
Non-linear Registration Between 3D Images
Including Rigid Objects: Application to CT and

PET Lung Images With Tumors

A. Moreno1,2 G. Delso3 O. Camara4 I. Bloch1

Antonio.Moreno@enst.fr

1 GET-ENST, Dept. TSI, CNRS UMR 5141 LTCI, Paris, France
2 Segami Corporation, Paris, France 3 Philips Medical Systems, Suresnes, France

4 Center for Medical Image Computing, University College London, UK

Abstract

This paper deals with the problem of non linear image registration is the case
the images include objects undergoing different types of deformation. As an
illustrative application, we consider the registration ofCT and PET images of
thoracic and abdominal regions. Registration of these two modalities has to
cope with deformations of the lungs during breathing. Potential tumors in the
lungs usually do not follow the same deformations, since they can be consid-
ered as almost rigid, and this should be taken into account inthe registration
procedure. We show in this paper how to introduce rigidity constraints into a
non-linear registration method. The proposed approach is based on registra-
tion of landmarks defined on the surface of previously segmented objects and
on continuity constraints. The results demonstrate a significant improvement
of the combination of anatomical and functional images for diagnosis and for
oncology applications.

1 Introduction

Registration between several images of the same scene is a widely addressed topic and
is important in many different domains. One of the difficult problems concerns the case
where the images include objects undergoing different types of deformation that have
to be compensated during the registration. In particular, the behavior of the registration
close to the interfaces between such objects has to be carefully controlled in order to avoid
discontinuities or other unrealistic phenomena. The aim ofthis paper is to address this
problem.

As an illustrative application, we consider Computed Tomography (CT) and Positron
Emission Tomography (PET) in thoracic and abdominal regions, which furnish comple-
mentary information about the anatomy and the metabolism ofhuman body. Their combi-
nation has a significant impact on improving medical decisions for diagnosis and therapy
[16] even with combined PET/CT devices where registration remains necessary to com-
pensate patient respiration and heart beating [14]. Registration of these two modalities is



a challenging application due to the poor quality of the PET image and the large defor-
mations involved in these regions.

Most of the existing methods have as a limitation that regions placed inside or near the
main structures will be deformed more or less according to the registration computed for
the latter, depending on how local is the deformation. A critical example of this situation
occurs when a tumor is located inside the lungs and there is a large volume difference
between CT and PET images (due to the breathing). In this case, if the tumor is registered
according to the transformation computed for the lungs, it may take absurd shapes, such
as shown in Figure 1.

Figure 1:Axial and coronal slices in CT (first row) and in PET (second row). Result of the non-
linear registration without tumor-based constraints (third row). The absence of these constraints
leads to undesired and irrelevant deformations of the pathology. On the images of the first and
third columns, the cursor is positioned on the tumor localization in PET data, while in the second
and fourth columns, it is positioned on the tumor localization in CT data. This example shows
an erroneous positioning of the tumor and illustrates the importance of the use of tumor-specific
constraints.

In this case, two very different deformations exist: the non-linear deformations of the
lungs due to the breathing and the linear displacement of thetumor during the breathing
cycle. Thus, the aim of this paper is to avoid the undesired tumor misregistrations by
adding some rigidity constraints on the tumors. The goal is to preserve tumor geometry
and, in particular, intensity since it is critical for clinical studies, for instance based on
SUV (Standardized Uptake Value) [6], and for diagnosis and radiotherapy planning.

In Section 2, we summarize existing work related to this subject and we provide an
overview of the proposed approach. The introduction of tumor-based constraints into the
registration algorithm is detailed in Section 3. Section 4 presents some results obtained
on real data. Finally, conclusions and future works are discussed in Section 5.



2 Related Work and Overview of the Proposed
Approach

Some approaches have already been developed for registration of multimodality images in
pathological cases (pulmonary nodules, cancer), such as in[2]. However these approaches
compute a rigid (or affine) registration for all the structures and they do not take into
account the local nature of the deformations.

Tanner et al. [15] have developed a method of non-rigid registration based on B-spline
Free-Form Deformations (FFD) as in [3]. Their algorithm is applied on MR breast im-
ages and it guarantees volume and shape preservation in the rigid regions defined by the
lesions. However, the region of the rigid transformation islarger than the lesions. Another
approach that uses B-spline FFD is the one by Rohlfing and Maurer [12]. They have used
a grid refinement and added some incompressibility constraints (using the properties of
the Jacobian) which only guarantee the preservation of the volume of the structures but
not their shape. Loeckx et al. [10] have added a local rigidity constraint in order to guar-
antee shape preservation and they have obtained very promising results. Nevertheless,
this algorithm does not enforce the considered structures to be totally rigid, therefore they
actually might be slightly deformed.

