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Abstract—A general processing framework for urban road
network extraction in high-resolution synthetic aperture radar im-
ages is proposed. It is based on novel multiscale detection of street
candidates, followed by optimization using a Markov random field
description of the road network. The latter step, in the path of
recent technical literature, is enriched by the inclusion of a priori
knowledge about road junctions and the automatic choice of most
of the involved parameters. Advantages over existing and previous
extraction and optimization procedures are proved by comparison
using data from different sensors and locations.

Index Terms—High-resolution synthetic aperture radar (SAR),
Markov random fields (MRFs), road network, urban remote
sensing.

I. INTRODUCTION

ROAD network reconstruction in remote sensing im-
agery has been widely analyzed, both considering high-

resolution optical [1] and coarse-resolution synthetic aperture
radar (SAR) data [2]. Only recently and in light of the advent
of new satellites carrying high-resolution SAR sensors, works
about road network extraction from high-resolution SAR data
have started to appear [3], [4]. Indeed, SAR data coming from
the new TerraSAR-X and RADARSAT-2 sensors will provide
ground spatial resolutions adequate for road extraction even in
urban areas.

It is generally acknowledged that a good methodology for
road network extraction needs to accomplish two separate tasks,
namely: 1) an efficient way to detect lines and curves and
2) a good strategy to recover the network and suppress false
positives. As for the first step, there are many works addressing
edge detection in SAR imagery, even high-resolution ones, that
may be used for road candidate extraction. For high-resolution
data, adaptive directional filtering [5], statistical analysis [6],
and coherence filtering [7] have been developed.

Far fewer works have been proposed on network topology
reconstruction after road extraction in SAR imagery. Relevant
literature lists Markov random fields (MRFs) [8], [9] or genetic
algorithms [10], but research work is still ongoing. One may
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of course apply optimization schemes originally developed
for optical images [11]–[13], but even these methods do not
comply with any urban situation. Moreover, they may imply
road extraction efficiency not met in urban area SAR imagery
because of well-known shadowing and layover effects [14]. For
instance, Price [12] looks for orthogonal crossroad patterns and
propagates the network along the directions of the junction
branches, and this may be a problem in urban areas outside
North America. Dead ends and more complex urban networks
are not fully extracted with the algorithm in [11], and a spatial
resolution well beyond current SAR systems would allow using
the approach in [13].

It is thus our feeling that, as for road network reconstruction
in urban areas by means of high-resolution SAR imagery, there
is room for research work in both road extraction and road
network optimization.

Road extraction in high-resolution SAR data may be im-
proved because recovering roads from edges is only a partially
efficient approach. In fact, with meter or submeter spatial
resolution, roads in SAR data may be more precisely modeled
as dark elongated areas surrounded by bright edges, which are
due to double-bounce reflections by surrounding buildings or
uniform backscattering by the vegetation. A way to exploit all
the information may be to jointly use the extracted edges and
a classification map of the same area [15], but this requires a
parallel and usually supervised classification step. A different
approach, which is suggested in this research work, is to per-
form a feature fusion step using detectors suited to both edge
and dark elongated area detection.

On the subject of network reconstruction, it has been recently
proved [14] that, in normal illumination conditions and with a
European urban structure, nearly half of the road network is
invisible to SAR sensors due to shadowing and layover effects.
One suggested way to improve extraction is to fuse networks
coming from different views of the same area [16], taking
account also of junctions. However, this is only partially an
advantage for spaceborne sensors because of the fixed orbits.
Thus, it is still worth trying and exploiting, as much as pos-
sible, the information available by one single scene. The idea
underlying this paper is that a priori knowledge about road
junctions may help to infer the presence or absence of roads
even if they are not actually visible in the imagery. Thus, the
proposed procedure relies on candidate junction identification
as a further means to guide the network topology optimization
process. Junctions have already been exploited in [12] and [17]
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Fig. 1. Workflow of the proposed algorithm. The processing steps in light gray
are not novel parts of this work.

for network analysis, and algorithms for junction extraction
and refinement in optical images are also available [18], [19].
The novelty of this paper relies in the introduction of junction
hints in the network optimization process, which is described by
means of a modified MRF model. This is done by first detecting
candidate T- and L-shaped junctions and then forcing roads to
pass through them.

