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Abstract—This paper considers the blind separation of nonsta-
tionary sources in the underdetermined convolutive mixture case.
We introduce, two methods based on the sparsity assumption of the
sources in the time–frequency (TF) domain. The first one assumes
that the sources are disjoint in the TF domain, i.e., there is at most
one source signal present at a given point in the TF domain. In the
second method, we relax this assumption by allowing the sources
to be TF-nondisjoint to a certain extent. In particular, the number
of sources present (active) at a TF point should be strictly less than
the number of sensors. In that case, the separation can be achieved
thanks to subspace projection which allows us to identify the ac-
tive sources and to estimate their corresponding time–frequency
distribution (TFD) values. Another contribution of this paper is
a new estimation procedure for the mixing channel in the under-
determined case. Finally, numerical performance evaluations and
comparisons of the proposed methods are provided highlighting
their effectiveness.

Index Terms—Blind source separation (BSS), convolutive mix-
ture, sparse signal decomposition/representation, speech signals,
subspace projection, time–frequency distribution (TFD), underde-
termined/overcomplete representation, vector clustering.

I. INTRODUCTION

THE OBJECTIVE of blind source separation (BSS) is to
extract the original source signals from their mixtures and

possibly to estimate the unknown mixing channel using only
the information of the observed signal with no, or very limited,
knowledge about the source signals and the mixing channel. The
BSS problem arises in many fields of study including speech
processing, data communication, biomedical signal processing,
etc. [1]. Most approaches to blind source separation assume the
sources are statistically independent and thus are often seek so-
lutions of separation criteria using higher order statistical in-
formation [2] or using only second-order statistical information
in the case where the sources have temporal coherency [3], are
nonstationary [4], or eventually are cyclostationary [5].

Although the plethora of existing BSS algorithms, the un-
derdetermined case (UBSS for underdetermined blind source
separation) where the number of sources is greater than the
number of sensors remains relatively poorly treated especially
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in the convolutive case, and its resolution is one of the chal-
lenging problems of blind source separation. In the instanta-
neous mixture case, some methods exploiting the sparseness of
the sources in certain transform domain have been proposed
for UBSS [6]–[10]. Other methods consider similarly under-
determined mixtures of delayed sources [11], [12]. All these
methods proceed “roughly” as follows: The mixtures are first
transformed to an appropriate representation domain; the trans-
formed sources are then estimated using their sparseness, and
finally one recovers their time waveforms by source synthesis
(for more information, see the recent survey work [13]).

The UBSS methods for nonstationary sources have been pro-
posed, given that these sources are sparse in the time–frequency
(TF) domain [7], [11]. The first method uses time–frequency
distributions (TFDs), whereas the second one uses a linear
TFD. The main assumption used in these methods is that the
sources are TF-disjoint. In other words, there is at most one
source present at any point in the TF domain. This assumption
is rather restrictive, though the methods have also showed
that they worked well under a quasi-sparseness condition, i.e.,
sources are TF-almost-disjoint.

In this paper, we focus on the UBSS in convolutive mixtures
case and target the relaxation of the TF-disjoint condition by
allowing the sources to be nondisjoint in the TF domain; that
is, multiple sources are possibly present at any point in the TF
domain. This case has been considered in [8] for the separa-
tion of instantaneous mixtures, in [12] for the deconvolution of
single-path channels with nonzero delays, in [14] where a priori
information about the location of the considered sources as well
as an approximation of the filter impulse response are consid-
ered, and in [15] where binary TF-masking (or directivity pat-
tern based masking [16], [17]) and the independent component
analysis (ICA) technique are jointly used. In particular, we limit
ourselves to the scenario where the number of sources present at
any point is smaller than the number of sensors. Under this as-
sumption, the separation of TF-nondisjoint sources is achieved
thanks to subspace projection. Subspace projection allows us to
identify at any point the active sources, and then to estimate their
corresponding TFD values.

The main contribution of this paper consists in two new algo-
rithms for UBSS in the TF domain; the first one uses vector clus-
tering while the other uses subspace projection. Another side
contribution of the paper is an estimation method for the mixing
channel matrix.

