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Abstract. We investigate the packing and covering densities of linear and
nonlinear binary codes, and establish a number of duality relationships between
the packing and covering problems. Specifically, we prove that if almost all
codes (in the class of linear or nonlinear codes) are good packings, then only
a vanishing fraction of codes are good coverings, and vice versa: if almost all
codes are good coverings, then at most a vanishing fraction of codes are good
packings. We also show that any specific maximal binary code is either a good
packing or a good covering, in a certain well-defined sense.

1. Introduction

Let F
n
2 be the vector space of all the binary n-tuples, endowed with the Hamming

metric. Specifically, the Hamming distance d(x, y) between x, y ∈Fn
2 is defined as

the number of positions where x and y differ. A binary code of length n is a subset
of Fn

2 , while a binary linear code of length n and dimension k is a k-dimensional
subspace of Fn

2 . Since in this note, we are concerned only with binary codes, we
henceforth omit the “binary” quantifier throughout. The minimum distance d of
a code C ⊆ Fn

2 is defined as the minimum Hamming distance between distinct
elements of C. The covering radius of C is the smallest integer R such that for
all x∈F

n
2 , there exists a y ∈C with d(x, y) 6 R. For all other notation from coding

theory, we refer the reader to [5, 6]. In particular, Van Lint [6, p.34] calls the covering
radius the “counterpart of minimum distance.” Indeed, the trade-off between the
parameters |C|, n, d, and R is one of the fundamental problems in coding theory.

Let C (n, M) be the set of all codes C ⊆ Fn
2 with |C| = M , so |C (n, M)| =

(

2n

M

)

.
Similarly, let L (n, k) denote the set of all linear codes of length n and dimension k.
Thus the cardinality of L (n, k) is given by |L (n, k)| =

∏

k−1
i=0

(

2n − 2i
)

/
(

2k − 2i
)

.
We will be interested in questions of the following kind. Given a property P which
determines the packing or covering density of a code, what fraction of codes in
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C (n, M) and/or L (n, k) have this property? Moreover, how does this fraction
behave as n→∞? Our main results are curious duality relationships between such
packing and covering problems. In particular, we show that:6 Any maximal code is good. That is, any specific maximal code C ⊆ Fn

2 is

either a good packing or a good covering, in a certain well-defined sense.F If almost all codes in C (n, M) are good coverings, then almost all codes in

C (n, M +1) are bad packings. Vice versa, if almost all codes in C (n, M +1)
are good packings, then almost all codes in C (n, M) are bad coverings.K The same is true for linear codes. In other words, F holds with C (n, M)
and C (n, M+1) replaced by L (n, k) and L (n, k + 1), respectively.

The definition of what we mean by “good packing” and “good covering” is given in
the next section. Precise statements of 6 and F, K may be found in §3 and §4.

2. Definitions

The covering density of a code C ⊆ Fn
2 is defined in [1] as the sum of the

volumes of spheres of covering radius R about the codewords of C divided by the
volume of the space:

µ(C)
def
=

∑

c∈C
|BR(c)|

|Fn
2 |

=
|C|V (n, R)

2n

where Br(x) = {y∈Fn
2 : d(x, y) 6 r} is a sphere (ball) of radius r centered at x∈Fn

2

and V (n, r) =
∑r

i=0

(

n

i

)

is the volume (cardinality) of Br(x). We find it extremely
convenient to extend this definition of density to arbitrary radii as follows.

