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Abstract

This paper deals with the problem of non linear image regfistn is the case
the images include objects undergoing different types @drdeation. As an

illustrative application, we consider the registratiotcdf and PET images of
thoracic and abdominal regions. Registration of these twdatities has to
cope with deformations of the lungs during breathing. Pigétumors in the

lungs usually do not follow the same deformations, sincg ta® be consid-
ered as almost rigid, and this should be taken into accouhtimegistration

procedure. We show in this paper how to introduce rigiditystoaints into a

non-linear registration method. The proposed approachsedbon registra-
tion of landmarks defined on the surface of previously sedetkobjects and
on continuity constraints. The results demonstrate afgmnit improvement
of the combination of anatomical and functional images fagdosis and for
oncology applications.

1 Introduction

Registration between several images of the same scene dedyveiddressed topic and
is important in many different domains. One of the difficulbblems concerns the case
where the images include objects undergoing differentsygfedeformation that have
to be compensated during the registration. In particuter,iehavior of the registration
close to the interfaces between such objects has to be taefntrolled in order to avoid
discontinuities or other unrealistic phenomena. The airthisf paper is to address this
problem.

As an illustrative application, we consider Computed Torap@y (CT) and Positron
Emission Tomography (PET) in thoracic and abdominal regjimrhich furnish comple-
mentary information about the anatomy and the metaboligmufan body. Their combi-
nation has a significant impact on improving medical deaisior diagnosis and therapy
[16] even with combined PET/CT devices where registratemains necessary to com-
pensate patient respiration and heart beating [14]. Ratjmt of these two modalities is



a challenging application due to the poor quality of the PE&ge and the large defor-
mations involved in these regions.

Most of the existing methods have as a limitation that regjaced inside or near the
main structures will be deformed more or less accordingéadgistration computed for
the latter, depending on how local is the deformation. Aicaltexample of this situation
occurs when a tumor is located inside the lungs and theredsga Molume difference
between CT and PET images (due to the breathing). In this dalse tumor is registered
according to the transformation computed for the lungs ay take absurd shapes, such
as shown in Figure 1.

v

Figure 1:Axial and coronal slices in CT (first row) and in PET (seconaxoResult of the non-
linear registration without tumor-based constraintsr@hiow). The absence of these constraints
leads to undesired and irrelevant deformations of the paglgo On the images of the first and
third columns, the cursor is positioned on the tumor loedion in PET data, while in the second
and fourth columns, it is positioned on the tumor locali@atin CT data. This example shows
an erroneous positioning of the tumor and illustrates thegoiance of the use of tumor-specific
constraints.

In this case, two very different deformations exist: thetioear deformations of the
lungs due to the breathing and the linear displacement dither during the breathing
cycle. Thus, the aim of this paper is to avoid the undesireabtumisregistrations by
adding some rigidity constraints on the tumors. The goal isreserve tumor geometry
and, in particular, intensity since it is critical for cloal studies, for instance based on
SUV (Standardized Uptake Value) [6], and for diagnosis aliatherapy planning.

In Section 2, we summarize existing work related to this ectbpind we provide an
overview of the proposed approach. The introduction of tubased constraints into the
registration algorithm is detailed in Section 3. Sectiorrdspnts some results obtained
on real data. Finally, conclusions and future works areudised in Section 5.



2 Related Work and Overview of the Proposed
Approach

Some approaches have already been developed for registodtnultimodality images in
pathological cases (pulmonary nodules, cancer), such2ak iHowever these approaches
compute a rigid (or affine) registration for all the struetsiand they do not take into
account the local nature of the deformations.

