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Abstract 
Speech is a means of communication that is intrinsically 
bimodal: the audio signal originates from the dynamics of the 
articulators. This paper reviews recent works in the field of 
audiovisual speech and more specifically on techniques 
developed to measure the level of correspondence between 
audio and visual speech. It overviews the most common audio 
and visual speech front-end processing, transformations 
performed on audio, visual or joint audiovisual feature spaces 
and the actual measure of correspondence between audio and 
visual speech. Finally, applications of this specific task are 
described. 

1 Introduction 
Speech is a means of communication that is intrinsically 
bimodal: the audio signal originates from the dynamics of the 
articulators. Both audible and visible speech cues carry 
relevant information. Though the first automatic speech-based 
recognition systems were only relying on its auditory part 
(whether it is speech recognition or speaker verification), it is 
well known that its visual counterpart can be a great help, 
especially under adverse conditions [23]. In noisy 
environments for example, audiovisual speech recognizers 
perform better than audio-only systems. Using visual speech 
as a second source of information for speaker verification has 
also been experimented, even though resulting improvements 
are not always significant.  
 
This review tries to complement existing surveys about 
audiovisual speech processing. It does not address the 
problem of audiovisual speech recognition nor speaker 
verification: these two issues are already covered in [6] and 
[8]. Moreover, because of length constraints, this paper does 
not tackle the question of the estimation of visual speech from 
its acoustic counterpart (or reciprocally): the reader might 
want to have a look at [33] and [1] showing that linear 
methods can lead to very good estimates. 
 
This paper focuses on the measure of correspondence 
between acoustic and visual speech. How correlated the two 
signals are? Can we detect a lack of correspondence between 
them? Is it possible to decide (putting aside any biometric 
method), among a few people appearing in a video, who is 
talking?  

Section 2 overviews the acoustic and visual front-ends 
processing. They are often very similar to the one used for 
speech recognition and speaker verification, though a 
tendency to simplify them as much as possible has been 
noticed. Moreover, linear transformations aiming at 
improving joint audiovisual modeling are often performed as 
a preliminary step before measuring the audio-visual 
correspondence: they will be discussed in section 3. The 
correspondence measures proposed in the literature are then 
presented in section 4. Finally, applications of these 
techniques in different technological areas are presented in 
section 5. 

2 Front-end processing 
This section reviews the speech front-end processing 
techniques used in the literature for audio-visual speech 
processing in the specific framework of audiovisual speech 
synchrony measures. They all share the common goal of 
reducing the raw data in order to achieve a good subsequent 
modelling. 

2.1 Acoustic speech processing 

Acoustic speech parameterization is classically performed on 
overlapping sliding window of the original audio signal. 
 
Raw energy The raw amplitude of the audio signal can be 
used as is. In [18], the authors extract the average acoustic 
energy on the current window as their one-dimensional audio 
feature. Similar methods such as root mean square amplitude 
or log-energy were also proposed [1, 3].  
 
Periodogram In [14], the periodogram was proposed for 
audio speech parameterization. 
 
Mel-Frequency Cepstral Coefficients (MFCC) The use of 
MFCC parameterization is very frequent in the literature [26, 
10, 22, 21, 7]. There is a practical reason for that: it is the 
state-of-the-art [25] parameterization for speech processing in 
general, including speech recognition and speaker 
verification.  
 
Linear-Predictive Coding and Line Spectral Frequencies 
(LPC and LSF) Linear-Predictive Coding, and its derivation 
Line Spectral Frequencies [30], have also been widely 
investigated. The latter are often preferred because they were 
shown to be strongly related to the vocal tract geometry [33].  



A comparison of these different acoustic speech features is 
performed in [26] in the framework of the FaceSync linear 
operator, which is presented below. To summarize, in their 
specific framework, the authors conclude that MFCC, LSF 
and LPC parameterizations lead to a stronger correlation with 
the visual speech than spectrogram and raw energy features. 
This result is coherent with the observation that these features 
are the ones known to give good results for speech 
recognition. 