The paper is organized as follows. Section II-A formulates
the UBSS problem, introduces the underlying TF tools, and
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states some TF conditions necessary for the separation of
nonstationary sources in the TF domain. In Section III-A,
we propose a new method for the blind estimation of mixing
channel. Section III-B deals with the TF-disjoint sources. It
proposes a cluster-based TF-CUBSS (time–frequency con-
volutive underdetermined blind source separation) algorithm.
Section III-C proposes the subspace-based TF-CUBSS al-
gorithm for TF-nondisjoint sources. Some comments and
remarks on the proposed methods are provided in Section IV.
Finally, the performance of the above methods are numerically
evaluated in Section V while Section VI is devoted for the
concluding remarks.

II. PROBLEM FORMULATION

A. Data Model

Let be the desired sources to be recovered
from the convolutive mixtures given by

(1)

where is the source vector
with the superscript denoting the transpose operation,

is the mixture vector, is the

observation noise, and are
matrices for representing the impulse response
coefficients of the channel that satisfies the following.

Assumption: The channel is such that each column vector of

is irreducible, i.e., the entries of denoted
, have no common zeros . Moreover, any column

vectors of form a polynomial matrix that it full rank
over the unit-circle, i.e., .

The sources are nonstationary, that is their frequency spectra
vary in time. Often, nonstationarity gives rise to more difficul-
ties in a problem; however, in this case it actually offers certain
diversity that allows us to achieve the BSS without using higher
order approaches by directly exploiting the additional informa-
tion of this TF diversity across the spectra [4]. In that case, we
often use the powerful tool of time–frequency signal analysis
which basic concept is introduced next.

B. Time–Frequency Distributions

TF signal processing provides effective tools for analyzing
nonstationary signals, whose frequency content varies in time.
This concept is a natural extension of both the time domain and
the frequency domain processing that involves representing sig-
nals in a two-dimensional space, the joint TF domain, hence
providing a distribution of signal energy versus time and fre-
quency simultaneously. For this reason, a TF representation is
commonly referred to as a TFD.

Well-known TFD1 and most used in practice is the short-time
Fourier transform (STFT)

(2)

where is a windowing function, and a given nonsta-
tionary signal. Note that the STFT is a linear TFD and thus
has the advantage of simplicity compared to other nonlinear
(quadratic) TFDs, e.g., Wigner–Ville and Cohen’s class distri-
butions [18].

C. TF Conditions on the Sources

In order to deal with UBSS, one often seeks for a sparse rep-
resentation of the sources [6]. In other words, if the sources can
be sparsely represented in some domain, then their separation
can be carried out in that domain by exploiting their sparseness.

1) TF-Disjoint Sources: Recently, there have been several
UBSS methods, notably those in [7] and [11], in which the TF
domain has been chosen to be the underlaying sparse domain.
These two papers have based their solutions on the assumption
that the sources are disjoint in the TF domain. Mathematically,
if and are the TF supports of two sources and
then the sources are said TF-disjoint if . However,
this is a rather strict assumption. A more practical assumption
is that the sources are almost disjoint in the TF domain [7], al-
lowing some small overlapping in the TF domain, for which the
above two methods (in [7] and [11]) also worked.

2) TF-Nondisjoint Sources: In this paper, we want to relax
the TF-disjoint condition by allowing the sources to be nondis-
joint in the TF domain.

This is motivated by a drawback of the methods in [7] and
[11]. Although these methods worked under the TF-almost-dis-
joint condition, they did not explicitly treat the TF regions
(points) where the sources were overlapping. A point at the
overlapping of two sources was assigned “by chance” to belong
to only one of the sources. As a result, the source that picks
up this point will have some information of the other source
while the latter loses some information of its own. The loss of
information can be recovered to some extent by the interpola-
tion at the intersection point using TF synthesis. However, for
the other source, there is an interference at this point; hence,
the separation performance may degrade if no treatment is
provided. If the number of overlapping points increases (i.e.,
the TF-almost-disjoint condition is violated), the performance
of the separation is expected to degrade unless the overlapping
points are properly treated.