Tanner et al. [15] have developed a method of non-rigid tesgisn based on B-spline
Free-Form Deformations (FFD) as in [3]. Their algorithm pphed on MR breast im-
ages and it guarantees volume and shape preservation iigitheegions defined by the
lesions. However, the region of the rigid transformatiolaiger than the lesions. Another
approach that uses B-spline FFD is the one by Rohlfing and &§i?]. They have used
a grid refinement and added some incompressibility comésrdiiising the properties of
the Jacobian) which only guarantee the preservation of dheme of the structures but
not their shape. Loeckx et al. [10] have added a local rigidiinstraint in order to guar-
antee shape preservation and they have obtained very pngmésults. Nevertheless,
this algorithm does not enforce the considered structorbs totally rigid, therefore they
actually might be slightly deformed.

The recent work of Hachama et al. [7] uses a Bayesian franiewarder to charac-
terize the pathologies as outliers of a probabilistic dstion. Their method is applied
to mammogram registration and proved to be robust. An irit@gsumption is that grey
levels in both images are similar, thus making the method@pjate for mono-modality
images. This assumption should be relaxed to extend theosh&thmultimodality images.

A different approach, that we consider closer to physicalifie of human body, is
based on the combination of rigid and non-rigid deformatjas suggested by Little et
al. [9] and Huesman et al. [8]. These methods are based orséhefyoint interpolation
techniques, together with a weighting of the deformatiaroading to a distance function.
Castellanos et al. [4] developed a slightly different meitiogy, in which local non-rigid
warpings are used to guarantee the continuity of the tramsftion.

The advantage of these approaches is that they take intamtaggid structures and
the deformations applied to the image are continuous an@$madhe method we pro-
pose is inspired by these ones and adapted to develop arasigistalgorithm for the
thoracic region in the presence of pathologies. In ordeHustrate our algorithm, we
have applied it on medical data. These data consist of 3D @TP&T images of patho-
logical cases, exhibiting tumors in the lungs. We assumithieatumor is rigid and thus
a linear transformation is sufficient to cope with its movetsebetween CT and PET
images. This hypothesis is relevant and in accordance hgtfelinicians’ point of view,
since tumors are often a compact mass of pathological tissuerder to guarantee a
good registration of both normal and pathological struesuthe first step consists of a
segmentation of all structures which are visible in both alitiés. Then we define two
groups of landmarks in both images, which correspond to hogows points, and will
guide the deformation of the PET image towards the CT imagee fJositions of the
landmarks are therefore adapted to anatomical shapes.isTéisimportant feature and
one of the originalities of our method. The deformation athepoint is computed using
an interpolation procedure based on the landmarks, on tafgptype of deformation
of each landmark depending on the structure it belongs t vaighted by a distance
function, which guarantees that the transformation wiltbatinuous.



Thus, the proposed approach has two main advantages:

1. Asthe transformation near the tumor is reduced by usiaglistance weight, even
if we have some small errors in the tumor segmentation (aftéte challenging,
mainly in CT), we will obtain a consistent and robust tramsfation.

2. In the considered application, one important fact is thatobjects to register are
not the same in the two images. For instance, the volume ¢atieomical” tumor
in CT is not necessarily the same as the volume of the “funatidumor in PET
because the two modalities highlight different charastes of the objects. The
registration of these two views of the tumor must preseresdtocal differences,
which can be very useful because we could discover a parteofittatomy that
is touched by the pathology and could not be seen in the CTématdis also
advocates in favor of a rigid local registration.

3 Combining Rigid and Non-linear Deformations

Based on a segmentation of the objects visible in both imagés of homologous points
are defined. They constitute landmarks guiding the redistraWWe assume that globally
a non-linear transformation has to be found, while for somjeasOq,...,Oy, (tumors

in our application) specific constraints have to be incoaext. For instance, these objects
may undergo only a rigid transformation between both imagbe global transformation
is then interpolated over the whole image. We introduceitiid structures constraints so
that the non-rigid transformation is gradually weightedvdan the proximity of objects
O4,...,0n,.