2.2 Visual speech processing 

In this section, we will refer to the gray-level mouth area as 
the region of interest. It can be much larger than the sole lip 
area and can include jaw and cheeks. In the following, it is 
assumed that the detection of this region of interest has 
already been performed. Most of visual speech features 
proposed in the literature are shared by studies in audiovisual 
speech recognition. However, some much more simple visual 
features are also used for synchronization detection. 
  
Raw pixels This is the visual equivalent of the audio raw 
energy. In [18] and [21], the intensity of gray-level pixels is 
used as is. In [3], their sum over the whole region of interest 
is computed, leading to a one-dimensional feature.  
 
Holistic methods Holistic methods consider and process the 
region of interest as a whole source of information. In [22], a  
two-dimensional discrete cosine transform is applied on the 
region of interest and the most energetic coefficients are kept 
as visual features: it is a well-known method in the field of 
image compression. Linear transformations taking into 
account the specific distribution of gray-level in the region of 
interest were also investigated. Thus, in [4], the authors 
perform a projection of the region of interest on vectors 
resulting from a principal component analysis: they call the 
principal components ‘eigenlips’ by analogy with the well-
known ‘eigenfaces’ [32] principle used for face recognition.  
 
Lip-shape methods Lip-shape methods consider and process 
lips as a deformable object from which geometrical features 
can be derived, such as height, width openness of the mouth, 
position of lip corners, etc. They are often based on fiducial 
points that need to be automatically located. In [1], videos 
available are recorded using two cameras (one frontal, one 
from side) and the automatic localization is made easier by 
the use of face make-up: both frontal and profile measures are 
then extracted and used as visual features. Mouth width, 
mouth height and lip protrusion are computed in [17], jointly 
with what the authors call the relative teeth count that can be 
considered as a measure of the visibility of teeth. In [13] [12], 
a deformable template composed of several polynomial 
curves follows the lip contours: it allows the computation of 
the mouth width, height and area. In [7], the lip shape is 
summarized with a one-dimensional feature: the ratio of lip 
height and lip width.  
 
 
 

Dynamic features In [8] the authors underline that, though it 
is widely agreed that an important part of speech information  
is conveyed dynamically, dynamic features extraction is 
rarely performed: this observation is also verified for 
correspondence measures. However, some attempts to capture 
dynamic information within the extracted features do exist in 
the literature. Thus, the use of time derivatives is investigated 
in [16]. In [10], the authors compute the total temporal 
variation (between two subsequent frames) of pixel values in 
the region of interest, following the equation 1: 

 
(1)  

 
 

where It(x,y) is the grey-level pixel value of the region of 
interest at position (x,y) in frame t.  

2.3 Frame rates  

Audio and visual sample rates are classically very different. 
For speaker verification, for example, MFCCs are usually 
extracted every 10 ms ; whereas videos are often encoded at a 
frame rate of 25 images per second. Therefore, it is often 
required to down-sample audio features or up-sample visual 
features in order to equalize audio and visual sample rates. 
However, though the extraction of raw energy or periodogram 
can be performed directly on a larger window, down-
sampling audio features is known to be very bad for speech 
recognition. Therefore, up-sampling visual features is often 
preferred (with linear interpolation, for example). One could 
also think of using a camera able to produce 100 images per 
second. Finally, some studies (like the one presented in 
section 4.3.2) directly work on audio and visual features with 
unbalanced sample rates. 

3 Audiovisual subspaces 
In this section, we overview transformations than can be 
applied on audio, visual and/or audiovisual spaces, with the 
aim of improving subsequent measure of correspondence 
between audio and visual clues. 

3.1 Principal component analysis 

Principal Component Analysis (PCA) is a well-known linear 
transformation that is optimal for keeping the subspace that 
has largest variance. The basis of the resulting subspace is a 
collection of principal components. The first principal 
component corresponds to the direction of greatest variance 
of a given dataset. The second principal component 
corresponds to the direction of second greatest variance, and 
so on. In [9], PCA is used in order to reduce the 
dimensionality of a joint audiovisual space (in which audio 
speech features and visual speech features are concatenated), 
while keeping the characteristics that contribute most to its 
variance.  