The conceptual workflow of the proposed procedure is shown
in Fig. 1 and, as stated before, consists of two steps. The first
is road candidate extraction, which is further specified into
a multiscale feature fusion detector and a segment extractor,
as discussed in Section II. The second is network topology
optimization (Section III), which is again further specified into
a junction-aware MRF model optimization and a final network
regularization step based on perceptual grouping concepts.

The procedure is tested in Section IV, where results on differ-
ent high-resolution SAR data are presented and the parameters
involved in the procedure are discussed. Section V closes this
paper with some conclusions and ideas for future work.

II. ROAD CANDIDATE EXTRACTION

Aside from providing the conceptual framework of the over-
all procedure, Fig. 1 also shows in detail the processing steps
that implement the multiscale feature fusion detector (multiple-
feature extraction, feature binarization, multiscale fusion, and

Fig. 2. Feature extracted from a sample SAR image. (a) θ0. (c) r0. (e) c0.
(b), (d), and (f) Corresponding binarized values.

candidate area selection) and the segment extractor (shape
regularization and best fitting segment extraction). Steps not
specifically developed in this paper are listed in light gray.

A. Multiscale Feature Fusion Detector

Road candidate extraction in high-resolution imagery usually
starts with road area detection, which of course may be obtained
in optical images by looking for the spectral response of road
materials. However, road class recognition in high-resolution
SAR data would imply complex segmentation algorithms based
on data statistics. In this paper, it is preferred to prove that mul-
tiple detectors may be enough to obtain good results. Moreover,
it should be stressed that road detection does not imply immedi-
ately that attention is paid to road junctions. Instead, as shown
later in the text, in the proposed strategy, junctions play a crucial
role, and junction information must be preserved. Therefore, in
this paper, a new extraction method based on multiple-feature
detection, designed to be as automatic as possible, and aimed
at optimal junction preservation is proposed. The algorithm
exploits spatial relationships between a pixel and its neigh-
bors, looking for straight features in the image and combining
multiple detectors to improve road candidate detection. This
strategy follows the achievements of [20]–[22], where multiple
detectors were combined into a consistent framework for SAR
imagery, but with a new and more efficient algorithm.

In high-resolution SAR images, as discussed previously,
roads are no more a subset of image edges. Instead, they
usually appear as dark elongated areas with bright lateral edges.
Therefore, one may detect roads by looking for pairs of parallel
edges or searching for dark homogeneous areas. Both of these
methods, however, are subject to false positives (e.g., other
artificial structures and low-reflectance areas, respectively). A
more precise approach may be one using a combination of
these ideas. This is the aim of the following algorithm, which
furthermore integrates road features into a multiscale-feature
fusion framework.
1) Multiple-Feature Extraction: In order to search for road

pixels, the first step in this procedure is the computation of a
few spatial features in a circular window around the current
pixel p(i, j) (Fig. 2). Of course, each of these features will be a
function of the window radius R.
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Given the total radiance r(i, j, R, θ) along the direction
identified by angle θ, which can be expressed as

r(i, j, R, θ) =
R/2∑

k=−R/2

p ([i + k cos(θ)] , [j + k sin(θ)]) (1)

the direction with lower total radiance

θ0(i, j, R)=arg min
θ

r(i, j, R, θ), θ∈{0◦,1◦,2◦, . . . ,178◦,179◦}
(2)

and the corresponding mean radiance value r0(i, j, R) =
r(i, j, R, θ0) are computed.

