The HR-HND is applied with the parameters

preprocessing | filter analysis
AR-order bank | (length P, order M)
order 12 no P =512 (64ms)
M =6

Results and interpretation. The representation of
the noise part respectively extracted by the RF-
HND and the HR-HND methods is displayed in fig-
ures 8 and 9. This example illustrates the different
tuning sensibility of both methods. For the RF-HND
estimator, the window length must satisfy the trade-
off between the intended resolution and the ability
to track the frequency modulation. The HR-HND,
in the contrary, uses a longer window and represents
the modulation with the help of a higher model or-
der. Similarly to the previous case, the spectral
shape of the transient noise is roughly preserved and
the RF-method causes a more pronounced notching
effect.

4.3. Toward a real world application

To approach our targeted application, this last sim-

frequency (Hz)

0 0.2 0.4 0.6 0.8 1 12 14 16 18
time (s)

Fig. 8: Time-frequency representation of the noise
part obtained by the RF-HND method.

noise part

frequency (Hz)

’ time (s)

Fig. 9: Time-frequency representation of the noise
part obtained by the HR-HND decomposition.

ulation is generated by mixing a real male speech
utterance of the vowel ’a’ (french) with the preced-
ing transient noise.

Analysis parameters.

The HF-HND is applied with a window length N =
512 samples and an order (number of frequency bins)
K =1024.

The HR-HND is
rameters of the

applied with different pa-
analysis for each subband.

AES 120" Convention, Paris, France, 2006 May 20-23
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Original signal

¥ e
" gl " S v v
b 1 00

frequency (Hz)

time (s)

Fig. 10: Time-frequency representation of the origi-
nal signal.

preprocessing filter analysis
AR-order bank (length P, order M)
order 12 4 bands P = 200,150, 50,40
ARI12 whit. | M = 40,20, 25,10

Results and interpretation. The noise part extracted
by the RF-HND estimator (figure 11), has a lower
spectral density than that extracted by the HR-
HND estimator(figure 12), especially in the upper
part of the spectrum. Indeed, the subband decom-
position used as preprocessing of the latter allows
to process apart each subband: the window length
can be adjusted differently in the lower range and in
the upper range of the spectrum, leading to a kind
of multiresolution processing. This might explain
a more prominent notching effect for the RF-HND
method while the overall formantic structure of
the voice friction noise is better preserved by the
HR-HND method. Conversely, the latter is more
sensitive to the parameter set fine tuning,

5. CONCLUSIONS

This preliminary work on the extraction of a tran-
sient background noise surrounded by a signal with
a strong harmonic content enlights the main dif-
ferences and abilities of both methods: one being
based on the reassigned STFT and the other being
an adaptive subspace-based estimator. Both are try-
ing to cope with the limitations related to the well-

noise part

frequency (Hz)

time (s)

Fig. 11: Time-frequency representation of the noise
part obtained by the RF-HND method.

noise part

e

rf‘,":_ T" “EES R g R

4000

frequency (Hz)
8
8

time (s)

Fig. 12: Time-frequency representation of the noise
part obtained by the HR-HND method.

known time-frequency trade-off. Both are capable
of extracting transient noise when it is reasonably
strong and when the modulations of the harmonic
content remain of low extent.

Future work may include the tracking of the line
spectra as a preliminary of the resynthesis of the har-
monic part and the test of non-uniform filter banks
or multiresolution representations.
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