Definition 1. Given a code C ⊆ Fn
2 and a nonnegative integer r 6 n, the r-density

of C is defined as

(1) ϕr(C)
def
=

∑

c∈C
|Br(c)|

|Fn
2 |

=
|C|V (n, r)

2n

Many well-known bounds on the packing and covering density of codes can be
concisely stated in terms of the r-density. For example, if R, d, and t = ⌊(d−1)/2⌋
denote the covering radius, the minimum distance, and the packing radius, respec-
tively, then we have

Sphere-packing bound: ϕt(C) 6 1 for all C ⊆ F
n

2(2)

Sphere-covering bound: ϕR(C) > 1 for all C ⊆ F
n

2(3)

The Gilbert-Varshamov bound [6] asserts that for all n and d 6 n, there exist codes
in C (n, M) whose minimum distance d satisfies M > 2n/V (n, d−1). Equivalently

Gilbert-Varshamov bound: ∀n, ∀d 6n, there exist C ⊆ F
n

2 , such that ϕd−1(C) > 1

Recently, this bound was improved upon by Jiang and Vardy [4] who showed that
for all sufficiently large n and all∗ d 6 0.499n, there exist codes C ⊂ Fn

2 with mini-
mum distance d such that |C| > cn 2n/V (n, d−1), where c is an absolute constant.
Equivalently

∃c > 0, ∃n0, ∀n > n0, ∀d 6 0.499n, there exist C ⊆ F
n

2 , such that ϕd−1(C) > cn

∗The condition d 6 0.499n has been improved to the more natural d < n/2 by Vu and Wu [7]. It
is also shown in [7] that a similar bound holds over any alphabet of size q, provided d < n(q−1)/q.
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The best known existence bounds for covering codes can be also expressed in terms
of the r-density, except that one should set r = R rather than r = d − 1. Thus

∀n, ∀R < n/2, there exist linear C ⊆ Fn
2 , such that ϕR(C) 6 n2(4)

∀n, ∀R <n/2, there exist C ⊆ Fn
2 , such that ϕR(C) 6 (ln 2)n(5)

where the first result is due to Cohen [2] while the second is due to Delsarte and
Piret [3]. Motivated by all of the above, we introduce the following definition.

Definition 2. Let f(n) be a given function, and let C⊆Fn
2 be a code with minimum

distance d and covering radius R. We shall say that C is an f(n)-good packing if
ϕd−1(C) > f(n). We say that C is an f(n)-good covering if ϕR(C) 6 f(n).

Thus a code C attains the Gilbert-Varshamov bound if and only if it is a 1-good
packing. Similarly, a code C attains the Jiang-Vardy bound, respectively the Dels-
arte-Piret bound, if it is a cn-good packing, respectively a (ln 2)n-good covering.

3. Duality for a Specific Maximal Code

A code C ⊆ Fn
2 is said to be maximal if it is not possible to adjoin any point

of Fn
2 to C without decreasing its minimum distance. Equivalently, a code C with

minimum distance d and covering radius R is maximal if and only if R 6 d−1. Our
first result is an easy theorem, which says that any maximal code is either a good
packing or a good covering.

Theorem 1. Let f(n) be an arbitrary function of n, and let C ⊆ Fn
2 be a maximal

code. Then C is an f(n)-good packing or an f(n)-good covering (or both).

Proof. By definition, C is not an f(n)-good packing if ϕd−1(C) < f(n). But this im-
plies that ϕR(C) 6 ϕd−1(C) < f(n), so C is an f(n)-good covering.

Taking f(n) = θ(n), Theorem1 implies that, up to a constant factor, any max-
imal code attains either the Jiang-Vardy bound or the Delsarte-Piret bound.

4. Duality for Almost All Codes

We begin with three simple lemmas, which are needed to prove Theorems 2 and 3,
our main results in this section. The following “supercode lemma” is well known.

Lemma 1. Given a code C, let d(C) and R(C) be its minimum distance and cover-
ing radius, respectively. If C is a proper subcode of a code C′, then R(C) > d(C′).

Proof. Since C⊂C′, there is an x∈C′ \ C. For any c∈C, we have d(x, c) > d(C′).
Hence R(C) > d(C′) by definition.