These features highlight dark elongated areas in the pixel
neighborhood. If they are good candidates for road areas, a
high contrast is also expected between r0 and the average
total radiance along all 180 directions. A check is provided by
computing

c0(i, j, R) =
∥∥∥∥

∑
θ r(i, j, R, θ)

180
− r0(i, j, R)

∥∥∥∥ . (3)

It is clear that θ0, r0, and c0 show different information. The
first value [Fig. 2(a)] highlights the most likely direction for
dark elongated areas in the image, whereas the second and third
ones [Fig. 2(c) and (d)], respectively, quantify how dark and
contrasted these areas are. All of that apply only for a given
spatial scale defined by R.

In summary, the proposed features capture different but
consistent characteristics of roads, which locally may always
be considered as modeled by dark straight segments. Therefore,
they lead to almost the same findings but possibly (Fig. 2) with
different false recognitions. This point may be used to combine
them and provide better extraction results.
2) Feature Binarization: The following step in road candi-

date extraction is a semiautomatic feature binarization. The aim
of this step is to select significant values for θ0, r0, and c0 and
focus the extraction algorithm only on interesting areas.

Roughly speaking, binarization would require the selection
of a threshold. This threshold may set globally, but a much more
efficient algorithm is to set it locally, looking for the neighbor-
hood of the position under test. By this choice, only positions
with feature values significantly similar to (or different from)
their neighborhood are labeled and retained.

In this paper, binarization is thus obtained by comparison
between the pixel feature value and its neighborhood. More
specifically, for θ0(i, j, R), a position is retained if its absolute
difference from its local average value θ0(i, j, R) is smaller
than an experimental value Tθ, which can be expressed as

θ
(b)
0 (i, j, R) =




0, if
∣∣∣θ0(i, j, R) − θ0(i, j, R) ≤ Tθ

∣∣∣
1, if

∣∣∣θ0(i, j, R) − θ0(i, j, R) > Tθ

∣∣∣ . (4)

TABLE I
PARAMETERS FOR FEATURE BINARIZATION

Fig. 3. Multiscale feature maps for a highway roundabout, showing that
different scales depict different details of the original data (R in pixels).

For r0 and c0, the tested quantity is instead the ratio between
the current value and the local average, again using experimen-
tal thresholds, i.e.,

r
(b)
0 (i, j, R) =

{
0, if r0(i, j, R)/r0(i, j, R) ≥ Tr

1, if r0(i, j, R)/r0(i, j, R) < Tr
(5)

c
(b)
0 (i, j, R) =

{
0, if c0(i, j, R)/c0(i, j, R) ≥ Tc

1, if c0(i, j, R)/c0(i, j, R) < Tc
. (6)

In summary, the black (significant) areas in Fig. 2(b), (d),
and (f) correspond to areas where each feature is “sufficiently”
homogeneous at a given scale. Because of the different nature
of the information highlighted by each feature, different win-
dow widths are considered for local average computation. All
parameters are listed (with implemented values) in Table I.
3) Multiscale Fusion: In order to exploit multiple scales,

the previous steps are performed with values of R ∈ R =
{R1, R2, . . . , RN}. In the end, a binary feature map f(i, j)
is computed as a logical AND across binarized features at all
scales and is given by

f(i, j) = ∧R

(
θb
0(i, j, R) ∧ rb

0(i, j, R) ∧ cb
0(i, j, R)

)
. (7)

The final feature map is therefore the result of a multiscale
feature fusion, which allows detecting different features of
candidate road regions at multiple scales and using multiple
detectors. Fig. 3, where the procedure is applied to a highway
roundabout, depicts why more scales are required, with the
smaller R prizing shorter and thinner road candidates and the
larger R prizing longer and wider roads.
4) Area Selection: The last step of the processing chain for

multiscale feature fusion detection is the selection of candidate
regions in the binary multiscale feature map. To this aim, a
spatial and a spectral criterion are employed.