3.2 Independent component analysis 

Independent Component Analysis (ICA) was originally 
introduced to deal with the issue of source separation [19]. In 
[28], the authors use visual speech features to improve 
separation of speech sources. In [27], ICA is applied on an 
audiovisual recording of a piano session: the camera frames a 
close-up on the keyboard when the microphone is recording 
the music. ICA allows to clearly find a correspondence 
between the audio and visual note. However, to our 
knowledge, ICA has never been used as a transformation of 
the audiovisual speech feature space (as in [27] for the piano). 
A Matlab implementation of ICA is available on the Internet 
[20]. 

3.3 Canonical correlation analysis 

Canonical Correlation Analysis (CANCOR) is a statistical 
analysis allowing to jointly transform the audio and visual 
feature spaces while maximizing the audiovisual cross-
correlation. Given two synchronized random variables X and 
Y, the FaceSync algorithm presented in [26] uses CANCOR 
to find canonic correlation matrices AX and AY that whiten X 
and Y under the constraint of making their cross-correlation 
diagonal and maximally compact. Let , 

 and . 
These constraints can be summarized as follows:  
 
Whitening:  
Diagonal : 

 with  
and  
Maximally compact: 
For i from 1 to M, the correlation  between 
Xi and Yi is as large as possible.  
 
The proof of the algorithm for computing AX and AY is 
described in [26]. A Matlab implementation of this 
transformation is also available on the Internet [5]. 

3.4 Co-inertia analysis 

Co-Inertia Analysis (CoIA) is quite similar to CANCOR. 
However, while CANCOR is based on the maximization of 
the correlation between audio and visual features, CoIA relies 
on the maximization of their covariance 

. 
This statistical analysis was first introduced in biology and is 
relatively new in our domain. The proof of the algorithm for 
computing AX and AY can be found in [11].  
 
Remark Comparative studies between CANCOR and CoIA 
are proposed in [17, 13, 12]. The authors of [17] show that 
CoIA is more stable than CANCOR: the accuracy of the 
results is much less sensitive to the number of samples 
available. The liveness score (see section 5) proposed in [13, 
12] is much more efficient with CoIA than CANCOR. The 
authors of  [13] suggest that this difference is explained by 
the fact that CoIA is a compromise between CANCOR 

(where audiovisual correlation is maximized) and PCA 
(where audio and visual variances are maximized) and 
therefore benefits from the advantages of both 
transformations. 

4 Correspondence measures 
This section overviews the correspondence measures 
proposed in the literature to evaluate the synchrony between 
audio and visual features resulting from audiovisual front-end 
processing and transformations described in sections 2 and 3.  

4.1 Pearson’s product-moment coefficient  

Let X and Y be two independent random variables which are 
normally distributed. Assuming a linear relationship between 
X and Y, the square of their Pearson’s product-moment 
coefficient R(X,Y) (defined in equation 2) denotes the portion 
of total variance of X that can be explained by a linear 
transformation of Y (and reciprocally, since it is a 
symmetrical measure). 

 
(2)  
 

In [18], the authors compute the Pearson’s product-moment 
coefficient between the average acoustic energy X and the 
value Y of the pixels of the video to determine which area of 
the video is more correlated with the audio. This allows to 
decide which of two people appearing in a video is talking. 

4.2 Mutual information  

In information theory, the mutual information MI(X,Y) of 
two random variables X and Y is a quantity that measures the  
mutual dependence of the two variables. In the case of X and 
Y are discrete random variables, it is defined as in equation 3. 

 
(3)  

 
 

It is non-negative (MI(X,Y) ≥ 0) and symmetrical 
(MI(X,Y)=MI(Y,X)). One can demonstrate that X and Y are 
independent if and only if MI(X,Y)=0. The mutual 
information can also be linked to the concept of entropy H in 
information theory as shown in equation 5:  

 
(4)  
(5)  

 
As shown in [18], in the special case where X and Y are 
normally distributed mono-dimensional random variables, the 
mutual information is related to R(X,Y) via the equation 6:  

 
(6)  

 
In [18, 15, 22, 21], the mutual information is used to locate 
the pixels in the video that are most likely to correspond to 
the audio signal: the face of the person who is speaking 
clearly corresponds to these pixels. However, one can notice 
that the mouth area is not always the part of the face with the 



maximum mutual information with the audio signal: it is very 
dependent on the speaker. 
 
