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Abstract. We explore some links between higher weights of binary
codes based on entropy/length profiles and the asymptotic rate of (2, 1)-
separating codes. These codes find applications in digital fingerprinting
and broadcast encryption for example. We conjecture some bounds on
the higher weights, whose proof would considerably strengthen the upper
bound on the rate of (2, 1)-separating codes.
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1 The Problem

The concept of (t, u)-separating codes has been studied for about 35 years in the
literature, with applications including fault-tolerant systems, automata synthe-
sis, and construction of hash functions. For a survey one may read [15]. The con-
cept has been revived by the study of digital fingerprinting [3]; a (t, 1)-separating
code is the same as a t-frameproof code, on which we elaborate now.

In broadcast encryption, a company distributes a unique decoder to each
user. Users may collude and combine their decoders to forge a new one. The
company wants to limit this or trace back illegal decoders to the offending users.
Among the forbidden moves: framing an innocent user. This goal can be achieved
with frameproof codes. One can consult e.g. [2,16] for more.

In this paper we study binary (2, 1)-separating codes ((2, 1)-SS). An (n, M)
code is a subset of size M from the set of binary vectors of length n. The code
or a set of codewords will often be regarded as matrices, with the codewords
forming the rows.

Definition 1. Let a,b, c be three vectors. We say that a is separated from (b, c)
if there is at least one postion i such that ai �= bi and ai �= ci.

An (n, M) code is (2, 1)-separating if for every ordered triplet (a,b, c), a is
separated from (b, c).
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Table 1. Rate bounds for (2, 1)-SS

Linear Nonlinear
Rate Ref. Rate Ref

Known construction 0.156 [6] 0.1845 [8]
New construction 0.2033 Theorem 2
Existence 0.2075 Well-known e.g. [6] 0.2075 Well-known e.g. [10]
Upper bound 0.28 Well-known e.g. [6] 0.5 [10]

Many interesting mathematical problems are equivalent to that of (2, 1)-SS.
An overview of this is found in [10]. A linear (2, 1)-separating code is equivalent
to an intersecting code [6], and some results have been proved independently for
intersecting and for separating codes. For further details on intersecting codes,
see [5] and references therein.

The rate of the code is
R =

log M

n
.

For an asymptotic family of codes (ni, Mi) codes (C1, C2, . . .) where Mi > Mi−1

for all i, the rate is defined as

R = lim sup
i→∞

log Mi

ni
.

The known bounds on asymptotic families of (2, 1)-SS are shown in Table 1. By
abuse of language, an asymptotic family of codes will also be called an asymptotic
code.

We observe a huge gap between the upper and lower bounds for non-linear
codes. Our goal is to reduce this gap. The references in the table are given
primarily for easy access and are not necessarily the first occurrences of the
results, which are sometimes folklore.

Section 2 gives a minor result, namely a new construction slightly improving
the lower bound. In Section 3, we make some observations about the trellis of
a (2, 1)-SS. In Section 4, we discuss higher weights of arbitrary codes and we
introduce the ‘tistance’ of a code and make some conjecture. Section 5, we prove
bounds for (2, 1)-SS in terms of the ‘tistance’ and show how the conjectures
would give major improvements of the upper bounds if proved.

2 A New Asymptotic Construction

Theorem 2. The codes obtained by concatenating an arbitrary subcode of 121
words from the (15, 27) shortened Kerdock code K ′(4) with codes as described
by Xing [18] (t = 2) over GF(112), is a family of (2, 1)-SS of asymptotic rate
R = 0.2033.

Proof. It is well known that the concatenation of two (2, 1)-SS is a (2, 1)-SS.
The shortened Kerdock code K ′(4) was proved to be a (2, 1)-SS in [11]. The
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Xing codes were proved to be (2, 1)-SS in [18]. Let us recall for convenience their
parameters.

Suppose that q = p2r with p prime, and that t is an integer such that 2 ≤
t ≤ √

q − 1. Then there is an assymptotic family of (t, 1)-separating codes with
rate

R =
1
t
− 1√

q − 1
+

1 − 2 logq t

t(
√

q − 1)
.

We take K ′(4) which is a (15, 27) (2, 1)-SS, wherefrom we pick 112 arbitrary
codewords. This code can be concatenated with a Xing code over GF(112), for
which a rate of approximately 0.4355 and minimum distance more than 0.5 is
obtainable. This gives a concatenated code which is (2, 1)-separating with the
stated rate.