Point-Based Displacement Interpolation
The first step in a point-based interpolation algorithm @ns the selection of the

landmarks guiding the transformation. Homologous stmastun both images are then
registered based on landmarks defined on their surface.eBatting deformation will be
exact at these landmarks and smooth elsewhere, which isvachby interpolation.

Let us denote by; then landmarks in the source image that we want to transform to
new sitesy; (the homologous landmarks) in the target image.

The deformation at each poinhin the image is defined as:

n
ft)=2t)+ Y Blo(tt)) 1)
=1
under the constraints
Vi, =f(t). 2)

The first term, 2 (1), represents the linear transformation of every poiint the source
image. Whemyg rigid objects O1,05,...,0y,) are present, the linear term is a weighted
sum of each object’s linear transformation. The weights) are dependent on a measure
of distanced(t,O;) from the pointt to the objecO; as described in [9]:
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andu = 1.5 (for the work illustrated in this paper).
Therefore, for any pointwe define our linear transformation as:

No
Z(t) = > wi(t)Li 4)
2
whereL;, i = 1,...,ng are the linear transformations of the rigid objects. Theetbis

to the objec);, the more similar its linear transformation will beltp

The second term represents the non-linear transformatiichws, for a point, the
sum ofn terms, one for each landmark. Each term is the product ofdkéicients of a
matrix B (that will be computed in order to satisfy the constraintsl@landmarks) with
a functiono(t,t;), depending on the (normalized) distance betwieamdt:

ot,tj) = [t—t|. (5)

This form has favorable properties for image registratibf].]| However, different func-
tions could be used, as the one described in [9].

With the constraints given by Equation 2, we can calculagectbefficientB of the
non-linear term by expressing Equation 1 foe tj. The transformation can then be
defined in a matricial way:

B+L=U (6)

whereU is the matrix of the landmarks; in the target image (the constraintg); =
o(ti,tj) (given by Equation 5)B is the matrix of the coefficients of the non-linear term
andL represents the application of the linear transformationthé landmarks in the
source image;.

From Equation 6, the matri& is obtained asB = =~1(U —L). Once the coefficients
of B are found, we can calculate the general interpolation wldor every point inR3
as shown in Equation 1.

Introducing Rigid Structures
In this section, we show how to introduce the constraintise by the rigid structures
in the images.
To add the influence of the rigid structu@s, . . ., Oy, we have redefined the function
o(t,tj) asa’(t,t;j) in the following way:

al(tvtj) :d(t,OO)d(tj,Oo)O'(t,tj) (7)

whered(t,0p) is a measure of the distance from pointo the union of rigid objects
Og=01UO,U...UOy,. Itis equal to zero fot € Qg (inside any of the rigid structures)
and takes small values wheis near one of the structures. This measure of the distance
is continuous oveR?® and it weights the functiow (t,tj) (see Equation 5). Thus the
importance of the non-linear deformation is controlled iy distance to the rigid objects

in the following manner:

e d(t,0p) makeso’(t,t;) tend towards zero when the point for which we are calcu-
lating the transformation is close to one of the rigid olgect

e d(tj,0p) makeso(t,tj) tend towards zero when the landmaéyks near one of the
rigid objects. This means that the landmarks close to thd sgguctures hardly
contribute to the non-linear transformation computation.



Note that this formalism could be more general by repladiftgOp) by any function
of the distance t@ that characterizes accurately the behavior of the suriogmdgions.
Further research is necessary to define such a function gatieeof lung tumors. We have
used a linear (normalized) distance function as a first amtro

Finally, Equation 6 is rewritten by replacirtgby 2/, leading to a new matri8’. We
can then calculate the general interpolation solutionyergpoint inR® as in Equation 1.

Definition of landmarks and matching

Landmarks can be defined according to the needs of each sggpfication. They can
be uniformly distributed over the surface of homologougoty or based on points having
specific properties (maximum of curvature, points undergahe largest deformations,
etc). In our application, we first define a set of landmarkshendurface of the lungs
on the CT image, because it has a much better resolution iealRET image. They are
approximately uniformly distributed on the surface. The&a,calculate the corresponding
points on the surface of the segmented lungs in PET. Thist@svaatically computed by
using the lIterative Closest Point (ICP) algorithm [1] anaidg defining by hand the
landmarks on both images.

