
A Fast Pipelined Multi-Mode DES

Architecture Operating in IP Representation 1

Sylvain Guilley a,b Philippe Hoogvorst a,b Renaud Pacalet a,c

a GET/Télécom Paris,
CNRS LTCI (UMR 5141),

Département communication et électronique.

b 46 rue Barrault, 75634 Paris Cedex 13, France.
c Institut Eurecom BP 193, 2229 route des Crêtes, F-06904 Sophia-Antipolis

Cedex, France.

Abstract

The Data Encryption Standard (DES) is a cipher that is still used in a broad
range of applications, from smartcards, where it is often implemented as a tamper-
resistant embedded co-processor, to PCs, where it is implemented in software (for
instance to compute crypt(3) on UNIX platforms.) To the authors’ knowledge,
implementations of DES published so far are based on the straightforward appli-
cation of the NIST standard. This article describes an innovative architecture that
features a speed increase for both hardware and software implementations, com-
pared to the state-of-the-art. For example, the proposed architecture, at constant
size, is about twice as fast as the state-of-the-art for 3DES-CBC. The first contri-
bution of this article is an hardware architecture that minimizes the computation
time overhead caused by key and message loading. The second contribution is an
optimal chaining of computations, typically required when “operation modes” are
used. The optimization is made possible by a novel computation paradigm, called
“IP representation”.

Key words: Data Encryption Standard (DES), Triple-DES, Modes of Operation,
Pipeline, IP Representation.

1 This work has been partly funded by the Conseil Régional “Provence Alpes Côte
d’Azur”, the STMicroelectronics AST Division (Rousset, France) and the French
Ministry for Research, through ACI “Sécurité Informatique” MARS.

Preprint submitted to Elsevier Science 3 May 2006



1 Introduction

The Data Encyption Standard, DES, is a block product cipher algorithm
promoted by the NIST. The latest version of the standard is known as FIPS
46-3 [1], and includes the definition of “triple DES”. The “DES modes of
operation”, standardized in FIPS 81 [2], is a companion document devoted to
the description of the secure use of DES when the messages to encrypt are
longer than 8 bytes.

Since its inception, DES has been used pervasively by many applications that
require data confidentiality. However, from year 2001, DES has been super-
seded by the Advanced Encryption Standard AES [3]. But in practice, a lot
of hardware or software applications still resort to DES.

The DES algorithm turns a 64-bit confidential data block, nicknamed plain-
text, into another 64-bit data block, nicknamed ciphertext, using a standard-
ized bijection parametrized by a 56-bit secret, nicknamed key. The bijection
DESk is crafted in such a way it is almost impossible to retrieve the plaintext
from the ciphertext without the knowledge of the key k. The bijection can be
inverted: this operation is called decipherment and noted DES−1

k . When it is
not relevant whether the algorithm performs encipherment or decipherment,
the neologism “cipherment” is employed instead.

Several attacks against the plain DES version were published. They can basi-
cally be classified into two categories: algorithmical and physical attacks.

Algorithmical attacks are also referred to as cryptanalysis [7,8]. Those ana-
lyzes are somehow unrealistic, since a large amount of {plaintext, ciphertext}
couples must be intercepted. The exhaustive search of the key [9] has been
publicly feasibly since 1977, as proved by the RSA Laboratory’s “DES Chal-
lenge II” being won in 1997 in 39 days by a network of computers running
the distributed application DESCHALL and in 1998 in 3 days by a dedicated
machine built by the Electronic Frontier Foundation (EFF.) Other methods to
speed-up the search using pre-computated datasets have been put forward [10].

To counteract those attacks, variants of the DES were proposed. We list below
three of the most widespread ones:

(1) Modes of operation allow a message consisting of several 64-bit blocks
to be ciphered in chain. The idea is that the knowledge of each of the
64-bit ciphertext blocks actually depends on the corresponding plaintext
block, also of some, if not all, of the previous ones, and of an initialization
vector (IV). The standardized modes of operation are ECB, CBC, CFB
and OFB [2]; they were reinforced by ISO/IEC 10116 [5]. ECB and CBC
are block-ciphers, whereas CFB and OFB are stream-ciphers. The latter

2



two are actually defined in the K-bit version, 1 ≤ K ≤ 64. As the
K = 64 version is the most efficient in terms of throughput, it is usually
the sole version to be implemented (refer for instance to openssl [11].)
Because of the “short cycle property”, NIST explicitly does not support
K < 64 for OFB [12, page 13].

(2) TDEA (informally called “triple-DES” or “3DES”) is described
in the annex of the DES standard [1, page 22]. Three 64-bit keys ki, i ∈
{0, 1, 2} are used instead of one. The encipherment consists in computing
DESk2

◦DES−1

k1
◦DESk0

whereas decipherment is DES−1

k0
◦DESk1

◦DES−1

k2
,

where “◦” denotes the composition operator. Triple DES is customarily
used with two keys [6,4,13] (i.e. k0 = k2.) Notice that when the three
keys are taken equal, k0 = k1 = k2, triple DES actually computes plain
DES, which guarantees the backward compatibility of 3DES engines.

(3) DESX [14] is a data whitening technique, proposed by Ron Rivest. It
consists in adjoining two 64-bit blocks, in white and out white, to the
key. The key in white is used to exclusive-or (i.e. XOR) the plaintext prior
to starting DES and out white to XOR the result after the cipherment.

Those variants can of course be combined at will. For instance, triple-DES
using two keys in CBC mode is often used to encipher long messages.