It is a bit unclear how easily we can construct the sequences of curves on
which the Xing codes are based; we have found no explicit construction in the
literature, but it is hinted that the construction should be feasible. The alterna-
tive is to use the random construction of [6,10] for a rate of 0.2075, but that is
certainly computationally intractable even for moderate code sizes.

3 Trellises for (2, 1)-SS

We know that a code can always be described as a trellis, and trellises have been
studied a lot as devices for decoding. We will not rule out the possibility that
someone will want to use trellis decoding of separating codes at some point, but
that is not our concern. We want to derive bounds on the rate of (2, 1)-separating
codes, and it appears that such bounds may be derived by studying the trellis.

A trellis is a graph where the vertices are divided into (n + 1) classes called
times. Every edge goes from a vertex at time i to a vertex at time i + 1, and
is labeled with an element from some alphabet Q. The vertices of a trellis are
called states. A trellis also have the property that time 0 and time n each has
exactly one vertex, called respectively the initial and the final states. There is
at least one path from the initial state to each vertex of the graph, and at least
one path to the final state from each vertex of the graph.

A binary (n, M) code corresponds to a trellis with label alphabet {0, 1}.
Every path from time 0 to time n defines a codeword by the labels of the edges.
Every codeword is defined by at least one such path.

A trellis is most often considered as an undirected graph, but we will never-
theless say that an edge between a state v at time i− 1 to some state w at time
i goes from v to w.

If each codeword corresponds to exactly one trellis path, then we say that
the trellis is one-to-one. A proper trellis is one where two edges from the same
vertex never have the same label. If, in addition, no two edges into the same
vertex have the same label, then we say that the trellis is biproper. It is known
that every block code corresponds to a unique minimal proper trellis, i.e. the
proper trellis with the minimal number of edges.
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Fig. 1. The impossible subtrellis in Proposition 3
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Fig. 2. The impossible subtrellis in Proposition 5

Proposition 3. In a trellis corresponding to a (2, 1)-separating code, if two dis-
tinct paths join in some vertex v, the joint path cannot rebranch at any later
time.

Proof. If the trellis were to contain two paths which first join and later rebranch,
it would mean a sub-trellis as given in Figure 1. If so, we can consider the three
vectors

v1 = c1||a1||c2||a2||c3

v2 = c1||a1||c2||b2||c3

v3 = c1||b1||c2||a2||c3

Now v1 is not separated from (v2,v3), so the trellis cannot be (2, 1)-separating.

Corrollary 4. The trellis of a (2, 1)-separating code cannot contain a vertex
with both two incoming and two outgoing edges (often called a butterfly vertex).

Proposition 5. Every (2, 1)-separating code has a biproper trellis.

Proof. We consider the minimal proper trellis of a (2, 1)-separating code. Let v
be a vertex with two incoming edges with the same label, say 1. This must mean
that we have a subtrellis like the one drawn in Figure 2, where a1||0||b2 is not
a codeword. Observe the three codewords

v1 = a1||1||b1

v2 = a2||1||b1

v3 = a2||0||b2.

Here, v2 is not separated from (v1,v3).



A Trellis-Based Bound on (2, 1)-Separating Codes 63

4 Entropy/Length Profiles and Higher Weights

This section deals with general codes, not necessarily separating. Higher weights,
or generalised Hamming weights, have been studied for linear codes since 1977
[9] and have received considerable interest with the definition of the weight hier-
archy in 1991 [17]. For non-linear codes, different definitions have been suggested
[4,1,14]. We will primarily use the entropy/length profiles (ELP) from [13]. The
ELP was used to define the weight hierarchy in [14].

Let X be a stochastic variable, representing a codeword drawn uniformly at
random from some code C. Write [n] = {1, 2, . . . , n}. For any subset I ⊆ [n], let
XI be the vector (Xi : i ∈ I), where X = (Xi : i ∈ [n]). Clearly XI is also a
stochastic variable, but not necessarily uniformly distributed.

Definition 6 (Entropy). The (binary) entropy of a discrete stochastic variable
X drawn from a set X is defined as

H(X) = −
∑

x∈X
P (X = x) log P (X = x).

The conditional entropy of X with respect to another discrete stochastic variable
Y from Y is

H(X |Y ) = −
∑

y∈Y
P (Y = y)

∑

x∈X
P (X = x|Y = y) log P (X = x|Y = y).