This paper will give such a treatment using subspace projec-
tion. Therefore, we will allow the sources to be nondisjoint in the
TF domain; that is, multiple sources are allowed to be present
at any point in the TF domain. However, instead of being in-
evitably nondisjoint, we limit ourselves by making the following
constraint.

1In fact, the STFT does not represent an energy distribution of the signal in
the TF plane. However, for simplicity, we still refer to it as a TFD.
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Fig. 1. Diagram of proposed TF-CUBSS algorithm combining channel identi-
fication and UBSS technique in TF domain.

Assumption 2: The number of active sources (i.e., sources
that overlap) at any TF point is strictly less than the number of
sensors.

In other words, for the configuration of sensors, there ex-
ists at most sources at any point in the TF domain. For
the special case when , Assumption 2 reduces to the dis-
joint condition.

Note that in [15]–[17], the case of overlapping sources has
been treated thanks to additional strong assumptions that we do
not consider in our work. More specifically, the channels are
assumed to be of single path with a given direction of arrival,
and the sources are such that one of them is present alone at
certain time instant and can be removed by binary masking.

III. TF-CUBSS ALGORITHM

In order to solve the UBSS problem in the convolutive case,
we propose to identify first the impulse response of the channels
(see the algorithm’s diagram in Fig. 1). This problem in overde-
termined case is very difficult and becomes almost impossible in
the underdetermined case without side information on the con-
sidered sources. In this paper and similarly to [19], we exploit
the sparseness property of the audio sources by assuming that
from time to time only one source is present. In other words, we
consider the following assumption.

Assumption 3: There exists, periodically, time intervals
where only one source is present in the mixture. This occurs for
all source signals of the considered mixtures (see Fig. 2).

To detect these time intervals, we propose to use information-
criteria-based testing for the estimation of the number of sources
present in the signal (see Section III-A for more details).

A. Channel Estimation

Based on Assumption 3, we propose here to apply single-
input multiple-output (SIMO)-based techniques to blindly es-
timate the channel impulse response. Regarding the problem at
hand, we have to solve three different problems: first, we have
to select time intervals where only one source signal is effec-
tively present; then, for each selected time interval one should

Fig. 2. Time representation of four audio sources: This representation illus-
trates the audio signal sparsity (i.e., there exists time intervals where only one
source is present).

apply an appropriate blind SIMO identification technique to es-
timate the channel parameters; finally, the way we proceed, the
same channel may be estimated several times and hence one has
to group together (cluster) the channel estimates into classes
corresponding to the source channels.

1) Source Number Estimation: Let define the spatio-tem-
poral vector

(3)

where are block-Sylvester matrices of size

. . .
. . .

, and is a chosen pro-
cessing window size. Under the no-common zeros assumption
(Assumption 1) and for large window sizes (see [20] for more
details), matrices are full column rank.

Hence, in the noiseless case, the rank of the data covariance
matrix is equal to ,
where is the number of sources present in the considered time
interval over which the covariance matrix is estimated. In par-
ticular, for , one has the minimum rank value equal to

.
Therefore, our approach consists in estimating the rank of the

sample averaged covariance matrix over several time slots
(intervals) and select those corresponding to the smallest rank
value .

In the case where sources are active (present) in the consid-
ered time slot, the rank would be and hence can
be estimated by the closest integer value to .
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Fig. 3. Histogram representing the number of time intervals for each estimated
number of sources for four audio sources and three sensors in convolutive mix-
ture case.

The estimation of the rank value is done here by Akaike’s
criterion [20] according to

(4)

where represent the eigenvalues of , and
is the time slot size. This criterion represents the maximum-

likelihood estimate of the system parameters (given here by the
signal eigenvectors and eigenvalues of the covariance matrix)
penalized by the number of free adjusted parameters under the
asymptotic Gaussian distribution of the latter (see [20] for more
details).