Physical attacks are the most recent threats against DES and its variants. The
side-channel attacks, such as DPA (Differential Power Analysis [15]) or EMA
(ElectroMagnetic Analysis [16]), allow to retrieve the keys by the analysis
of the physical emanation of the device while it is handling the key. Partial
side-channel information, such as the Hamming weight of key chunks or key-
dependent correlations between two small chunks of data, suffice to recover
the full key, provided enough measurements can be performed. The faults
injection attacks [17] consist in either perturbing transiently the circuit or to
damage it to enhance other attacks. Algorithmical counter-measures (modes
of operation, 3DES or DESX) do not protect against physical attacks. Both
side-channel and fault attacks can be thwarted, with more or less success, by
using leakage-proof logic and adequate sensors, for instance.

In this paper, we describe an architecture able to compute DES and its variants
efficiently. More precisely, the described architecture can compute: DES in
ECB, CBC, 64-bit CFB and 64-bit OFB, as well with simple or triple DES
using two keys. The cryptanalytic strength of the variant as well as the security
of its implementation against physical attacks is out of the scope of this paper.

The rest of the article is organized as follows. Section 2 discusses the DES
datapath optimization: a hardware pipelined architecture is presented. Sec-
tion 3 applies to both software (SW) and hardware (HW) implementations. It
introduces the so-called “IP representation” computational framework, which
allows to optimally chain DES computations. In Sec. 4, the gain of proposed ar-

3



chitecture over state-of-the-art architectures is discussed. Finally, Sec. 5 sum-
marizes the paper.

2 DES Datapath Improvement thanks to a Generalized Pipelining

In the DES algorithm, the control is independent of the data. It is thus safe
to consider the design of the datapath and the control finite state machine
(FSM) as two distinct tasks. This section is devoted to the datapath. The
control is further studied in Sec. 3.

2.1 Straightforward DES

The inputs of the DES algorithm are two 64-bit blocks, the plaintext and the
key. The two operands cannot be loaded in the DES operator in one go, since
data provided by processors are typically on n = 8, 16 or 32 bits. In the rest
of the article, we assume that the DES co-processor is fed by an n = 8-bit
wide data bus. This figure corresponds to the case of an embedded system
built around a micro-controller, as depicted in Fig. 1.

Most of DES implementations elude the question of the connexion to an n < 64
wide bus [18–20]. Some implementations, such as [21], use n = 32, but do not
take advantage of the architectures presented in this paper. Other implemen-
tations use n = 64 and focus on achieving highest possible throughputs. For
the processing core not to starve, the data must be input and output as 64-bit
blocks at every clock cycle. For instance, 12 Gbps [23] and even 21.3 Gpbs [24]
DES-ECB encryptors/decryptors cores have been reported. Regarding 3DES,
a 7.36 Gbps (> 21.3/3 Gbps) implementation is described in [25]. Nevertheless,
those high-throughput cores are I/O-intensive (thus limited by the communi-
cation rate) and thus are not suitable to be embedded in a resource-limited
embedded system, such as a smartcard.

The knowledge of the DES algorithm internals is not required to explain the
rationale of the three n = 8-bit architectures discussed in this paper. Only the
following facts are indeed relevant for the coming analysis:

• DES is a Feistel cipher, which means that the message is divided into two
halves (L and R), among which only L undergoes a logical operation depen-
dent on the some bits of the round key, R being left untouched. Then the
two halves are swapped, and the process is iterated sixteen times. After the
last round, L and R are not swapped.

• Before any processing, the message bits are shuffled, using a permutation

4



called IP. At the end of the Feistel scheme, the message is de-shuffled by
the inverse permutation FP

.
= IP−1.

• Only 56 bits of the key are used. As justified in the standard [1, page 1],
every byte of the key has a parity bit, chosen so that the Hamming weight
of every byte of the key is odd. In a similar way to the message, the key
bits are initially shuffled, using the permutation PC1. The key is modified
at each round, by a transformation known as “key schedule”, consisting in
one or two Left Shifts, LS (resp. Right Shifts, RS) for encipherments (resp.
decipherments), followed by a permutation called PC2. Every sub-key is
designated by the term “CD” (for Cipher/Decipher.) The shifts are designed
in such a way that CD is back to its initial value after a full encipherment (16
rounds.) They are implemented by a 2× 2 input multiplexor (4→1 MUX.)
However, when enciphering, the initial value to be presented at PC2 is LS(k),
whereas when deciphering, bare Id(k)

.
= k is to be used instead. Given that

a “general purpose” DES module is designed to both encipher and decipher,
both PC1 and LS ◦ PC1 must be computed in parallel.

As a result, a straightforward implementation of DES requires the following
sequential resources:

(1) one 64-bit register (named LR in [1, page 11]) to hold the ciphertext and
to store the 16 intermediate messages, and

(2) one 56-bit register (named CD in [1, page 19]) to hold the key stripped
off its parity bits and to store the 16 round sub-keys.

Without any additional registers, the storage of the plaintext in LR and of
the key in CD requires a demultiplexing logic, illustrated in Fig. 2. For the
sake of clarity, the control part has been omitted in Fig. 2: the multiplexors
and the key schedule logic are implicitly commanded externally.

The schematics follow those conventions:

• sequential gates, Flip-Flops (DFFs) in our case, are represented as boxes
( ),

• combinatorial gates are represented as boxes with round corners ( or ),
• permutation-only gates, such as IP or buses merge ( ) or split ( ), are

hollow, whereas
• gates made up of logic have a solid background ;
• datapath forks are represented with solder dots (•) and
• when some bits are useless, they are disposed of ( ).