We define the (unordered) conditional ELP to be the sequence (hi : i ∈ [n])
where

hi = max
#I=i

H(XI |X[n]\I),

we also have the ordered conditional ELP (gi : i ∈ [n]) where

gi = H(X[i]|X{i+1,...,n}).

Evidently, gi depends on the coordinate ordering and may thus be different
for two equivalent codes. On the other hand, hi is the maximum of gi for all
equivalent codes, and thus invariant throughout an equivalence class.

The weight hierarchy as defined in [14] is {i|hi > hi−1}. It is an interesting
point that the weight hierarchy of a linear code always has k elements, while
there is no way to predict the number of elements in the weight hierarchy of a
non-linear code, no matter which definition is used.

In this paper we use the parameters

tj := min{i : gi ≥ j}, where j = 0, . . . , �log M� .

We have particular interest in the first parameter, t := t1, which we are going to
call the ‘tistance’ of the code. For all codes t ≥ d, and for linear codes we have
t = d. We also define a normalised measure τ := t/n.
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Lemma 7 [14, Lemma 2] For any (n, M)q code C, we have hl(C) ≥ r where
r = l + logqM − n.

Proposition 8 (Tistance Singleton bound). For any (n, M)q code with tis-
tance t, we have t < n − logqM + 2.

The proposition follows directly from Lemma 7, by setting l = t and noting
that ht < 2. Note that if M = qk for some integer k, then t ≤ n − k + 1, which
is the more common Singleton form of the bound.

Corrollary 9. For an asymptotic class of codes, we have τ ≤ 1 − R.

Conjecture 10 (Plotkin-type bound). For all asymptotic codes, we have
R ≤ RP (τ) := 1 − 2τ .

The regular asymptotic Plotkin bound states that R ≤ 1 − 2δ. Since τ ≥ δ,
the conjecture is stronger than this.

Conjecture 11. Let RLP (δ) be the MRRW bound [12]. For an asymptotical
non-linear code, it holds that R ≤ RLP (τ).

Obviously, Conjecture 11 implies Conjecture 10, because the MRRW bound
is stronger than the Plotkin bound. We state the conjectures separately to en-
courage work on a Plotkin-type bound in terms of t. The usual Plotkin bound
has a cleaner expression and a simpler proof than the MRRW bound, and thus
Conjecture 11 may well be considerably harder to prove.

5 Trellis Bounds on (2, 1)-SS

At time i, let Σi = {σ1, . . . , σa} be the set of states with more than one incom-
ing path. For any state σ, let P (σ) be the number of distinct incoming paths
respectively. Remember from Proposition 3 that any state σ ∈ Σi has only one
outgoing path. We get that

gi =
∑

σ∈Σi

P (σ)
M

h(P (σ)) = M−1
∑

σ∈Σt

P (σ)log P (σ), (1)

or equivalently that

M = g−1
i

∑

σ∈Σt

P (σ)log P (σ). (2)

Setting i = t, we get that

M ≤
∑

σ∈Σt

P (σ)log P (σ). (3)

.
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Theorem 12. A (2, 1)-separating code has size M ≤ 2t.

Proof. Let Σi be the set of states at time i with multiple incoming paths as
before, and let Σ′

i be the set of states at time i ≤ t with a unique incoming path,
and a path leading to a state in Σt. Obviously, we have #Σi + #Σ′

i ≤ 2i. Also
note that a state in Σi (for i < t) must have a (unique) outgoing path leading
to a state in Σt. Observe that Σ′

t = ∅.
We will prove that for i = 0, . . . , t, we have

M ≤ 2i

⎛

⎝
∑

σ∈Σt−i

P (σ)log P (σ) + #Σ′
t−i

⎞

⎠ . (4)

This holds for i = 0 by (3), so it is sufficient to show that

∑

σ∈Σi

P (σ)log P (σ) + #Σ′
i ≤ 2

⎛

⎝
∑

σ∈Σi−1

P (σ)log P (σ) + #Σ′
i−1

⎞

⎠ . (5)

for 0 < i ≤ t. Since Σ0 = ∅ and Σ′
0 is the singleton set containing the initial

state, (4) implies M ≤ 2t by inserting i = t, which will prove the theorem.
Each state σ in Σi must have paths from one or two states Σi−1 ∪ Σ′

i−1. If
there is only one such state σ′, then we have P (σ) = P (σ′) and σ′ ∈ Σi−1.