Remark In [4], the mutual information between audio X and 
time-shifted visual Yt features is plotted, as a function of their  
temporal offset t. It shows that the mutual information reaches 
its maximum for a visual delay of between 0 and 120 ms. 
This observation led the authors of [13, 12] to propose a 
liveness score L(X,Y) based on the maximum value Rref of 
the Pearson’s coefficient for short time offset between audio 
and visual features.  

 
 (7)   

 

4.3 Joint audiovisual models  

Though the Pearson’s coefficient and the mutual information 
are good at measuring correspondence between two random 
variables even if they are not linearly correlated (which is 
what they were primarily defined for), some other methods do 
not rely on this linear assumption.  

4.3.1 Parametric models  

Gaussian Mixture Models Let consider two discrete random 
variables X = {xt, t ∈ N} and Y = {yt, t ∈ N} of dimension dX 
and dY respectively. Typically, X would be acoustic speech 
features and Y visual speech features [29, 7]. One can define 
the discrete random variable Z = {zt , t ∈ N} of dimension dZ 
where zt is the concatenation of the two samples xt and yt, 
such as zt = [xt , yt] and dZ = dX + dY.  
Given a sample z, the Gaussian Mixture Model λ defines its 
probability distribution function as follows:  

 
(8)  

 
 

where  is the normal distribution of mean µ and 
covariance matrix Γ. λ = {wi,µi,Γi} i∈[1,N] are parameters 
describing the joint distribution of X and Y. Using a training 
set of synchronized samples xt and yt concatenated into joint 
samples zt, the Expectation-Maximization algorithm (EM) 
allows the estimation of λ.  
Given two sequences of test X = {xt,t ∈ [1, T]} and Y = {yt,t 
∈ [1, T ]}, a measure of their correspondence Cλ(X,Y) can be 
computed as in (9). 

 
(9)  

  
 

Then the application of a threshold θ decides on whether the 
acoustic speech X and the visual speech Y correspond to each 
other (if Cλ(X,Y) > θ) or not (if  Cλ(X,Y) ≤ θ).  
 
Remark λ is well known to be speaker-dependent: GMM-
based systems are the state-of-the-art for speaker 
identification. However, there is often not enough training 
samples from a speaker S to correctly estimate the model λS 

using the EM algorithm. Therefore, one can adapt a world 
model λΩ (estimated on a large set of training samples from a 
population as large as possible) using the few samples 
available from speaker S into a model λS. This is not the 
purpose of this paper to review adaptation techniques: the 
reader can refer to [25] for more information.  
 
Hidden Markov Models Like the Pearson’s coefficient and 
the mutual information, time offset between acoustic and 
visual speech features is not modeled using GMMs. 
Therefore, the authors of [22] propose to model audio-visual 
speech with Hidden Markov Models (HMMs). Two speech 
recognizers are trained: one classical audio only recognizer 
[24], and an audiovisual speech recognizer as described in 
[23]. Given a sequence of audiovisual samples ([xt,yt], t ∈ [1, 
T]), the audio only system gives a word hypothesis W. Then, 
using the HMM of the audiovisual system, what the authors 
call a measure of plausibility P(X,Y) is computed as follows:  
 

(10)  
 

An asynchronous hidden Markov model (AHMM) for audio-
visual speech recognition is proposed in [2]. It assumes that 
there is always an audio observation xt and sometimes a 
visual observation ys at time t. It intrinsically models the 
difference of sample rates between audio and visual speech, 
by introducing the probability that the system emits the next 
visual observation ys at time t. AHMM appears to outperform 
HMM in the task of audio-visual speech recognition [2] while 
naturally resolving the problem of different audio and visual 
sample rates.  

4.3.2 Non-parametric models  

The use of neural networks (NN) is investigated in [10]. 
Given a training set of both synchronized and not 
synchronized audio and visual speech features, a neural 
network with one hidden layer is trained to output 1 when the 
audiovisual input features are synchronized and 0 when they 
are not. Moreover, the authors propose to use an input layer at 
time t consisting of  and 

 (instead of Xt and Yt), choosing 
NX and NY such as about 200 ms of temporal context is given 
as an input. This proposition is a way of solving the well-
known problem of coarticulation and the already mentioned 
lag between audio and visual speech. It also removes the need 
for down-sampling audio features (or up-sampling visual 
features).  