Note that it is not necessary at this stage, to know exactly the
channel degree as long as (i.e., an over-estimation of
the channel degree is sufficient) in which case the presence of
one signal source is characterized by

Fig. 3 illustrates the effectiveness of the proposed method where
a recording of 6 s of convolutive mixtures of
sources is considered. The sampling frequency is 8 kHz, and
the time slot size is samples. The sources consist of
three speech signals corresponding to two men and one woman
plus a guitar signal. The convolutive channel is of order
and its coefficients are generated randomly using Gaussian law.
One can observe that the case (one signal source) occurs
approximatively 10% of the time in the considered context.

2) Blind Channel Identification: To perform the blind
channel identification, we have used in this paper the cross-re-

lation (CR) technique described in [21] and [22]. Consider a
time interval where we have only the source present. In this
case, we can consider a SIMO system of outputs given by

(5)

where . From (5),
the noise-free outputs are given by

(6)

where “ ” denotes the convolution. Using commutativity of
convolution, it follows

(7)

This is a linear equation satisfied by every pair of channels. It
was shown that reciprocally, the previous cross-
relations characterize uniquely the channel parameters. We have
the following theorem [21].

Theorem 1: Under the no-common zeros assumption (As-
sumption 1), the set of cross-relations (in the noise-free case)

(8)

where is a polynomial
vector of degree , is satisfied if and only if
for a given scalar constant .

By collecting all possible pairs of channels, one can easily
establish a set of linear equations. In matrix form, this set of
equations can be expressed as

(9)

where and
is defined by

. . .
...

(10)

with and

...
... (11)

In the presence of noise, (9) can be naturally solved in the least-
squares (LS) sense according to

(12)

which solution is given by the least unit-norm eigenvector of
matrix . It is shown in [21] that the noise term in the
quadratic form (12) has a mean value proportional to the identity



1544 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 5, JULY 2007

TABLE I
CLUSTER-BASED TF-CUBSS ALGORITHM USING STFT

matrix. Consequently, the channel estimates remains unbiased
under white additional noise assumption.

Remark: We have presented here a basic version of the CR
method. In [23], an improved version of the method (introduced
in the adaptive scheme) is proposed exploiting the quasi-sparse
nature of acoustic impulse responses. Other channel estimation
techniques in the overcomplete case, e.g., [24], can be used as
well at this stage.

3) Clustering of Channel Vector Estimates: The first step
of our channel estimation method consists in detecting the
time slots where only one single source signal is “effectively”
present. However, the same source signal may be present
in several time intervals (see Figs. 2 and 3) leading to several
estimates of the same channel vector .

We end up, finally, with several estimates of each source
channel that we need to group together into classes. This
is done by clustering the estimated vectors using -means
algorithm [25]. The th channel estimate is evaluated as the
centroid of the th class.

B. UBSS Algorithm With TF-Disjoint Assumption

As we have seen before, the STFT is often used for speech/
audio signals because of its low computational cost. Therefore,
in this section we propose a new cluster-based TF-CUBSS al-
gorithm using the STFT for convolutive mixture case. Note that
the STFT is a particular form of wavelet transforms which have
been used in [26] for the UBSS of image signals.

After transformation into the TF domain using the STFT, the
model in (1) becomes (in the noiseless case)

(13)

where is the mixture STFT vector, is the
source STFT vector, and is the
channel Fourier transform matrix. Under the assumption that
all sources are disjoint in the TF domain, (13) reduces to

(14)

where and is the TF support of the th
source.

Consequently, two TF points and belonging
to the same region (i.e., corresponding to the source signal )
are “associated” with the same channel . It is this observation
that is used to derive the separation algorithm summarized in
Table I and detailed next.

First, we compute the STFT of the mixtures by ap-
plying (2) for each of the mixture in , as follows:

(15a)

(15b)

where is a chosen window (in our simulations we chose
Hamming window) of length .