Lemma 2. Let S′ ⊆ C (n, M+1) be an arbitrary set of codes of length n and size
M + 1, and let S = {C∈C (n, M) : C ⊂ C′ for some C′ ∈S′}. Then the fraction of
codes in S is greater or equal to the fraction of codes in S′, namely

|S|

|C (n, M)|
>

|S′|

|C (n, M+1)|

Proof. Define a bipartite graph G as follows. The left vertices, respectively the right
vertices, of G are all the codes in C (n, M), respectively all the codes in C (n, M+1),
with C∈C (n, M) and C′ ∈C (n, M+1) connected by an edge iff C ⊂ C′. Then G is
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bi-regular with left-degree 2n − M and right-degree M + 1. Hence the number of
edges in G is

(6) |E(G)| = (M + 1)|C (n, M+1)| = (2n − M)|C (n, M)|

Now consider the subgraph H induced in G by the set S′. Then the left vertices in
H are precisely the codes in S, and every such vertex has degree at most 2n − M .
The degree of every right vertex in H is still M + 1. Thus, counting the number of
edges in H, we obtain

(7) |E(H)| = (M + 1)|S′| 6 (2n − M)|S|

The lemma follows immediately from (6) and (7). Observe that the specific express-
ions for the left and right degrees of G are, in fact, irrelevant for the proof.

Lemma 3. Let S′ ⊆ L (n, k+1) be an arbitrary set of linear codes of length n and
dimension k + 1, and let S = {C∈L (n, k) : C ⊂ C′ for some C′ ∈S′}. Then the
fraction of codes in S is greater or equal to the fraction of codes in S′, namely

|S|

|L (n, k)|
>

|S′|

|L (n, k+1)|

Proof. The argument is identical to the one given in the proof of Lemma 2, except
that here we use the bipartite graph defined on L (n, k) ∪ L (n, k+1).

The next theorem establishes the duality between the fraction of good coverings
in C (n, M) and the fraction of good packings in C (n, M +1). In order to make its
statement precise, we need to exclude the degenerate cases. Thus we shall hence-
forth assume that n 6 M 6 2n − 1.

Theorem 2. Let f(n) be an arbitrary function. Let α∈ [0, 1] denote the fraction of
codes in C (n, M) that are f(n)-good coverings, and let β ∈ [0, 1] denote the fraction
of codes in C (n, M + 1) that are f(n)-good packings. Then α + β 6 1.

Proof. Let S′ denote the set of all codes in C (n, M + 1) that are f(n)-good packings.
Thus |S′|/|C (n, M+1)| = β. Let S = {C∈C (n, M) : C ⊂ C′ for some C′ ∈S′} as
in Lemma 2. We claim that none of the codes in S is an f(n)-good covering. Indeed,
let C∈S, and let C′ ∈S′ be a code such that C ⊂ C′. Set R = R(C) and d = d(C′).
Then

ϕR(C) > ϕd(C)
(

by Lemma 1
)

(8)

> ϕd−1(C
′)

(

trivial from (1) if M > n
)

(9)

> f(n)
(

C
′ is an f(n)-good packing

)

(10)

Thus C is not an f(n)-good covering, as claimed. Hence 1 − α > |S|/|C (n, M)|.
The theorem now follows immediately from Lemma2.

For linear codes, exactly the same argument works, except that we need a fac-
tor of 2 in (9), since |C′| = 2|C| for any C∈L (n, k) and C′ ∈L (n, k+1).

Theorem 3. Let f(n) be an arbitrary function. Let α∈ [0, 1] denote the fraction of
codes in L (n, k) that are f(n)-good coverings, and let β ∈ [0, 1] denote the fraction
of codes in L (n, k +1) that are 2f(n)-good packings. Then α + β 6 1.

Proof. Follows from Lemma 1 and Lemma 3 in the same way as Theorem2 follows
from Lemma 1 and Lemma 2. Explicitly, the chain of inequalities in (8) – (10) be-
comes ϕR(C) > ϕd(C) > 1/

2
ϕd−1(C

′) > f(n).
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Clearly, Theorems 2 and 3 imply the statementsF andK made in §1. If α tends
to one as n → ∞, then β tends to zero, and vice versa if β → 1 then α → 0.
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