The entire DES design is made up of bit shuffling dataflow primitives (per-
mutations, multiplexors and flip-flops), with the exception of the round logic.
This fact is depicted on Fig. 3, where the critical path of the datapath is
highlighted. Notice that the key schedule is not on the critical path: this is
made possible by the fact that the 4 → 1 multiplexor that chooses between

5



{LS1,2, RS1,2} prepares the sub-key for the next round, and not for the cur-
rent one. The typical resource utilization in the straightforward architecture
of Fig. 2 is illustrated in Tab. 1.

Registers LR and CD must be loaded sequentially. In a pipelined architecture,
the use of “enable” signals on the DFFs can usually be avoided. It is possible
to use none, if the key is loaded first into CD, because there is a way to keep it
“apparently” still. As LS2 = LS◦LS, RS2 = RS◦RS and LS◦RS = RS◦LS =
Id, it is easy to control the key in such a way it is unchanged before and after
the LR loading. In the sequel, we assume that the transformation is LS4 ◦RS4.
As for LR, it never has to maintain its state more than one clock cycle. The
same remark will hold for the refinements carried out on this straightforward
architecture, because they are “pipelined”: data (other than the key) flows
continuously through the datapath, without having to wait at any time. In
addition, the datapath needs not be initialized: this yields more compact code
(SW) or implementation area (HW.)

The straightforward pipeline is thus initially busy during 64/n = 8 clock
cycles to load the key into CD. During another eight clock cycles, the key is
applied LS4 ◦ RS4, whilst the first message block is loaded into LR. Then the
DES engine can start the sixteen iterations. The next eight clock cycles are
devoted to flushing the result out.

In the straightforward scheme of Fig. 2, every computation has an overhead
in execution time due to data loading / unloading in the LR or in the CD
register. The evaluation of the architecture throughput does not take into
account the key loading, because most applications use only one key, loaded
once for many consecutive cipherments (the case of 3DES is detailed later on
in Sec. 3.2.) The loading stage consumes 64/n = 8 cycles, and monopolizes
the LR or the CD registers, so that it is impossible to parallelize a loading
with a DES cipherment (16 cycles). Then the message must be output, which
requires another 64/n = 8 cycles. Notice that for read and write accesses to be
done in parallel, two random access memories (RAMs) must be connected to
the DES engine. In terms of memory usage, it is however optimal to use one
single RAM, since every computation result can be written over the original
message. Thus, the maximum throughput is one encipherment per 8+16+8
clock cycles (2.0 bit/clock.)

The straightforward architecture suffers two drawbacks, that impede the cryp-
toprocessor performances:

(1) The DES cannot perform cipherements whilst new blocks mi+1 are read
and processed blocks DES(mi) are written out.

(2) The LR register is preceded by multiplexors, that increase the critical
path.

6



The next section describes and motivates a novel pipelining scheme, where
the data can be both input and output byte by byte, in parallel with DES
cipherments.

2.2 DES Datapath Fast Pipelining

The drawbacks put forward in the previous section can be overcome by a
more elaborate pipelining scheme of the DES cryptoprocessor. The principle
is to parallelize the message inputs and outputs with the DES algorithm. A
comparison between the so-called iterative and pipeline architectures of DES
inner-loop is discussed in [22, page 589]. The difference is that an iterative DES
engine processes one cipherment at the time, whereas a pipeline DES engine
can process many – up to 16 – at the same time. In all the architectures
presented in this paper, DES is computed iteratively. However, the outside
view of the DES engine is more like a pipeline: data is not input and output
monolithically, but rather byte by byte. It must be clear that, throughout this
paper, the term “pipeline” refers to the way the data is loaded and unloaded.

A 64-bit register, called IF (because of its role of InterFace between the 8-
bit inputs and the 64-bit blocks involved within DES), is added to the DES
cryptoprocessor.

IF is designed to have two possible sources: it can input either individual
bytes or 64-bit blocks. In the first case, the output of IF is shift by 8-bits to
make room for the incoming byte, to be concatenated with the others already
collected. The byte that has been “shift-out” is not lost: it is available at the
eight-bit output of the pipeline. In the second case, a 64-bit block, such as the
result of the DES computation, is latched into IF, in a view to being output
byte by byte. In the meantime, the whole content of IF can be transferred to
LR, so that the DES datapath is ready to follow up on another cipherment.

In fact, the same IF register can be reused to manage the 8-bit ↔ 64-bit
conversion for both LR and CD. Figure 4 illustrates that the pipeline is gen-
eralized to cover both the round logic and the key schedule.

A more detailed description of the pipelined process is given below and illus-
trated in Fig. 5 for DES-ECB encipherment with one key:

1–7: During seven clock periods, the seven first bytes of the key k are loaded,
side-by-side, into IF.

8: The blocks comprised into the last byte of the key k[56, 63], concatenated
with the already loaded seven others k[0, 7] || · · · || k[48, 55], is then loaded
into CD, using selection 0 (when deciphering) or selection 1 (when encipher-
ing).

7



9–15: During the seven following clock periods, the message m0 is built-up into
IF.

16: The message m0, now complete, is transferred into LR. In the meantime, k
is kept still in CD, which is possible, as shown in Sec. 2.1. Incidentally, the
result DESk(m−1) of the previous computation – if any – is latched into IF.

