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ABSTRACT

In this paper, we are interested in blind source separation from
instantaneous mixtures of audio signals. Using the sparsity prop-
erty of audio signals, we propose an iterative method that re-
lies on a relative gradient technique which minimizes a contrast
function based on the `p norm. This norm is considered as a
good sparsity measure. The simulations show that the proposed
method outperforms other methods based on source indepen-
dency.

1. INTRODUCTION

This paper deals with blind source separation (BSS). The
blind context means that neither the sources nor the mix-
ing matrix are known. The goal of BSS is to recover the
sources up to scaling and permutation by, only, using the
mixtures. Blind source separation (BSS) has applications
in several areas, such as communication, speech / audio
processing, and biomedical engineering [1]. A fundamen-
tal and necessary assumption of BSS is that the sources are
statistically independent and thus are often separated us-
ing higher-order statistical information [2]. If some infor-
mation about the sources is available at hand, such as tem-
poral coherency [3], source nonstationarity [4], or source
cyclostationarity [5], then one can remain in the second-
order statistical scenario.
In the case of non-stationary signals (including audio sig-
nals), certain solutions using time-frequency analysis of
the observations exist [6]. Other solutions use the statis-
tical independence of the sources assuming a local sta-
tionarity to solve the BSS problem [7]. This is a strong
assumption that is not always verified [8]. To avoid this
problem, we propose a new approach that handles the gen-
eral linear instantaneous model (possibly noisy) by using
the sparsity assumption of the sources in the time domain.
The use of sparsity to handle this model, has arisen in sev-
eral papers in the area of source separation [1, 9]. We first
present a sparsity contrast function for BSS. Then, in or-
der to achieve BSS, we optimize the considered contrast
function using an iterative algorithm based on the gradient
technique.

In the following section, we discuss the data model that
formulates our problem. Next, we detail the different steps
of the proposed algorithm. In Section 4, some simulations
are undertaken to validate our algorithm and to show the
usefulness of the proposed method.

2. DATA MODEL

Assume that N audio signals impinge on an array of M ≥
N sensors. The measured array output is a weighted su-
perposition of the signals, corrupted by additive noise, i.e.

x(t) = As(t) + w(t) t = 0, . . . , T − 1 (1)

where s(t) = [s1(t), · · · , sN (t)]T is the N × 1 sparse
source vector, w(t) = [w1(t), · · · , wM (t)]T is the M × 1
gaussian complex noise vector, A is the M ×N full col-
umn rank mixing matrix (i.e., M ≥ N ), and the super-
script T denotes the transpose operator. The purpose of
blind source separation is to find a separating matrix, i.e.
a N ×M matrix such that ŝ(t) = Bx(t) is an estimate of
the source signals.
Before proceeding, note that complete blind identification
of separating matrix B (or the equivalently mixing matrix
A) is impossible in this context, because the exchange of a
fixed scalar between the source signal and the correspond-
ing column of A leaves the observations unaffected. Also
note that the numbering of the signals is immaterial. It
follows that the best that can be done is to determine B up
to a permutation and scalar shifts of its columns, i.e., B is
a separating matrix iff:

Bx(t) = PΛs(t) (2)

where P is a permutation matrix and Λ a non-singular
diagonal matrix.

3. ITERATIVE SPARSE ALGORITHM

In this section, we propose an iterative algorithm for the
separation of sparse audio signals ISBS for Iterative Sparse
Blind Separation. As well known, audio signals are char-
acterized by their sparsity property in the time domain [1,



9] which is measured by their `p norm where 0 ≤ p ≤ 1.
This norm represents how the “energy” is concentrated on
a small number of coefficients. Based on this, one can
define the following sparsity contrast function,

Gp(s) =
1
N

N∑
i=1

[Jp(si)]
1
p (3)

where

Jp(si) =
1
T

T−1∑
t=0

|si(t)|p (4)