The spatial check discards small-area regions that, according
to the ground spatial resolution of the sensor, could not be
elements of the road network. To this aim, only regions with
an area greater than 16 pixels are considered.

The second check is instead based on spectral information
and discarded areas whose average radiance value is much
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Fig. 4. Feature map for the original SAR image in Fig. 2. (a) After the
multiscale AND. (b) After the geometrical check. (c) After the spectral check.

Fig. 5. Straight segment extraction. (a) Tracking procedure. (b) Junction
detection. (c) Segment extraction. (d) Final vector map from Fig. 4(c).

higher from the mean value of the overall data set rm. To
this aim, the average area value is computed, and it should be
smaller than 1 + 1/3 × rm.

The multiscale feature map for the image in Fig. 2 is shown
in Fig. 4(a). In Fig. 4(b) and (c), road candidates not passing the
first and the second check are deleted, respectively.

B. Segment Extraction

After carefully determining the candidate regions for the road
network, we need to vectorize the result, translating selected
paths into segment chains. This is done in two steps. The first is
aimed at shape regularization for each candidate region, which
may be composed of multiple connected road segments (Fig. 5).
The second step is aimed at the extraction of the segment
chain that best fits the region shape, possibly including multiple
branches.
1) Shape Regularization: This step is performed very sim-

ply by a morphological closing with a 3 × 3 square element,
which is aimed at reducing small gaps and irregularities along
the edges of the selected candidate road regions.
2) Best Fitting Segment Extraction: Far more complex is the

following step because of the unknown number of branches
in each candidate region. Instead of working through a skele-
tonization similar to that in [23] and then applying a routine
approximating the skeleton with a linear segment chain [24], in
this paper, the best fitting segments for the region skeleton are
directly extracted using an incremental tracking approach.

Starting from a random pixel in a candidate road region, a
rectangular window is opened and iteratively widened in the

vertical and horizontal direction until no more road pixels may
be added. Fig. 5(a) shows an example where an edge pixel is
used as the initial seed. Once the final window is settled, the
best fitting segment for the area inside this window is extracted.
The detector described in Section II-A assures that each pixel in
a candidate region belongs to an elongated-road candidate area.
Thus, it is reasonable to approximate the portion of the region
in the selected window by a single straight segment.

To select this segment, all those connecting road pixels at
the top of the window to those at the bottom are tested. For
each segment, an index is computed, which is equal to the
number of pixels with no match on the other side of the segment
either vertically or horizontally. As an example, in Fig. 5(c),
horizontally unmatched pixels are drawn in green. The segment
with the lowest index value is selected.

However, the procedure needs to maintain the information
about junctions along the retrieved segment to preserve the
extraction of intersecting roads. To this aim, the average vertical
and horizontal widths of the road area along the extracted
segment path are computed. Parts of the region with a local
width higher than 120% of the average value are preserved as
“ancillary” regions for the extraction of intersecting segments.
Note, however, that these regions cannot provide a segment by
themselves but only in conjunction with other regions to prevent
extraction of duplicated linear features.

The aim of the best fitting extraction routine is therefore
twofold.

1) It works to extract fewer and longer road segments,
even for roads with multiple junctions along their path.
This allows the reduction of the computational load of
the following network topology optimization step, which
increases exponentially with the number of candidate
segments.

2) The routine precisely reconstructs the intersecting roads
in a junction [e.g., Fig. 5(b)].

Fig. 5(d) shows the results of the final vectorization starting
from Fig. 4(c). Please note that the overall number of road
candidates with the proposed method is reduced by 60% in the
proposed example (exactly, from 901 to 367) with respect to
those extracted using the procedure in [24].