17–24: The next eight cycles are devoted to the output of an hypothetical c−1

.
=

DESk(m−1), byte by byte (c−1[8 · i, 8 · (i + 1)[, i ∈ [0, 8[), from IF. In the
present case, c−1 is a “don’t care” result. However, starting from clock cycle
33, relevant ci, i ≥ 0 are delivered byte by byte from IF. Concomitantly, the
first eight rounds of DES are executed.

25–31: Whilst DES rounds are computed, a new 64-bit block of data is loaded (as
already seen at clock cycles 9–15.)

32: DES has finished the sixteen rounds. The result is latched into IF. Simul-
taneously, a new 64-bit block of data is loaded into LR.

33–40: While DES starts the second cipherment, IF outputs c0. The scheduling
scheme goes on, with a periodicity of 16 clock cycles.

In practice, the pipeline is connected to a scratch-pad RAM. The pipeline
reads from (cycles 1–8, 9–16, 25–32) and writes to (cycles 17–24, 33–40) the
RAM on disjoint time slots. Therefore, a single-port RAM (the less expensive
type of RAM) is perfectly suitable. The throughput of the DES pipelined
operator is 64-bit per 16 clock periods (4.0 bit/clock). The input and output
latencies are equal to 8 cycles (as in Sec. 2.1, we ignore the key initial loading.)

By the same token, the pipelined architecture improves the datapath speed.
In the straightforward implementation, the LR register has four input sources:

(1) the input byte concatenated with the previous register content shifted by
8 bits to build the plaintext up,

(2) the same block, but passed through IP, to start the computation and
(3) the end of the round data, reinjected into LR for the next round.
(4) the same block, swapped and passed through FP.

As already shown in Fig. 2, a 4→1 multiplexor, to choose between those four
sources, directly precedes LR.

In the pipelined architecture, IP is performed concomitantly with the collec-
tion of the plaintext constitutive bytes. It does not slow down the compu-
tation, because in a hardware implementation, IP requires no logic: it is a
mere reordering of wires. Consequently, LR has only two possible inputs in
the pipelined architecture ; the 4→1 multiplexor is replaced by a 2→1. This
optimization is crucial, since this multiplexor is on the critical path (LR →
Round Logic → LR, as highlighted in Fig. 3).

8



3 Optimal SW/HW Partition to Realize all DES Variants

3.1 IP Representation

The notations used in this section are inspired from openssl [11] internals:

• des encrypt1 is the full DES,
• des encrypt2

.
= IP ◦ des encrypt1 ◦ FP is DES, without IP nor FP.

Functions des encrypt{1,2}(m, k, enc) take three arguments: a message m, a
key k and a Boolean enc, specifying whether to encrypt (enc = 1) or decrypt
(enc = 0.)

For any function set fi : [0 :63] 7→ [0 :63], the following property holds:

Πi (FP ◦ fi ◦ IP) = FP ◦ (Πifi) ◦ IP , (1)

where: Πi=imax

i=imin
fi

.
= fimax

◦ · · · ◦ fimin
,

because FP ◦ IP is the identity function.

This property allows the chaining of DES operations without caring for IP and
FP permutations. The “IP representation” computational framework consists
in using the des encrypt2 primitive instead of des encrypt1, the IP (resp.
FP) being called only once at the beginning (resp. at the end) of the compu-
tation. The Equation (1) can be applied to the following DES variants:

• fi = des encrypt2(mi, k, enc) (ECB and ECB−1)
• fi = des encrypt2(mi, enc?ki :k2−i, (enc+ i)%2), ∀i ∈ {0, 1, 2} (triple-DES

on one block m ; m0 = m and mi+1 = fi(mi), the output being m3)

• fi =











des encrypt2(mi ⊕ fi−1, k, 1) if enc = 1

des encrypt2(mi, k, 0) ⊕ fi−1 if enc = 0

(CBC and CBC−1, with f−1 = IV)
• fi = des encrypt2(fi−1, k, 1) ⊕ mi,

(64-CFB and 64-CFB−1, with f−1 = IV)
• fi = des encrypt2(fi−1 ⊕ mi−1, k, 1) ⊕ mi,

(64-OFB and 64-OFB−1, with f−1 ⊕ m−1 = IV)

In software implementations, IP is not free as in hardware, because bits can-
not be arbitrarily moved within or between words. In openssl, IP and FP
are implemented using 32-bits registers in 5 × (3 XOR + 2 SHIFT + 1 AND) = 30
operations.

DES des {en,de}crypt3 function performs triple DES on one block of plain-
text. It is the only function from openssl that takes advantage of the opti-

9



mization provided by the computation in the IP representation (1). All other
functions, especially chained DES, are thus inefficient.

3.2 Multi-mode Pipelined DES Datapath Operating in “IP Representation”

The pipeline described in Sec. 2.2 (see Fig. 4) is not designed to chain cipher-
ments. However, it can be enhanced to cope with triple-DES and all modes of
operation. The rationale is to add two inputs to the LR multiplexer:

(1) the result of the previous DES, which allows triple-DES and also OFB

(where the series
{

DESi(IV)
}

i≥0
is to be computed),

(2) idem, but XORed with the new message, which allows CBC and CFB
chained modes.

The new inputs to LR are compatible, provided that they are in the IP rep-
resentation. It basically means that inputs to DES must be previously IP’ed
and that output of DES to be recycled must not be FP’ed. Additionally, the
IF register must be able to latch the XOR between the new message and the
current result, which is required by the stream modes (i.e. CFB and OFB)
of DES. Those constraints lead to the versatile version of the pipelined DES
datapath represented in Fig. 6. By default, the multiplexor in front of IF (resp.
LR) selects the input 0 (resp. 1). At the end of every cipherment (i.e. every
16 clock periods), the multiplexers choose another input, as shown in Tab. 3.