5 Applications  
Measuring the synchrony between audio and visual speech 
features can be a great help in many applications dealing with 
audiovisual sequences.  
 
Sound source localization Sound source localization is the 
most cited application of audio and visual speech 
correspondence measure. In [10], a sliding window performs 
a scan of the video, looking for the most probable mouth area 



corresponding to the audio track (using a Time-Delayed 
Neural Network). In [22], the principle of mutual information 
allows to choose which of the four faces appearing in the 
video is the source of the audio track: the authors announce a 
82% accuracy (averaged on 1016 video tests). One can think 
of an intelligent video-conferencing system making extensive 
use of such results: the camera could zoom in on the person 
who is currently speaking.  
 
Liveness test The main weakness of a biometric system 
based on talking-faces is that it might be fooled by an 
impostor showing a picture of the face of his/her target while 
playing a recording of his/her voice. Two relatively simple 
solutions can address this problem. First, one can ask the user 
to pronounce a random sentence, thus preventing the use of a 
pre-recorded sample of the voice of the target. The other 
solution is to check the correspondence between audio and 
visual speech: a few papers [13, 12, 7, 3] investigate this 
solution. Thus, replay attacks scenarios are tackled in [7] 
(with GMMs for joint audiovisual modeling) and [3] (with the 
Pearson’s coefficient).  
 
Indexation of audiovisual sequences Another field of 
interest is the indexation of audiovisual sequences. In [21], 
the authors combine scores from three systems (face 
detection, speech detection and a measure of correspondence 
based on the mutual information between the soundtrack and 
the value of pixels) to improve their algorithm for detection of 
monologue. Experiments performed in the framework of the 
TREC 2002 Video Retrieval Track [31] show a 50% relative 
improvement on the average precision.  
 
Film post-production During the post-production of a film, 
dialogues are often re-recorded in a studio. An audio-visual 
speech correspondence measure can be of great help when 
synchronizing the new audio recording with the original 
video. Such measures can also be a way of evaluating the 
quality of a dubbed film into a foreign language: does the 
translation fit well with the original actor facial motions? 
  
Other applications In [29], audio-visual speech 
correspondence is used as a way of improving an algorithm 
for speech separation. The authors of [15] design filters for 
noise reduction, with the help of audio-visual speech 
correspondence. 

6 Conclusion and perspectives  
This paper has reviewed techniques proposed in the literature 
to measure the degree of correspondence between audio and 
visual speech. However, it is very difficult to compare these 
methods since no common framework is shared among the 
laboratories working in this area. There was a monologue 
detection task (where using audiovisual speech 
correspondence showed to improve performance in [21]) in 
TRECVid 2002 but unfortunately it disappeared in the 
following sessions (2003 to 2006). Moreover, tests are often 
performed on very small datasets, sometimes only made of a 
couple of videos and difficult to reproduce. Therefore, 

drawing any conclusions about performance is not an easy 
task: the area covered in this review clearly lacks a common 
evaluation framework. 
 
Nevertheless, experimental protocols and databases do exist 
for research in biometric authentication based on talking-
faces: one can quote the XM2VTS and BANCA databases 
and corresponding protocols, for example. One could think of 
augmenting the existing biometric authentication tasks with 
audiovisual speech synchrony detection tasks. 
 
A simple idea would be to artificially create desynchronized 
sequences from the original sequences. Thus, in [3], two 
replay attacks scenarios are introduced and experimented on 
the BANCA database. The first scenario, called “Paparazzi”, 
simulates an attack where the impostor owns a picture of the 
face (which he/she puts in front of the camera) and an audio 
recording of the voice (which he/she plays in the microphone) 
of his/her target. In the second scenario, called “Big Brother”, 
the impostor gains access to a video of the face and an audio 
recording of the voice of his/her target, but from two different 
utterances and therefore desynchronized. A simple algorithm 
based on the correlation between the audio energy and the 
value of grey-level pixels in the mouth area gives 0% Equal 
Error Rate (EER) on the first scenario and 35% EER on the 
second one in the replay attack detection task.  
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