The recent work of Hachama et al. [7] uses a Bayesian framework in order to charac-
terize the pathologies as outliers of a probabilistic distribution. Their method is applied
to mammogram registration and proved to be robust. An implicit assumption is that grey
levels in both images are similar, thus making the method appropriate for mono-modality
images. This assumption should be relaxed to extend the method to multimodality images.

A different approach, that we consider closer to physical reality of human body, is
based on the combination of rigid and non-rigid deformations, as suggested by Little et
al. [9] and Huesman et al. [8]. These methods are based on the use of point interpolation
techniques, together with a weighting of the deformation according to a distance function.
Castellanos et al. [4] developed a slightly different methodology, in which local non-rigid
warpings are used to guarantee the continuity of the transformation.

The advantage of these approaches is that they take into account rigid structures and
the deformations applied to the image are continuous and smooth. The method we pro-
pose is inspired by these ones and adapted to develop a registration algorithm for the
thoracic region in the presence of pathologies. In order to illustrate our algorithm, we
have applied it on medical data. These data consist of 3D CT and PET images of patho-
logical cases, exhibiting tumors in the lungs. We assume that the tumor is rigid and thus
a linear transformation is sufficient to cope with its movements between CT and PET
images. This hypothesis is relevant and in accordance with the clinicians’ point of view,
since tumors are often a compact mass of pathological tissue. In order to guarantee a
good registration of both normal and pathological structures, the first step consists of a
segmentation of all structures which are visible in both modalities. Then we define two
groups of landmarks in both images, which correspond to homologous points, and will
guide the deformation of the PET image towards the CT image. The positions of the
landmarks are therefore adapted to anatomical shapes. Thisis an important feature and
one of the originalities of our method. The deformation at each point is computed using
an interpolation procedure based on the landmarks, on the specific type of deformation
of each landmark depending on the structure it belongs to, and weighted by a distance
function, which guarantees that the transformation will becontinuous.



Thus, the proposed approach has two main advantages:

1. As the transformation near the tumor is reduced by using the distance weight, even
if we have some small errors in the tumor segmentation (oftenquite challenging,
mainly in CT), we will obtain a consistent and robust transformation.

2. In the considered application, one important fact is thatthe objects to register are
not the same in the two images. For instance, the volume of the“anatomical” tumor
in CT is not necessarily the same as the volume of the “functional” tumor in PET
because the two modalities highlight different characteristics of the objects. The
registration of these two views of the tumor must preserve these local differences,
which can be very useful because we could discover a part of the anatomy that
is touched by the pathology and could not be seen in the CT image. This also
advocates in favor of a rigid local registration.

3 Combining Rigid and Non-linear Deformations

Based on a segmentation of the objects visible in both images, pairs of homologous points
are defined. They constitute landmarks guiding the registration. We assume that globally
a non-linear transformation has to be found, while for some objectsO1, . . . ,On0 (tumors
in our application) specific constraints have to be incorporated. For instance, these objects
may undergo only a rigid transformation between both images. The global transformation
is then interpolated over the whole image. We introduce the rigid structures constraints so
that the non-rigid transformation is gradually weighted down in the proximity of objects
O1, . . . ,On0.

Point-Based Displacement Interpolation
The first step in a point-based interpolation algorithm concerns the selection of the

landmarks guiding the transformation. Homologous structures in both images are then
registered based on landmarks defined on their surface. The resulting deformation will be
exact at these landmarks and smooth elsewhere, which is achieved by interpolation.

Let us denote byt i then landmarks in the source image that we want to transform to
new sitesui (the homologous landmarks) in the target image.

The deformation at each pointt in the image is defined as:

f(t) = L (t)+
n

∑
j=1

BT
j σ(t, t j) (1)

under the constraints
∀i, ui = f(t i). (2)

The first term,L (t), represents the linear transformation of every pointt in the source
image. Whenn0 rigid objects (O1,O2, . . . ,On0) are present, the linear term is a weighted
sum of each object’s linear transformation. The weightswi(t) are dependent on a measure
of distanced(t,Oi) from the pointt to the objectOi as described in [9]:

wi(t) =











1 if t ∈ Oi

0 if t ∈ O j , j = 1, . . . ,n0, j 6= i
qi(t)

∑
n0
j=1 q j (t)

otherwise
where qi(t) =

1
d(t,Oi)µ (3)



andµ = 1.5 (for the work illustrated in this paper).
Therefore, for any pointt we define our linear transformation as:

L (t) =
n0

∑
i=1

wi(t)Li (4)

whereLi , i = 1, . . . ,n0 are the linear transformations of the rigid objects. The closert is
to the objectOi , the more similar its linear transformation will be toLi .

The second term represents the non-linear transformation which is, for a pointt, the
sum ofn terms, one for each landmark. Each term is the product of the coefficients of a
matrixB (that will be computed in order to satisfy the constraints onthe landmarks) with
a functionσ(t, t j), depending on the (normalized) distance betweent andt j :

σ(t, t j) = |t − t j|. (5)

This form has favorable properties for image registration [17]. However, different func-
tions could be used, as the one described in [9].