The realization of triple DES requires a special schedule. The 3DES-ECB is
illustrated in Fig. 7. The IF and CD registers sample their default inputs,
selection 1 for IF and 0 for CD (corresponding to the ECB and ECB−1 lines
in Tab. 3). The scheme for 3DES of Fig. 7 can be combined with the modes of
operation. It suffices that the data to be output by IF and sampled into LR
have non-default origins documented in Tab. 3 every 3 × 16 clock periods.

In the case of 3DES with two keys (k0 and k1, k2 = k0), it is noticeable that the
computation never stalls. As a matter of fact, the key for the first of the three
DES is already present in CD, since the last the key was k2 = k0. Consequently
a new message mi can be loaded instead, and the next computation can follow
seamlessly.

Finally, the hardware is also able to realize some non-standard operations,
such as “cascade-encryptions” [27, page 234] (used in crypt(3)) or “multiple-
encryption modes of operation” [27, page 237] (e.g. triple-inner-CBC), with
the minor limitations explained in the next section.

10



3.3 SW/HW Trade-offs

The proposed pipelined architecture of Fig. 6 is versatile, since all modes of
operation can be fit. Nevertheless, this architecture suffers three drawbacks,
discussed in the following three paragraphs.

3.3.1 Realization of 3DES with three different keys.

In 3DES with three keys, it would be necessary to load the first key k0 and
the new message block mi at the same time. However, the RAM delivering the
data is single-port and there is a single IF register. As there is a contention, the
two loadings must be done sequentially. As CD has can kept a key globally
unchanged during 8 clock cycles, it is loaded first. During the extra eight
clock cycles required to load mi, the pipeline stalls, because it is starving
data. Triple-DES with three keys can thus be used with modes of operation,
but it is the only exception where the cipherments do not chain gracefully.

3.3.2 Realization of CBC−1.

As already indicated in Tab. 3, CBC cannot be deciphered directly. The reason
is that to retrieve plaintext block mi, the following XOR must be computed:
mi = DES−1(ci)⊕ci−1. Unfortunately, the XOR right-hand side ci−1 has already
been consumed by the pipeline (to compute DES−1(ci−1)) when it is needed
again. Re-fetching the ciphertext ci−1 in memory would require to freeze the
pipeline during 8 clocks cycles, which is not desirable.

The first workaround is to implement CBC−1 by EBC−1, which yields m0,
m0⊕m1, m1⊕m2, etc. instead of m0, m1, m2, etc. The processor can afterwards
compute (in software) the XOR between the couples in the memory ram[0:N[
to retrieve the correct plaintext. An example programme is listed below:

register char tmp0, tmp1;

for( register char i=0; i<8; ++i ) {

tmp0=ram[i]; // The 1st block is only read

for( register size_t j=1; j<N; ++j ) {

tmp1=ram[j*8+i]; // Read jth block

ram[j*8+i]=tmp0^tmp1; // Write jth block

tmp0=tmp1;

}

}

The second workaround we propose is the smartest, because it does not require

11



any post-processing in software. It consists in adapting the control to decipher
the blocks ci in reverse order. If we note c′i

.
= cN−1−i, then mi = DES−1(c′i−1)⊕

c′i, for i ∈]N :0], is computable by the multi-mode architecture of Fig. 6. It is
the same configuration as CFB−1 with full feedback, but with the key schedule
set to decipher.

3.3.3 Using CBC and CBC−1 with an IV.

At last, CBC and CBC−1 modes cannot be used with an IV. The IV should
indeed by loaded, kept in some register (say LR) while the first block m0 is
built-up into IF, The computation could then start with the first operand
IV⊕m0. However, this scenario also implies that LR has an enable, which we
explicitly want to avoid.

A first solution relies on the software. The task simply consists in XORing the
first block prior to calling an encipherment or after a decipherment.

A second solution consists in adding an initialization procedure, during which
DES±1(IV) is computed. Then, every message to cipher is simply prepended
DES±1(IV). For long messages, this overhead in processing time becomes neg-
ligible.

A third solution implies to increase the DES engine area. The datapath is
augmented with an 8-bit XOR operator that would compute “input ⊕ output”
(with the notations of Fig. 6.) This result would be injected into the multi-
plexor in front of the IF register. It is a design choice to decide whether it is
worth implementing this minor hardware feature that complexifies both the
datapath and the control (since the IF multiplexor has a new input).

4 Performance Evaluation of the Proposed Architecture

4.1 Implementation in FPGA and ASIC

The three architectures discussed in this paper, namely the “straightforward”
(Fig. 2), “pipelined” (Fig. 4) and “multi-mode” (Fig. 6) have been captured
using VHDL. They have been synthesized in an FPGA technology (for proto-
typing) and in an ASIC “low-leakage” 130 nm technology (for production.)

The FPGA front-end was Mentor Graphics Precision Synthesis and the back-
end Xilinx ISE. The performances are given in Table 2 for the Virtex 4vfx12sf363-
12.

12



In terms of speed, the “straightforward” architecture is the fastest and the
“multi-mode” is the slowest.