III. NETWORK TOPOLOGY OPTIMIZATION

The second part of this paper explains the proposed road
network optimization scheme based on global as well as local
methods. Looking again at Fig. 1, the first step is a global opti-
mization based on a junction-aware MRF model of the network,
which is further specified into an MRF model definition, MRF
model optimization, and multiple optimization fusion. A locally
based final network regularization is then carried out by means
of perceptual grouping rules. Please note that this part exploits
processing techniques coming from earlier works, which are
highlighted in Fig. 1 by using a lighter gray tone. Pointers to
relevant literature will be proposed for these steps, whereas a
more detailed presentation will be provided in the following
paragraphs for the novel parts of the procedure.
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A. Junction-Aware MRF Model Optimization

Road network optimization by means of an MRF model has
been initially proposed in [8] and refined in [16]. This model
already introduces contextual knowledge about the topological
characteristics of any road network, such as a certain degree of
regularity, the preference for low curvature, and so on, in the
optimization process. This paper proposes two additions to the
original model, together with a slight change in the selection of
the main parameters of the MRF optimization chain.
1) MRF Model Definition: Let us first briefly recall, follow-

ing [8], the notation for an MRF-based description of the road
network. The set of detected road candidates is Sd, and the set
of possible connections is S ′

d. A “connection” is a candidate
junction in the retrieved road network, as explained in the fol-
lowing. In [8], the threshold for selecting possible connections
is based on the maximum length of the detected ones, which
is called Dmax. However, this is a rather unusual assumption
in urban areas especially after a good road candidate extraction
process. Instead, we expect that missing connections are shorter
than extracted candidate roads in most cases.

Thus, this paper proposes to choose Dmax in a different
way. In particular, first, the average value of the shortest five
connections between the ith road candidate and any other
extracted segment, which is called Hi, is computed. Then, a
global average of Hi over Sd is computed, leading to

Dmax = Hi. (8)

By this choice, the maximum length of a possible connection
is computed by a global average of a locally defined mean
connection length. Only five gaps are considered at the local
state because five is the usual maximum number of branches in
a junction.

Together with this slightly different definition for Dmax, in
this paper, it is proposed to add a second selection parameter
to define S ′

d, which is aimed at reducing not only the length
range but also the orientation range of undetected elements of
the road network. The second parameter, which is called θmax,
is computed according to

θmax =
√

(θi − θj)2 (9)

where θi is the orientation of segment i ∈ Sd.
Now, let us denote by Mk

i , k = 1, 2 the endpoints of segment
i. A connection between segment i and segment j, which are
both ∈ Sd, is labeled as possible and added to S ′

d if [Fig. 6(a)]

1) it links two endpoints of segments, i.e., ∈ {Mk
i M l

j , k =
1, 2; l = 1, 2};

2) the endpoints are close enough (i.e., the distance between
them is less than Dmax);

3) the alignment of the two segments is acceptable (i.e.,
|θi − θj | ≤ θmax).

Note that the meaning of (9) is that the directional variability
of possible connections is limited by the orientations of the
elements in Sd. θmax is small if segments in Sd tend to gather
around one or two main directions (which is the case for an

Fig. 6. Parameters of the MRF-based road network optimization. (a) Normal
situation. (b) Candidate T-shaped junction. (c) Candidate L-shaped junction.

ordered urban road network). If a less ordered situation is
considered, a wider range of directions is also allowed in S ′

d.
Finally, in addition to these very simple parameter changes,

this paper proposes to introduce explicitly in the MRF model
the information about missing (but probable) junctions. In
particular, the idea is to recognize where T- and L-shaped junc-
tions may occur and build a junction-aware MRF model. The
approach is somehow similar to that in [17], where “junction
hypotheses” are proposed and evaluated, but with a different
candidate junction definition and evaluation methodology.

The modified MRF model requires that two new segment sets
ST

d and SL
d are added to the original Sd set. More precisely,

ST
d is built by recognizing candidate T-shaped junctions as

follows: A candidate T-shaped junction is defined as a set of
two segments i and j with an absolute difference in orientation
|θi − θj | in a range of θmax around 90◦. Furthermore, the
intersection point xT

ij between the lines identified by the two
segments lays on segment i or segment j and is within a
range of Dmax from the nearest endpoint of the other segment
[Fig. 6(b)].