With the constraints given by Equation 2, we can calculate the coefficientsB of the
non-linear term by expressing Equation 1 fort = t i . The transformation can then be
defined in a matricial way:

ΣB+L = U (6)

whereU is the matrix of the landmarksui in the target image (the constraints),Σi j =
σ(t i , t j) (given by Equation 5),B is the matrix of the coefficients of the non-linear term
and L represents the application of the linear transformations to the landmarks in the
source image,t i .

From Equation 6, the matrixB is obtained as:B = Σ−1(U −L). Once the coefficients
of B are found, we can calculate the general interpolation solution for every point inR

3

as shown in Equation 1.

Introducing Rigid Structures
In this section, we show how to introduce the constraints imposed by the rigid structures

in the images.
To add the influence of the rigid structuresO1, . . . ,On0, we have redefined the function

σ(t, t j) asσ ′(t, t j) in the following way:

σ ′(t, t j) = d(t,O0)d(t j ,O0)σ(t, t j) (7)

whered(t,O0) is a measure of the distance from pointt to the union of rigid objects
O0 = O1∪O2∪ . . .∪On0. It is equal to zero fort ∈ O0 (inside any of the rigid structures)
and takes small values whent is near one of the structures. This measure of the distance
is continuous overR3 and it weights the functionσ(t, t j) (see Equation 5). Thus the
importance of the non-linear deformation is controlled by the distance to the rigid objects
in the following manner:

• d(t,O0) makesσ ′(t, t j) tend towards zero when the point for which we are calcu-
lating the transformation is close to one of the rigid objects;

• d(t j ,O0) makesσ ′(t, t j) tend towards zero when the landmarkt j is near one of the
rigid objects. This means that the landmarks close to the rigid structures hardly
contribute to the non-linear transformation computation.



Note that this formalism could be more general by replacingd(t,O0) by any function
of the distance toO0 that characterizes accurately the behavior of the surrounding regions.
Further research is necessary to define such a function in thecase of lung tumors. We have
used a linear (normalized) distance function as a first approach.

Finally, Equation 6 is rewritten by replacingΣ by Σ′, leading to a new matrixB′. We
can then calculate the general interpolation solution for every point inR

3 as in Equation 1.

Definition of landmarks and matching
Landmarks can be defined according to the needs of each specific application. They can

be uniformly distributed over the surface of homologous objects or based on points having
specific properties (maximum of curvature, points undergoing the largest deformations,
etc). In our application, we first define a set of landmarks on the surface of the lungs
on the CT image, because it has a much better resolution than the PET image. They are
approximately uniformly distributed on the surface. Then,we calculate the corresponding
points on the surface of the segmented lungs in PET. This is automatically computed by
using the Iterative Closest Point (ICP) algorithm [1] and avoids defining by hand the
landmarks on both images.

4 Results

We present in this section some results that we have obtainedon synthetic, segmented
and real images. The structures and the tumors are segmentedusing the methods in [5]
and then, based on pairs of corresponding landmarks in the CTand the PET images,
the transformation is computed over the whole image. As mentioned in Section 2, it is
reasonable to assume a rigid transformation between the tumors in CT and in PET. As
a first approach, we have used a translation. Each translation Li , i = 1, . . . ,n0 is directly
obtained from the segmentation results.

Synthetic images
This first experiment on synthetic images aims at checking that the rigid structures are

transformed rigidly, that the landmarks are correctly translated too and, finally, that the
transformation elsewhere is consistent and smooth.

Figure 2:Result on synthetic images: the effect of expanding a frame (in grey in the figure) and
translating the “tumor” (in white in the figure). The source image (with a grid) is shown on the left,
the target image is in the middle and the result of the transformation on the right. The landmarks
are located on the internal and external edges of the frame ingrey (on the corners and in the middle
of the sides). The total number of landmarks is 16.

As we are taking the PET image as the one to be deformed (sourceimage), we sim-
ulate an expansive transformation because the lungs in PET are usually smaller than in



CT images. This is due to the fact that the CT image is often acquired in maximal in-
spiration of the patient. A simple translation of the “tumor” is simulated too. In order to
observe the transformation all over the image, we have plotted a grid on it. It can be seen
in Figure 2 that the results with the synthetic images are satisfactory as the shape of the
rigid structure (the “tumor”) is conserved and the landmarks are translated correctly. The
frame, on which the landmarks are placed, is deformed in a continuous and smooth way.
If we do not apply the constraints on the rigid structure we obtain an undesired transfor-
mation. This is illustrated in [11]. However, it must be noticed that the edges of the frame
are not totally straight after the transformation. In general, the more landmarks we have,
the better the result will be, and the positions of the landmarks are also very important.
Here we have chosen to distribute them uniformly over the internal and external edges of
the frame.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3:Results on simplified images. Top row: segmented PET images with a grid for visual-
ization purpose (landmarks are also marked in white). Middle row: segmented CT images. Bottom
row: results of the registration of the simplified PET and CT images using 4 landmarks (fixed on
the corners of the image) and additional landmarks on the walls of the lungs. Left columns: 8
landmarks are chosen on the walls of the lungs using different distributions. Right columns: 12
landmarks are chosen on the walls of the lungs using different distributions. In all the images the
cursor is centered on the tumor in the CT image.