The ASIC tool-chain for the tape-out of the embedded 8-bit DES blocks was
Cadence pks shell for the front-end (synthesis) and SOC/Encounter for the
back-end (place-and-route.) The synthesis results, for both the control and the
datapath, are given in Fig. 8. The control is dimensioned to interface with a
256-byte single port RAM. The straightforward architecture is the most com-
pact and the multi-mode is the largest. The design maximum frequencies are
540 MHz (straightforward DES), 500 MHz (pipelined DES), 435 MHz (multi-
mode DES.) The pipelined DES does not reach the same frequency as the
straightforward DES because its more complex control limits its speed. The
multi-mode DES datapath is more sophisticated, which explains why it cannot
reach frequencies as high as the two other architectures. The maximum fre-
quency of the proposed architectures are fairly high for an embedded system.
The architectures can be adapted to an external datapath width of n = 16
(resp. n = 32) bits, in which case two (resp. four) rounds can be computed
within one clock period. This new architecture will run at a maximum speed
roughly half (resp. four times less.)

However, the cipherment throughput is the highest for the pipelined archi-
tecture in ECB mode, and for the multi-mode in all the other modes and
triple DES. Table 4 shows the throughput of some modes. It should be noted
that neither the straightforward nor the pipelined architectures are designed
to handle modes of operation or triple-DES. The chaining operation must
thus artificially be performed in SW. An estimation of the code for such an
operation is given below:

(1) Read ram[i] . . . . . . . . . . . . . . . . . . . . . . . . . . (1 clock cycle)
(2) Read ram[i+8] . . . . . . . . . . . . . . . . . . . . . . . . (1 clock cycle)
(3) Compute ram[i] XOR ram[i+8] . . . . . . . (1 clock cycle)
(4) Write ram[i+8] . . . . . . . . . . . . . . . . . . . . . . . .(1 clock cycle)

This fragment must be repeated 8 times, which leads to a total of 8 × 4 = 32
clock cycles. This evaluation is optimistic, because it does not take into account
the context switch. It is also unrealistic, since the processor should not be
disturbed by the computation internal details. The throughput figures given
for straightforward or the pipelined are thus only indicative.

The maximum throughputs are also shown graphically in Fig. 9 (a) for DES-
ECB and in Fig. 9 (b) for 3DES-CBC. It is also interesting to compare the
throughputs of an ASIC design with the one of a personal computer (PC.) The
maximum throughput for 3DES-CBC attained by the multi-mode architecture
is 580 Mbit/s, while a 3.2 GHz PC is only able to encrypt at 200 Mbit/s (result
of openssl speed des.)

13



However, achieving high throughput would be needless if the area overhead
is getting too large. For most modes of operation, the parallelization of the
cipherments is impossible, due to data dependencies between the consecutive
blocks. Still, ECB±1, CBC−1 and CFB−1 can indeed be parallelized. In those
cases, the throughput can be multiplied by the instantiation of multiple en-
gines operating concurrently. Therefore, in Fig. 10, the throughput divided by
the area is plot. At constant area, the multi-mode architecture of DES remains
the fastest.

The DES module after automatic place-and-route by SOC/Encounter is shown
in Fig. 11. It happens that the synthesizer was optimistic: static timing analysis
performed on the final layout at 95% placement density reports, after post-
route resynthesis and in-place optimization, a maximal frequency of 286 MHz
(versus 435 MHz predicted by the logical synthesizer.) This limitation is in
practice not deterrent, since 256 bytes embedded RAMs in 130 nm technology
cannot work above 333 Mhz without violating either hold or setup times.

4.2 Comparison with other Fast and Versatile Implementations of DES

A “Cryptographic Reuse Library” based on static genericity is described in [26].
It contains synthesizable algorithms commonly used in cryptography, each of
which can be used either as such, or wrapped into a module that enables
modes of operations, or further wrapped into an interface module that adapts
throughputs and latencies to match that of the environment. Although the
methodology has not been applied to DES in [26], it could be extended to
support this algorithm. The features of this “Cryptographic Reuse Library”
are those we present in this paper. However, as the mode of operation and
interface wrappers involved in the library are not aware of the algorithm in-
ternals, the resulting block is necessarily sub-optimal. The approach used in
the “multi-mode” architecture (Fig. 6) is to merge the two abovementioned
wrappers into the algorithm datapath itself. This allows the “multi-mode” ar-
chitecture to work without dead cycles at a constant throughput. This promi-
nent feature is a valuable characteristic of the multi-mode architecture: the
I/Os are equipartitioned during the processing of the DES algorithm. How-
ever, this design solution is specific to DES, and probably does not extend to
other algorithms.

Some architectural innovations are described in [24] regarding the round logic
of DES. The frontier between the consecutive rounds i and i + 1 is dissolved
in order to balance the critical path between Li →Ri+1 and Ri →Li+1. The
transformation yields an overall decrease of the critical path length, at the
cost of an increase of the latency (the apparent number of rounds rises from
16 up to 21 or 37) and of a particularization of the first and last rounds.

14



These modifications are not a burden when a pipelined implementation is
targeted. However, they are deterrent for the architectures presented in this
paper, because the data processing is kept iterative.

5 Conclusion

Two architectural innovations, namely the I/O and processing pipelining and
the use of “IP representation”, allow to improve the design of DES 8-bit im-
plementations. The proposed architecture supports all modes of operation and
triple DES with two keys. The VLSI hardware implementation can take ad-
vantage of both methods, whereas software implementations can only benefit
from the “IP representation”. The pipelining strategy consist in parallelizing
the data inputs and outputs with the processing. It also enables shorter clock
periods, due to the elimination of the some multiplexors on the critical path.
The IP representation enables optimized chaining. These optimizations allow
to accelerate DES operations in smartcards or in embedded systems or to
speed-up DES-cracking machines [22,24].