Let Nij denote the middle point of the connection from xT
ij

to the nearest endpoint of the other segment. Then, ST
d is made

by a “trap segment” for each candidate junction, which spans
half of the missing connection back from the intersection point
to the incident segment

ST
d =

{
xT

ijN
T
ij , i ∈ Sd; j ∈ Sd; xT

ij ∈ (i ∪ j);

|θi − θj − 90◦| ≤ θmax} . (10)

Similarly, candidate L-shaped junctions are defined as a set
of two segments satisfying the same orientation constraints than
for T-shaped junctions. However, now, the intersection point xL

ij

is external to both of them but within a Dmax distance from the
closest endpoints. SL

d is thus composed of segments forced to
existence and covering half the missing path in the direction of
the segment that is farther from xL

ij [Fig. 6(c)]. Denoting with
NL

ij the middle point of this missing path, we have

SL
d =

{
xL

ijN
L
ij , i ∈ Sd; j ∈ Sd; xL

ij ∈ (i ∪ j);

|θi − θj − 90◦| ≤ θmax} . (11)

Note that by adding ST
d and SL

d to the original set Sd, S ′
d

is also forced to include all the missing connections to the
newly introduced trap segments because these connections are
by definition inside the proposed length and directional ranges.
This is especially important for T-shaped candidate junctions.
In fact, they were impossible recognize in [8], where only
endpoint connections were considered. The present modified
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Fig. 7. Comparison of the MRF optimization results. (a) Without a priori knowledge about junctions. (b) With knowledge about L- and T-shaped junctions.
(c) Ground truth. (d) Using the multiple optimization approach. (e) After the final network regularization step.

model includes instead the a priori knowledge that urban
road networks prize connections through junctions, even if this
forces higher local road curvatures.

It is worth adding here a comment about the comparison
between the approach presented in this paper and the methodol-
ogy discussed in [16], where a modified MRF model with junc-
tions is also considered. The main difference is in the extraction
approach, which provides here longer and more precise roads
and, therefore, offers a more refined input around junctions
and even outside junction areas to MRF optimization. The
second difference is, however, in the junction definition. For
the sake of simplicity, let us focus on a T-shaped junction. In
[16], it is defined as a set of three segments (either detected
or undetected) having a common endpoint. In this paper, in
addition to this definition, we add the possibility to have a
T-shaped junction when there is a point inside an already
detected segment where another detected segment may join
it. In other words, a T-shaped junction is still a set of three
segments (two detected and one undetected), but they have no
common endpoint. This new definition adds flexibility to the
approach and improves its ability to detect potential junctions
that may split segments.
2) MRF Model Optimization: Following the modified MRF

model discussed in the previous sections, optimization of the

complete set S = Sd ∪ ST
d ∪ SL

d ∪ S ′
d is carried out by associ-

ating potentials to each element [8]. This may be reduced to the
minimization of the energy functional

U =
∑
i∈S

Vi +
∑
c∈C

Vc (12)

where, with a slightly simplified notation than in [8], Vi is the
potential of the ith segment, which is linked to its conditional
probability, and C is the set of considered spatial aggregations
of one or more segments in MRF notation called “cliques.”

The minimum of the global energy function U is reached
using the pretty much standard iterated conditional mode (ICM)
approach [25]. In our implementation, unlike that of [8], results
are stable and reach stability very quickly, e.g., 2 s on a standard
personal computer and a total set of 300 segments. Stability has
been observed by comparison with more complex algorithms
for minimum search and is due to the excellently conditioned
segment set, which is provided as input to the MRF.
3) Multiple Optimization Fusion: As one would expect, the

junction-aware MRF model optimization, as proposed previ-
ously, is able to provide good results. In fact, it improves the
results with respect to the original MRF approach in [8], works
in a semiautomatic way and, which is the most important fact
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Fig. 8. Second test area in the AIRSAR data set. (a) Original SAR image. (b) Road network obtained by the present procedure without considering junctions.
(c) Road network considering junctions. (d) Raster representation of the corresponding ground truth.