Then, we apply a noise thresholding procedure which miti-
gates the noise effect and reduces the computational cost as only
the selected TF points are further treated by our algorithm. In
particular, for each frequency , we apply the following crite-
rion for all the time points belonging to the frequency slice

then keep (16)

where is a small threshold (typically, ). Then, the
set of all selected points is expressed by , where

is the TF support of the source . Note that, the effects of
spreading the noise energy while localizing the source energy
in the time–frequency domain amounts to increasing the ro-
bustness of the proposed method with respect to noise (see [18,
Part IV]). Hence, by (16), we would keep only time–frequency
points where the signal energy is non-negligible, the other
time–frequency points are rejected, i.e., not further processed,
since considered to represent noise contribution only. Also,
due to the noise energy spreading, the contribution of the noise
in the source time–frequency points is relatively negligible, at
least for moderate and high signal-to-noise ratios (SNRs).

On the other hand, note that the noise thresholding as well
as TF masking induce nonlinear distortion in the reconstructed
signal. Now, how this distortion affects the source estimates is
an open problem that still raises many questioning and research
works including those which try to mitigate this distortion in the
TF domain, e.g., [28].

After noise thresholding, the clustering procedure can be
done as follows: For each TF point, we obtain the spatial
direction vectors by

(17)

and force them, without loss of generality, to have the first entry
real and positive.

Next, we cluster these vectors into classes
by minimizing the criterion

(18)

where is the Fourier transform of the th channel vector
estimate [given by (12) and the proposed clustering procedure]
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TABLE II
SUBSPACE-BASED TF-CUBSS ALGORITHM USING STFT

and is the phase argument of (this is to force the first
entry to be real positive). The collection of all points, whose
vectors belong to the class , now forms the TF support of
the source .

Therefore, we can estimate the STFT of each source by

otherwise
(19)

since, from (14), we have

C. UBSS Algorithm With TF-Nondisjoint Assumption

We have seen the cluster-based TF-CUBSS methods, using
the STFT, as summarized in Table I. This method relies on the
assumption that the sources were TF-disjoint, which led to the
TF-transformed structure in (14). The latter is no longer valid,
when the sources are nondisjoint in the TF domain.

Under the TF-nondisjoint condition, stated in Assumption 2,
we propose in this section an alternative method using subspace
projection.

Recall that the first two steps of the cluster-based TF-CUBSS
algorithm do not rely on the assumption of TF-disjoint sources
(see Table I). Therefore, we can reuse these steps to obtain
the channel estimation and all the TF points of . Under the
TF-nondisjoint condition, consider a TF point at
which there are sources present, with

where denote the indices of the
sources present at . Our goal is to identify the sources that
are present at , i.e., , and to estimate the STFT
of each of these contributing sources.

We define the following:

(20a)

(20b)

Then, (13) is reduced to the following:

(21)

Let and be the orthog-
onal projection matrix onto the noise subspace of ex-
pressed by

(22)

Fig. 4. Simulated example (viewed in TF domain) for the subspace-based
TF-CUBSS algorithm in the case of four speech sources and three sensors.
The top four plots represent the original source signals, the middle three
plots represent the three mixtures, and the bottom four plots represent the
source estimates. (a) S (t; f). (b) S (t; f). (c) S (t; f). (d) S (t; f).
(e) S (t; f). (f) S (t; f). (g) S (t; f). (h) S (t; f). (i) S (t; f). (j)
S (t; f). (k) S (t; f).

We have the following observation:

.
(23)

Consequently, as , we have

otherwise.
(24)

If has already been estimated by the method presented
in Section III-A, then this observation gives us the criterion
to detect the indices ; and hence, the contributing
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Fig. 5. Simulated example (viewed in time domain) for the subspace-based TF-CUBSS algorithm in the case of four speech sources and three sensors. (a) Original
signals. (b) Estimated signals. (c) Mixture signals.

sources at the considered TF point. In practice, to take into ac-
count noise, one detects the column vectors of by min-
imizing

(25)

Next, TFD values of the sources at TF point are esti-
mated by

# (26)

where the superscript # represents the Moore–Penrose’s
pseudo-inversion operator.

In the simulation, the optimization problem of (25) is solved
using exhaustive search. This is computationally tractable for
small array sizes but would be prohibitive if is very large.

Table II provides a summary of the subspace projection based
TF-CUBSS algorithm using STFT.

IV. DISCUSSION

We discuss here certain points relative to the proposed
TF-CUBSS algorithms and their applications.