References

[1] NIST/ITL/CSD, FIPS PUB 46-3: Data Encryption Standard (DES),
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

(October 1999).

[2] NIST/ITL/CSD, FIPS 81,
DES Modes of Operation, http://www.itl.nist.gov/fipspubs/fip81.htm

(December 1980).

[3] NIST/ITL/CSD, FIPS PUB 197: Advanced Encryption Standard
(AES), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
(November 2001).

[4] NIST/ITL/CSD, FIPS PUB 180-2: Secure Hash Standard (SHA), (August
2002).

[5] ISO/IEC International Standard 10116, Information Technology, Modes of
Operation for an n-bit block cipher algorithm, 1991.

[6] American National Standards Institute, ANSI X9.17 “Key Management” (see
also [27, page 173].)

[7] E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems,
Journal of Cryptology 4 (1) (1991) 3–72.

15



[8] M. Matsui, Linear cryptanalysis method for DES cipher, In Proceedings
Eurocrypt’93, T. Helleseth, Ed., Springer-Verlag (LNCS 765) (1994) 386–397.

[9] Electronic Frontier Foundation, Secrets of Encryption Research, Wiretap
Politics & Chip Design, 1998, ISBN: 1-56592-520-3.

[10] Jean-Jacques Quisquater and
François-Xavier Standaert, Exhaustive Key Search of the DES: Updates and
Refinements, 2005, http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/.

[11] Eric Young, < eay@cryptsoft.com>, DES ASM and C implementation in
openssl, http://www.openssl.org/source/.

[12] NIST/ITL/CSD, Modes of
Operation Validation System (MOVS): Requirements and Procedures, 1998,
http://csrc.nist.gov/publications/nistpubs/800-17/800-17.pdf.

[13] Ralph Merkle and Martin Hellman, On the Security of Multiple Encryption,
Communications of the ACM 24 (7) (1981) 465–467.

[14] J. Kilian, P. Rogaway, How to protect DES against exhaustive key search (an
analysis of DESX), Journal of Cryptology 14 (1) (2001) 17–35.

[15] P. Kocher, J. Jaffe, B. Jun, Differential Power Analysis: Leaking Secrets, in:
Proceedings of CRYPTO’99, Vol. 1666 of LNCS, Springer, 1999, pp. pp 388–
397.

[16] K. Gandolfi, C. Mourtel, F. Olivier, Electromagnetic Analysis: Concrete
Results, in: Proceedings of CHES’01, Vol. 2162 of LNCS, Springer, 2001, pp.
pp 251–261.

[17] E. Biham, A. Shamir, Differential Fault analysis on secret key cryptosystems,
Vol. 1294, 1997, pp. pp 513–525.

[18] Helion Technology, Datasheet – High Performance DES and Triple DES core
for ASIC, 2003, http://www.heliontech.com/downloads/...
.../des_asic_helioncore.pdf.

[19] Sci-worx, Datasheet – DES / Triple DES (High Performance),
http://www.sci-worx.com/Data_Encryption_Standard_DES.150.0.html.

[20] F. Bouesse, M. Renaudin, B. Robisson, E. Beigné, P.-Y. Liardet, S. Prevosto,
J. Sonzogni, DPA on Quasi Delay Insensitive Asynchronous Circuits: Concrete
Results, in: XIX Conference on Design of Circuits and Integrated Systems, 2004.

[21] ATMEL, Datasheet – Triple Data Encryption Standard (TDES), 2005,
http://www.atmel.com/dyn/resources/prod_documents/6150s.pdf.

[22] Richard Clayton and Mike Bond, Experience Using a Low-Cost FPGA Design
to Crack DES Keys, in: Cryptographic Hardware and Embedded Systems
(CHES’02), Vol. LNCS 2523, 2002, pp. 579–592.

16



[23] Steve Trimberger, Raymond Pang and Amit Singh, A 12 Gbps DES
Encryptor/Decryptor Core in an FPGA, in: proc. of CHES 2000, LNCS 1965,
pp 156-163, August 2000.

[24] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater and J.-D. Legat, Efficient Uses of
FPGAs for Implementations of DES and Its Experimental Linear Cryptanalysis,
in: IEEE Transactions on Computers, Vol. 52, No. 4, April 2003.

[25] P. Kitsos, S. Goudevenos and O. Koufopavlou, VLSI Implementations of the
Triple-DES Block Cipher, in: proc. of 10th IEEE International Conference
on Electronics, Circuits and Systems (ICECS’03), United Arab Emirates,
December 2003.

[26] A. Schubert, R. Jährig and W. Anheier, Cryptography Reuse Library, in: Forum
on Design Languages (FDL’99), Lyon, France, August 1999.

[27] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, Handbook of Applied
Cryptography, CRC Press ISBN: 0-8493-8523-7 October 1996, 816 pages Fifth
Printing (August 2001)

17



control
DES

datapath
DES

2N
×

n
-b

it
sc

ra
tc

h
-p

ad

R
A

M

n

n

N
address

data in

data out

CPU ↔ bus interface RAM interface Crypto-processor

Fig. 1. System-on-Chip environment for a VLSI version of the DES co-processor.
Typical values for the bus widths are n = 8 and N = 8.