from our point of view, allows considering urban areas where
junctions are crucial. For example, results for the SAR image
in Fig. 2 may be compared in Fig. 7(a) and (b), where results
without and with L- and T-junction knowledge are shown,
respectively, and both should be compared with the ground truth
in Fig. 7(c). More real junctions are now in the final network,
and missing roads are partially recovered, as shown in the
highlighted area of the image. However, Fig. 7(b) still has some
problems, for instance, in the very same area.

As a matter of fact, a long and detailed analysis of all
the options proved that best results may be achieved using
“multiple optimization.” More precisely, first, the original MRF
optimization without any knowledge about junctions is run.
Then, two more optimizations are computed, adding only
T-shaped or L-shaped junctions, respectively. The three results
are combined in the simplest possible way, i.e., by a logical
AND operation to take advantage of all of them. For the same
image, this procedure leads to Fig. 7(d). Better recognition of
roads is now achieved than in the previous situation.

The experimental reason for this behavior is the relatively
large number of candidate T- and L-shaped junctions in a usual
urban network. If they are not considered, the result is the poor-
est one. However, if all of them are simultaneously taken into
account, the optimization problem becomes too complex and
the ICM approach does not work at its best. More investigation
is indeed worth on this topic.

B. Network Regularization

The drawback of the multiple optimization fusion step is
the greater complexity of the final fused network, which is
usually with many duplications. Therefore, a final network
regularization algorithm is implemented based on perceptual
grouping concepts. It is aimed not only at reducing overlapping
segments but also at grouping still unconnected road elements
according to some rules on their local mutual positions. These
rules have been introduced in [5] and are one of the topics of a
recently accepted publication [26]. Thus, they are only briefly
outlined here.

The perceptual grouping rules used in this step are quite
basic and are based on proximity and collinearity concepts. The
rule set is very similar to that in [27] but with a few changes
to take into account junctions and other peculiarities of road

networks in urban areas. Basically, four steps are performed in
a sequence.

1) A proximity check is performed, and pairs of segment
with similar directions and within a fixed maximum dis-
tance from one to the other are reduced to the longest one.

2) Collinear segments with close endpoints are connected.
3) A second proximity check is applied to noncollinear

segments to close small gaps in the network.
4) Finally, long chains of segments are simplified to the best

approximating set, following [28].
The final result of this procedure is provided in Fig. 7(e) and

shows that it is indeed possible to regularize the network by
exploiting only very basic steps. The analysis is very fast and
runs smoothly using generally valid parameters, which have
been defined in [5] and shall not be changed into this approach.

IV. EXPERIMENTAL RESULTS

The entire chain process has been tested on SAR imagery
of urban areas recorded by the AIRSAR and AeS II airborne
sensors. The sample used as an example throughout the dis-
cussion of the previous sections comes from the first data set.
This AIRSAR scene was taken in 1994 in full-polarization
mode with a ground spatial sampling of 5 m. The full image
covers the area from the Pacific Ocean to inner Los Angeles
near Hollywood, CA. The AeS II data set, on the other hand,
has a ground spatial sampling of 0.5 m and depicts an area
close to Munich, Germany. Ground truth data were obtained
by manual photo interpretation of the AIRSAR image and by
using a geographic information system layer for roads in the
Munich area provided by the Landesamt fur Vermessung und
Geoinformation of the Bavaria region. Both ground truth sets
are in vector format and were compared with the vector list of
road segments in the optimized final road network obtained at
the end of the proposed processing chain (or at intermediate
steps for comparison purposes).