Segmented Images
In order to appreciate more clearly the effect of the transformation, we have applied the

proposed approach on segmented images. Figure 3 shows some results on the simplified



(segmented) images. A grid is superimposed on the segmentedPET image for better
visualization. We have fixed the corners of the images to avoid undesired deformations
(see illustrations in [11]). It can be observed that for any number of landmarks, the tumor
is registered correctly with a rigid transformation. Nevertheless, the quality of the result
depends on the quantity of landmarks and their positions. Ifthe number of landmarks
is too low or their distribution on the surfaces is not appropriate, the algorithm does not
have enough constraints to find the desired transformation.Here the results are obtained
by applying the direct transformation in order to better appreciate the influence of the
deformation in every region of the image. However it is clearthat the final result should
be based on the computation of the inverse transformation ateach point of the result image
in order to avoid unassigned points.

Real Images
Figure 4 shows the results on real images. The tumor is registered correctly with a

rigid transformation in all the cases. However, the accuracy of the registration depends
on the number and the distribution of the landmarks. If the number of landmarks is not
sufficient there are errors. It can be seen that with an appropriate number of landmarks
the registration is very satisfactory. The best results (Figure 4(d)) are obtained with 16
landmarks placed as in Figure 3(l). In particular, they include high curvature points.
The lower part of the lungs is better registered and the wallsof the lungs are perfectly
superimposed. The results are considerably improved using16 landmarks, compared
to those obtained with 12 or less landmarks. This shows that the minimal number of
landmarks does not need to be very large if the landmarks are correctly distributed.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Results on real images. Superimposition of the CT image with: the original PET be-
fore registration (a), the deformed PET image using 12 (b) and 16 (c, d) landmarks. (e-h): same
results as in (a-d) showing only the contours of the lungs in PET on the CT image. The locations
and distribution of the landmarks in (c) are different from the ones in (d) what implies different re-
sults. Arrows show misregistrations. This illustrates theimportance of the choice of the appropriate
landmarks.



5 Conclusion and Future Work

We have developed a non-linear registration method incorporating constraints on defor-
mations of specified objects. It has been shown to be adapted to images which contain
rigid structures. The method consists in computing a deformation guided by a group of
landmarks and with rigidity constraints. This method has been illustrated on the exam-
ple of CT/PET registration, in pathological cases where most tissues undergo non-linear
transformations due to breathing while tumors remain rigid. In this application, results are
very satisfactory and our algorithm avoids undesired tumormisregistrations and preserves
tumor geometry and intensity.

One of the originalities of our approach, in particular compared to the method in [9],
is that the positions of the landmarks are adapted to the shapes of the structures in the
images. In addition to this, with our algorithm, the landmarks are only defined manually
in one of the images (the CT) and automatically in the second one (the PET) by means
of the ICP algorithm. In the illustrated application, as thetransformation near the tumor
is reduced by a weight depending on a distance measure, even if the tumor segmentation
is not perfect, the registration remains consistent and robust. Moreover, the tumor in CT
and PET has not necessarily the same size and shape, therefore the registration of these
two modalities is very useful because all the information ofthe PET image is preserved.
This is very important in order to know the true extension of the pathology for diagnosis
and for the treatment of the tumor with radiotherapy, for example.

The choice of the landmarks in the CT image is done manually for the moment. How-
ever, future work aims at developing an automatic method fordefining the landmarks
homogeneously distributed all over the surface and on the regions of maximum curvature.
A quantitative measure of the alignment between the images will be used in order to find
the best distribution of the landmarks that minimizes this similarity measure.

It is also necessary to carry out a detailed study of the rigidity properties of the tis-
sues surrounding a pathology. Replacing the distance by another function would then be
straightforward using our formulation.

Although validation is a common difficulty in registration [13], we plan an evaluation
phase in collaboration with clinicians, as well as comparison with other methods.
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Nationale Supérieure des Télécommunications (ENST), Paris, France, December 2003.

[4] N. P. Castellanos, P. L. D. Angel, and V. Medina. NonrigidMedical Image Registration
Technique as a Composition of Local Warpings.Pattern Recognition, 37:2141–2154, 2004.
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