The algorithm finds a separating matrix B such as,

B = arg min
B

{Gp(B)} (5)

where
Gp(B) def= Gp(z) (6)

and z(t) = Bx(t) represents the estimated sources. The
approach we choose to solve (5) is inspired from [10].
It is a block technique based on the processing of T re-
ceived samples and consists in searching the minimum of
the sample version of (5). Solutions are obtained itera-
tively in the form:

B(k+1) = (I + ε(k))B(k) (7)
z(k+1)(t) = (I + ε(k))z(k)(t) (8)

where I denotes the identity matrix. At iteration k, a
matrix ε(k) is determined from a local linearization of
Gp(Bx(t)). It is an approximate Newton technique with
the benefit that ε(k) can be very simply computed (no
Hessian inversion) under the additional assumption that
B(k) is close to a separating matrix. This procedure is il-
lustrated in the following steps:
At the (k + 1)th iteration, the proposed criterion (4) can
be developed as follows:

Jp(z
(k+1)
i ) =

1
T
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∣∣∣∣∣∣z(k)
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(k)
ij z

(k)
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1
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|z(k)
i (t)|p
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ε
(k)
ij

z
(k)
j (t)

z
(k)
i (t)

∣∣∣∣∣∣
p

Under the assumption that B(k) is close to a separating
matrix, we have

|ε(k)
ij | � 1

and thus, a first order approximation ofJp(z
(k+1)
i ) is given

by:

Jp(z
(k+1)
i ) ≈ 1

T

T−1∑
t=0

|z(k)
i (t)|p

(
1 + p

N∑
j=1

{
<e(ε(k)

ij )

<e

(
z
(k)
j (t)

z
(k)
i (t)

)
−=m(ε(k)

ij ) =m

(
z
(k)
j (t)

z
(k)
i (t)

)})
(9)

Table 1: Iterative Sparse Blind Separation (ISBS) algorithm

1. Initialize B(1) randomly (z(1)(t) = B(1)x(t)).

2. For k = 1, · · · ,K, compute R(k) by (12).

3. Update the separation matrix B(k+1) by (15).

4. Update the source estimate (16).

thus,

Jp(z
(k+1)
i ) ≈ 1

T
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(
|z(k)
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p
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(10)

where <e(x) and =m(x) denote the real and imaginary
parts of x and φ

(k)
i (t) is the argument of the complex num-

ber z
(k)
i (t).

Using equation (3), minimization of the above criterion (10)
is similar to minimization of Gp(z(k+1)). Equation (3)
can be rewritten in more compact form as:

Gp

(
I + ε(k)

)
= Gp (I) + <e

{
Tr
(
ε(k)R(k)H

)}
(11)

where (·) denotes the conjugate of (·) and the ijth entry
of matrix R(k) is given by:

R(k)
ij =

1
T

T−1∑
t=0

|z(k)
i (t)|p−1e−φ

(k)
i (t)z

(k)
j (t) (12)

and Tr is the matrix trace operator. Using a gradient tech-
nique, ε(k) can be written as:

ε(k) = −µR(k)
(13)

where µ > 0 is the gradient step. Replacing (13) into (11)
leads to,

Gp

(
I + ε(k)

)
= Gp (I)− µ‖R(k)‖2 (14)

So µ controls the decrement of the criterion. Hence, at the
(k + 1)th iteration, we have

B(k+1) = (I− µR(k)
)B(k) (15)

z(k+1) = (I− µR(k)
)z(k) (16)

This algorithm is summarized in Table 1.