In the following, three examples are provided, each aimed at
showing one particular aspect of the proposed procedure and
its advantages with respect to state of the art. Fig. 8 shows a
second sample from the AIRSAR data set. By means of this
example, it is possible to compare the effect of the junction-
aware optimization with respect to the original version. Because
the road grid here is very regular and the road extraction works
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TABLE II
QUANTITATIVE EVALUATION AND COMPARISON OF THE RESULTS

Fig. 9. (a) Segments extracted from Fig. 2 using the algorithm introduced
in [20]. (b) Segments extracted from Fig. 2 using the algorithm proposed in
this paper. (c) Road network after junction-aware MRF optimization of the
segments in (a).

well, it is expected that the MRF optimization with junc-
tion knowledge may be able to slightly improve the result.
In fact, there is no major improvement between the original
optimization [Fig. 8(b)] and the new result [Fig. 8(c)]. Only
a few segments are added, and they do not introduce many
junctions or lacking parts of the network. In some cases, false
positives are added, but the overall visual impression is a strong
similarity between the results.

For a more objective characterization, a numerical evaluation
of the completeness, correctness, and quality indexes of the
road network [29] were computed with respect to the ground
truth in Fig. 8(d), and values are shown in Table II. As expected,
completeness increases due to the added junctions, whereas
correctness decreases because of more false positives. The two
effects, however, do not compensate, and the overall quality
slightly increases.

The second example, which is reported in Fig. 9, is aimed
instead at highlighting the importance of the new road detec-
tor. This is done by proposing a visual comparison between
the segments extracted from Fig. 4(c) by using the segment
extraction procedure in [20] or the one introduced in this paper.
It is interesting to note that the new algorithm allows a more
precise extraction of long segments. MRF optimization, even
considering junctions, is only partially able to recover problems
introduced in Fig. 9(a), i.e., the artificially induced segmenta-

Fig. 10. (a) Original image. (b) Road network after junction-aware MRF
optimization of these segments. (c) Raster representation of the corresponding
ground truth.

tion of long roads. Thus, the final road network in Fig. 9(c)
is far less precise than the one in Fig. 7(e). Correspondingly,
completeness and quality values, which are provided again in
Table II, decrease as much as 10% and 7%, respectively.

The final example in this section refers to Fig. 10, where
the original AeS II image is close to the extracted final
road network [Fig. 10(b)] and the corresponding ground truth
[Fig. 10(c)]. Because this image was used as test data for [20],
we use this example to compare the results of the procedure
proposed in this paper with those in [20][Fig. 6(c)]. First, it
is clear that the choice of approximating curvilinear lines with
sequences of linear elements does not lead to sufficient accu-
racy in some areas of the image. However, regular patterns are
visible. Even the highway roundabout, though poorly approxi-
mated, is more clearly visible in Fig. 10(b) than in our previous
work. Correspondingly, index values in Table II increase by
15%–20% over those reported in [20]. Finally, the urban areas
on the top right corner are now partially delineated, which is
the most important result from the point of view of this paper,
whereas in previous works, they were really hard to catch.

V. CONCLUSION

This paper shows that a careful exploitation of junction
information may improve the road network extraction process
in urban areas starting from high-resolution SAR images. This
was done in two steps, namely: 1) designing a procedure for
road candidate extraction that searches and identifies junctions,
following the path of long roads even after these junctions
and thus reducing unwanted segmentation of these roads, and
2) using candidate L- and T-shaped junctions, which improves
the final result of the MRF optimization of the road network
starting from the detected candidate roads.

Experimental results on two data sets in Section IV show that
these two steps allow to achieve better quality values for the
final extracted road network.

However, the same results also prove in two different situ-
ations that the process of urban area network extraction from
high-resolution SAR images relies heavily on road candidate
detection, i.e., the first part of this work. The less candidate
segments fragmented, the better the result of the second part
of this work, i.e., the optimization. Thus, future work will be
devoted not only to refinement with more a priori information
of the MRF model but also to improving the road detector
proposed in this paper and making it more automatic and
adaptive.
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