1) Number of Sources: The number of sources is assumed
known in the clustering method that we have used. However,
there exist clustering methods [25] which perform the class es-

timation as well as the estimation of the number . In our sim-
ulation, we have observed that most of the time the number
of classes is overestimated, leading to poor source separation
quality. Hence, robust estimation of the number of sources in
the UBSS case remains a difficult open problem that deserves
particular attention in future works.

2) Number of Overlapping Sources: In the subspace-based
approach, it is also possible to consider a fixed (maximum) value
of that is used for all TF points. Indeed, if the number of over-
lapping sources is less than , we would estimate close-to-zero
source STFT values. For example, if we assume sources
are present at a given TF point while only one source is effec-
tively contributing, then we estimate one close-to-zero source
STFT value. This approach increases slightly the estimation
error of the source signals (especially at low SNRs) but has the
advantage of simplicity compared to using information theo-
retic-based criteria for estimating the value of .

3) Separation Quality Versus Number of Sources: Although
we are in the underdetermined case, the number of sources
should not exceed too much the number of sensors. Indeed,
when increases, the level of source interference increases,
and hence, the source quasi-disjointness assumption is ill-sat-
isfied. Moreover, for a large number of sources, the likelihood
of having two closely spaced sources, i.e., such that the spa-
tial directions and are “close” to linear dependency, in-
creases. In that case, vector clustering performance degrades
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Fig. 6. Comparison between subspace-based and cluster-based TF-CUBSS al-
gorithms: normalized MSE (NMSE) versus SNR for four speech sources and
three sensors.

Fig. 7. NMSE versus SNR for four audio sources and three sensors in convo-
lutive mixture case : Comparison of the performance of identification algorithm
using only SIMO system and the algorithm using SIMO and MIMO system.

significantly. In brief, sparseness and spatial separation are the
two limiting factors against increasing the number of sources.

4) Overdetermined Case: Our algorithm can be further sim-
plified in the overdetermined case where . In that con-
text, the algorithm can be reduced to the channel estimation step,
the STFT computation and noise thresholding then source STFT
estimation using the channel matrix pseudo-inversion at each
frequency

#

V. SIMULATION RESULTS

In the simulations, we have considered an array of
sensors, that receives signals from independent audio
sources (three speech signals corresponding to two men and

Fig. 8. Comparison, for the cluster-based TF-CUBSS algorithm, when the
mixing channelH is known or unknown: NMSE of the source estimates.

Fig. 9. Comparison, for the subspace-based TF-CUBSS algorithm, when the
mixing channelH is known or unknown: NMSE of the source estimates.

one woman plus a guitar signal). The filter coefficients are
chosen randomly and the channel order is . The sample
size is samples (corresponding approximately to 1-s
recording of speech signals sampled at 8 kHz). The separation
quality is measured by the normalized mean squares estimation
errors (NMSE) of the sources evaluated over Monte
Carlo runs and defined as

NMSE (27)

NMSE (28)

NMSE (29)
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Fig. 10. Comparison between subspace-based and cluster-based TF-CUBSS
algorithms: NMSE of the source estimates for different ranks of the projection
subspace, for the case of five sources and four sensors.

where (defined similarly) rep-
resents the th estimate of source and is a scalar factor that
compensate for the scale indeterminacy of the BSS problem.

In Fig. 4, the top four plots represent the TF representation of
the original source signals, the middle three plots represent the
TF representation of the mixture signals and the bottom four
plots represent the TF representation of the source estimates by
the subspace-based algorithm (Table II) using STFT of length
1024. Fig. 5 represents the same disposition of signals but in
the time domain.

In Fig. 6, we compare the separation performance obtained by
the subspace-based algorithm with and the cluster-based
algorithm (Table I). It is observed that subspace-based algorithm
provides much better separation results than those obtained by
the cluster-based algorithm. This is mainly due to the high oc-
currence of overlapping sources in the TF domain for this type
of signals so that the “TF-disjointness” assumption used by the
TF-CUBSS algorithm is poorly satisfied. This can be observed
also from Fig. 4, where we can see that the TFD supports of the
four audio sources are clearly overlapping.