If there are two such states σ1 and σ2, we get that P (σ1) + P (σ2) = P (σ). If
P (σj) = 1, we have σj ∈ Σ′

i−1, otherwise σj ∈ Σi−1. Observe that

P (σ) log P (σ) ≤ 2(P (σ1) log P (σ1) + P (σ2) log P (σ2)),
if σ1, σ2 ∈ Σi−1,

(6)

P (σ) log P (σ) ≤ 2P (σ1) log P (σ1) + 1,

if σ1 ∈ Σi−1, σ2 ∈ Σ′
i−1,

(7)

P (σ) log P (σ) = 2,

if σ1, σ2 ∈ Σ′
i−1.

(8)

Each of these three equations describes one type of state σ ∈ Σi. Recall that
σj ∈ Σi−1 can have but one outgoing edge. For any state σ ∈ Σ′

i there is one
state σ′ ∈ Σ′

i−1, and each such state σ′ has a path to one or two states in Σi∪Σ′
i.

We note that each σ ∈ Σi in (5) contributes to the right hand side with the
maximum amount from the bounds (6) to (8). The term #Σ′

i−1 is multiplied
by two to reflect the fact that each σ′ ∈ Σ′

i−1 can have an edge to two different
states in Σi ∪ Σ′

i. This proves the bound.

Proposition 13. If Conjecture 10 is true, then any asymptotical (2, 1)-SS has
rate R ≤ 1/3. Similarly, if Conjecture 11 is true, then any asymptotical (2, 1)-SS
has rate R ≤ 0.28.

The proof is is similar to the ones used to prove upper bounds on linear
(2, 1)-SS in past, see e.g. [15,6].



66 H.G. Schaathun and G.D. Cohen

Proof. From the Plotkin-type bound on τ , we get τ ≤ 1
2 (1 − R), and from

Theorem 12 we thus get R ≤ 1
2 (1−R) which proves the result. The proof of the

second sentence is similar, replacing the Plotkin bound by the MRRW bound.

Remark 14. Theorem 12 combined with the tistance Singleton bound, R ≤ 1−τ ,
implies that R ≤ 0.5 for any (2, 1)-SS by the proof above, providing a new proof
for the old bound. Any stronger bound on R in terms of τ for non-linear codes,
will improve the rate bound for (2, 1)-separating codes.

Remark 15. By using (2), we get for any i that

M ≤ h−1
i 2i,

by a proof similar to that of Theorem 12.

6 Balance

From Table 1, we know that an asymptotic upper bound of the rate of a (1, 2)-
separating code is R ≤ 1/2. Starting with an asymptotic family with rate close
to 1/2, we construct a family with the same rate and only codewords with weight
close to n/2. Let C be a (1, 2)-SS of rate R = 1/2−α, where α > 0 is a sufficiently
small constant.

Consider a partition (P1, P2) of the coordinates with |P1| = �(1/2 + 1.1α)n� =:
n1. Let Ui ⊆ C be the set of codewords matching no other codeword on Pi. It is
easy to check that C ⊂ U1∪U2. (Otherwise, some codeword would be matched by
at most two others on P1 and P2, thus not separated). Since |U2| ≤ 2|P2| = o(|C|),
we get |U1| = (1 − o(1))|C|.

Projecting C on P1 gives a code C1(n1, 2(1/2−α)n(1 − o(1))) of rate R1 ≈
(1/2 − α)/(1/2 + 1.1α) ≈ 1 − 4.2α. Thus, the relative dominating weight ω1 in
C1 must be close to 1/2.

Now, we expurgate by keeping only codewords of C which get relative weight
ω1 when projected on P1. Thus we get a code C′ with rate asymptotically equal
to that of C.

We repeat the procedure with a new partition (P ′
1, P

′
2), almost disjoint from

the previous one (i.e., we take |P1 ∩ P ′
1| = �2.2αn�). The code C′′ obtained

after the second expurgation retains both (1, 2)-separation and rate ≈ 1/2. Its
codewords, being balanced on P1 and P ′

1, are ‘almost’ balanced, as the following
theorem states.

Theorem 16. For all c′′ ∈ C′′, we have |w(c′′)/n − 1/2| = o(1).

Remark 17. This result generalises easily to (1, t)-separation. Any such code
with rate close to the optimal rate of 1/t is almost balanced.

We have translated the old combinatorial question of separating codes into
the language of trellises. This has enabled us to shed new light on the matter,
by putting to use concepts like entropy and higher weights.
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