4. SIMULATION RESULTS

We present here some numerical simulations to evaluate
the performance of our algorithm. We consider an array
of M = 5 sensors with half wavelength spacing receiving
two audio signals in the presence of stationary complex
temporally white noise of covariance σ2I (σ2 being the
noise power). 10000 samples are used with a sampling
frequency of 8Khz. The sources arrive from the directions
θ1 = 30 and θ2 = 45 degree.
In order to evaluate the performance, the separation qual-
ity is measured using two different criteria, the first one is
the mean rejection level criterion [3] defined as:

Iperf
def=
∑
p6=q

E
(
|(BA)pq|2

)
ρq

E (|(BA)pp|2) ρp
(17)

where ρi = E(|si(t)|2) is the ith source power evaluated
here as 1

T

∑T−1
t=0 |si(t)|2. The second is the normalized

mean square error (NMSE) of the sources defined as:

NMSEi
def=

1
Nr

Nr∑
r=1

min
α

(
‖αŝi,r − si‖2

‖si‖2

)
(18)

NMSEi =
1

Nr

Nr∑
r=1

1−
(

ŝi,rsH
i

‖ŝi,r‖‖si‖

)2

(19)

NMSE =
1
N

N∑
i=1

NMSEi . (20)

where si
def= [si(0), . . . , si(T−1)] and ŝi,r is defined sim-

ilarly and represents the rth estimate of source si, α is a
scalar factor that compensate for the scale indeterminacy
of the BSS problem and Nr is the number of Monte-Carlo
runs. Both criteria are estimated over Nr = 200 runs.
Figure 1 represents the two original sources (s1(t), s2(t))
and the recovered ones (z1(t), z2(t)) by the proposed al-
gorithm in a noiseless case. In Figure 2, the mean re-
jection level is plotted versus the SNR for the proposed
algorithm and the algorithm SOBI [3] which is consid-
ered as one of the most performing in separating audio
sources. We used SOBI with 6 correlation matrices of re-
spective delays τ = 1, . . . , 6. It is clearly shown that our
algorithm (ISBS) performs better in terms of the mean re-
jection level especially for high SNR. One can observe
in Figure 3, that we reach the same conclusion for the
NMSE. Figure 4 compares the mean rejection level for
ISBS and SOBI when the number of sensors increases.
For 2 sensors, both algorithms perform equally. When
the number of sensors is greater, ISBS has a much lower
mean rejection level than SOBI. Figure 5 shows the mean
rejection level against the sample size for ISBS and SOBI.
When the sample size is small, SOBI outperforms the pro-
posed algorithm ISBS. Whereas, ISBS has a much lower
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Figure 1: Blind source separation example for 2 audio
sources and 5 sensors: up the two original source signals
and bottom the two estimated sources by our algorithm.
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Figure 2: Mean Rejection Level versus the SNR for 2 au-
dio sources and 5 sensors: comparaison between SOBI
and the proposed algorithm.

mean rejection level when the sample size is larger. It can
be explained by the size of the samples: if it increases, the
signals present more sparsity, which gives an advantage to
ISBS.

5. DISCUSSION

The proposed algorithm outperforms in terms of mean re-
jection level and NMSE other algorithms that deal with
separation from instantaneous mixtures using source inde-
pendency. It is mostly dedicated to sparse sources in the
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Figure 3: NMSE versus the SNR for 2 audio sources and
5 sensors: comparaison between SOBI and the proposed
algorithm.
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Figure 4: Mean Rejection Level versus the number of sen-
sors M for 2 audio sources for SNR= 10dB and 30dB.

time domain. Among its other advantages, the algorithm
ISBS shows a low computational complexity and thus can
be easily implemented. Furthermore, its flexibility allows
us to extend the method to the adaptive case. Neverthe-
less, the proposed algorithm presents a relative weakness
due to the well known disadvantages of the use of gradi-
ent techniques such as, the choice of the step gradient µ
that the speed convergence depends on and the problem of
local minima.

6. CONCLUSION

This paper presents a blind source separation method for
sparse sources in the time domain. A sparse contrast func-
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Figure 5: Mean Rejection Level versus the sample size T
for 2 audio sources for SNR=30dB.

tion is introduced and an iterative algorithm based on gra-
dient technique is proposed to minimize it and perform
BSS. Numerical simulations have been performed to ev-
idence the usefulness of the method. They showed good
performance in terms of mean rejection level and NMSE
compared to other separation technics (SOBI).
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