In Fig. 7, we present the performance of channel identifica-
tion obtained by using SIMO identification algorithm [in this
case, we choose only the time intervals where only one source
is present using Akaike Information Criterion (AIC) criterion]
with SIMO and multiple-input multiple output (MIMO) identi-
fication algorithms2 (in this case, we choose the time intervals
where we are in the overdetermined case, i.e., where or

). It is observed that SIMO-based identification provides
better results than those obtained by SIMO and MIMO identifi-
cation algorithms. Indeed, the advantage of considering overde-
termined MIMO system identification resides in the fact that
the occurrence of MIMO (i.e., number of time intervals where
this situation occurs as shown in Fig. 3) is much higher than
that of SIMO case. However, as we observe it, this does not

2For the identification of MIMO system, we have used the subspace method
[29] for the equalization step followed by second-order blind identification
(SOBI) algorithm [3] for the separation step.

Fig. 11. Comparison between subspace-based and cluster-based TF-CUBSS
algorithms: NMSE versus number of sources.

Fig. 12. NMSE versus SNR for four audio sources and three sensors: Compar-
ison, for the subspace-based TF-CUBSS algorithm, for different filter sizeK .

compensate for the higher estimation error of MIMO systems
compared to SIMO systems.

The plot in Fig. 8 (respectively, in Fig. 9) presents the sep-
aration performance when using the exact matrix compared
to that obtained with the proposed estimate using the cluster-
based method (respectively, the subspace-based method). The
observed performance loss is due to the channel estimation error
which is relatively high for low SNRs and becomes negligible
for high SNRs.

In Fig. 10, we compare the performance obtained with the
subspace-based method for and . In that experi-
ment, we have used sensors and source signals.
One can observe that, for high SNRs, the case of leads
to a better separation performance than for the case of .
However, for low SNRs, a large value of increases the esti-
mation noise (as mentioned in Section IV) and hence degrades
the separation quality.

Fig. 11 illustrates the rapid degradation of the separation
quality when we increase the number of sources from
to . This confirms the remarks made in Section IV.
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Fig. 13. ISR versus SNR for two audio sources and two sensors: Comparison
between the subspace-based TF-CUBSS algorithm, Parra’s algorithm, and Dev-
ille’s algorithm.

Fig. 12 illustrates the algorithm’s performance when we
consider long impulse response channels. More specifically,
the plots represent the separation performance for channels of
length 50, 100, and 200, respectively. The channel taps are
generated randomly using Gaussian law. We observe a slight
performance degradation when the channel order increases but
the separation quality remains quite good.

In Fig. 13, we compare the separation performance of our al-
gorithm, Deville’s algorithm in [30], and Parra’s algorithm in
[31] in the overdetermined case of two sensors and two speech
signals of one man and one woman (selected among the four
previous sources). The algorithms in [30] and [31] separate the
sources only up to an unknown filter and, hence, we use in this
experiment the interference-to-signal ratio (ISR) criterion de-
fined in [31] instead of the NMSE. We observe a significant
performance gain in favor of the proposed method especially
at high SNR values. Moreover, our method has the following
advantages: 1) it can treat the underdetermined case; 2) it esti-
mates the sources up to a constant not to an unknown filter like
in [30] and [31]; and 3) the proposed frame selection procedure
does not involve any thresholding (the choice of an appropriate
threshold value is a difficult problem, as it is strongly depen-
dent on the context) or ad hoc selection of frequency range like
in [30].

VI. CONCLUSION

This paper introduces new methods for the UBSS of TF-dis-
joint and TF-nondisjoint nonstationary sources in the convolu-
tive mixture case using their time–frequency representations.
The first proposed method has the advantage of simplicity, while
the second uses a weaker assumption on the source “sparse-
ness,” i.e., the sources are not necessarily TF-disjoint, and pro-
poses an explicit treatment of the overlapping points using sub-
space projection, leading to significant performance improve-
ments. Simulation results illustrate the effectiveness of our al-
gorithms in different scenarios.
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