IPFP PC1

Message

output

8 ↪→ Key bytesMessage bytes ←↩

8 7

56

8

64 56

32

LS◦PC1

49

8

7 1
32

32

32

are checked or

The key parity bits

simply disposed of.

LR

4→1 MUX

CD

Round logic Key schedule

4→1 MUX

Fig. 2. Straightforward architecture for a DES datapath, equipped with demulti-
plexing logic to load the message and the key one byte at the time.

Table 1
Resources area [µm2] in Fig. 2, synthesized at 400 MHz in a 130 nm ASIC low-
leakage technology.

Datapath Control

Round logic Rest: Dataflow logic

S + XOR Permutation MUX DFF FSM

8482 0 7193 3437 5075

18



PC2

RS RS2LSLS2

From register CDFrom register LR

To register LR
To L To R

From L From R

To register CD

Key

schedule

Round

logic 4→1 MUX

S

E

P

Fig. 3. DES round and key schedule combinatorial logic. The critical path LR →

Round Logic → LR is highlighted .

IP

0 10 1

LSPC1

210

FPin
p
u
t

Key parity bits

56

64

8
8×1

8×7

ou
tp

u
t

8

LRIF CD

Key schedule

3→1 MUX2→1 MUX 2→1 MUX

Round logic

Fig. 4. Proposed pipelined DES 8-bit datapath for ECB cipherments.

don’t care

CD reg:

LR reg:

IF reg:

IF sel:

LR sel:

CD sel:

input k

0

k kept still

input m0 output c0input mi+1output ci−1

process ci =DES(mi, k)

key schedule

8 2416 32

(i = 0, 1, · · · )

orginal k

∗n

clock cycles

0 87 16 32 4015 3124

don’t care 2
0
1

Fig. 5. Pipeline (cf. Fig. 4) steps involved in ECB cipherments i = 0, 1, · · · , n − 1.
Upper part : registers content (c−1 = ’-’ is “don’t care” data). Lower part : multi-
plexors selection signals.

19



IP

FP

1 20 1 2 30

FP

8

in
p
u
t

LS

PC1◦FP

0 1 2

64

56

Parity bits

8×1

representation
“Normal”

ou
tp

u
t

8
“IP”

IF

3→1 MUX

LR CD

Key schedule

3→1 MUX 4→1 MUX

Round logic

Fig. 6. Proposed multi-modes pipelined DES datapath operating in “IP representa-
tion”.

IF:

LR:

CD:

m′
i =DES(mi, k0)

output ci−1

16

(i = 0, 1, · · · )

input k1

key schedule LS1,2(k0)

24 32 40

input k0

48

inputmi+1

56 clock cycles

∗n

key scheduleRS1,2(k1) key schedule LS1,2(k0)

ci =DES(m′′
i , k0)m′′

i =DES−1(m′
i, k1)

Fig. 7. Register contents when the pipeline is configured for 3DES encipherments
with two keys k0 and k1, possibly chained i ∈ [0 : n[ times (in which case the
indicated clock cycles must be added the offset i × 48.)

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

100 150 200 250 300 350 400 450 500 550
Chip frequency [MHz]

A
re

a
[µ

m
2
]

Straightforward (Fig. 1)
Fully pipelined (Fig. 3)
Multi-mode (Fig. 5)

Fig. 8. Synthesis results for the three architectures.

20



0

500

1000

1500

2000

100 150 200 250 300 350 400 450 500 550
Chip frequency [MHz]

T
h
ro

u
gh

p
u
t

(a)

Straightforward (Fig. 1)
Fully pipelined (Fig. 3)
Multi-mode (Fig. 5)

0

100

200

300

400

500

600

100 150 200 250 300 350 400 450 500 550
Chip frequency [MHz]

T
h
ro

u
gh

p
u
t

(b)

Straightforward (Fig. 1)
Fully pipelined (Fig. 3)
Multi-mode (Fig. 5)

Fig. 9. Throughput (in 106 bit/s) of the three solutions in (a) DES-ECB and
(b) 3DES-CBC.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

100 150 200 250 300 350 400 450 500 550
Chip frequency [MHz]

[A
.U

.]

Straightforward (Fig. 1)
Fully pipelined (Fig. 3)
Multi-mode (Fig. 5)

Fig. 10. Comparative efficiency of 3DES-CBC (in Mbit/s/µm2) for the three pro-
posed architectures.

Table 2
Resources area and maximum frequency of the three proposed architectures imple-
mented in a Xilinx Virtex-4.

Architecture Number of instances Number of DFFs Frequency

“Straightforward” (Fig. 2) 1445 209 211 MHz

“Pipelined” (Fig. 4) 1454 259 202 MHz

“Multi-mode” (Fig. 6) 1957 276 144 MHz

21



Fig. 11. The multi-mode DES after place-and-route in 130 nm technology. Top:
Datapath / Control partitioning; Bottom: Final layout.

22



Table 3
Selected signals at the beginning of each DES chained with modes of operation.

Mode IF MUX LR MUX Built upon

ECB 1 0 DES

ECB−1 1 0 DES−1

CBC 1 2 DES

CBC−1 — — —

CFB 2 2 DES

CFB−1 2 0 DES

OFB = OFB−1 2 0, 3, 3, · · · DES

Table 4
Throughput in bit/clock of some modes of the three studied implementations of
DES.

Straightforward Pipelined Multi-mode

DES-ECB 2.000 4.000 4.000

DES-CBC 1.000 1.000 4.000

3DES-ECB 0.571 0.571 1.333

3DES-CBC 0.444 0.444 1.333

23