4 Results

We present in this section some results that we have obtanexynthetic, segmented
and real images. The structures and the tumors are segmesitggdthe methods in [5]
and then, based on pairs of corresponding landmarks in thar@Tthe PET images,
the transformation is computed over the whole image. As ioeeatl in Section 2, it is
reasonable to assume a rigid transformation between thersuim CT and in PET. As
a first approach, we have used a translation. Each translatio = 1,...,ng is directly
obtained from the segmentation results.

Synthetic images

This first experiment on synthetic images aims at checkiagttie rigid structures are
transformed rigidly, that the landmarks are correctly stated too and, finally, that the
transformation elsewhere is consistent and smooth.

Figure 2:Result on synthetic images: the effect of expanding a framgréy in the figure) and
translating the “tumor” (in white in the figure). The sourcesige (with a grid) is shown on the left,
the target image is in the middle and the result of the transdtion on the right. The landmarks
are located on the internal and external edges of the frameein(on the corners and in the middle
of the sides). The total number of landmarks is 16.

As we are taking the PET image as the one to be deformed (sonage), we sim-
ulate an expansive transformation because the lungs in P&ETisaially smaller than in



CT images. This is due to the fact that the CT image is oftemiaed in maximal in-
spiration of the patient. A simple translation of the “turhisrsimulated too. In order to
observe the transformation all over the image, we haveqaattgrid on it. It can be seen
in Figure 2 that the results with the synthetic images arisfaatory as the shape of the
rigid structure (the “tumor”) is conserved and the landrsate translated correctly. The
frame, on which the landmarks are placed, is deformed in #reaoyus and smooth way.
If we do not apply the constraints on the rigid structure weban undesired transfor-
mation. This s illustrated in [11]. However, it must be retil that the edges of the frame
are not totally straight after the transformation. In gahehe more landmarks we have,
the better the result will be, and the positions of the lantkhare also very important.
Here we have chosen to distribute them uniformly over therirgl and external edges of
the frame.

Figure 3:Results on simplified images. Top row: segmented PET imag@sangrid for visual-
ization purpose (landmarks are also marked in white). Middiv: segmented CT images. Bottom
row: results of the registration of the simplified PET and @®&ges using 4 landmarks (fixed on
the corners of the image) and additional landmarks on thésweélthe lungs. Left columns: 8
landmarks are chosen on the walls of the lungs using diffesstributions. Right columns: 12
landmarks are chosen on the walls of the lungs using diffefistributions. In all the images the
cursor is centered on the tumor in the CT image.

Segmented Images
In order to appreciate more clearly the effect of the tramsédion, we have applied the
proposed approach on segmented images. Figure 3 shows esufts pn the simplified



(segmented) images. A grid is superimposed on the segm@i@&dmage for better
visualization. We have fixed the corners of the images tocauadesired deformations
(see illustrations in [11]). It can be observed that for angnber of landmarks, the tumor
is registered correctly with a rigid transformation. Ndhetess, the quality of the result
depends on the quantity of landmarks and their positionshdfnumber of landmarks
is too low or their distribution on the surfaces is not appiate, the algorithm does not
have enough constraints to find the desired transformatiere the results are obtained
by applying the direct transformation in order to betterragfate the influence of the
deformation in every region of the image. However it is climat the final result should
be based on the computation of the inverse transformatieacdt point of the result image
in order to avoid unassigned points.

Real Images

Figure 4 shows the results on real images. The tumor is ezgistcorrectly with a
rigid transformation in all the cases. However, the acourdche registration depends
on the number and the distribution of the landmarks. If theaber of landmarks is not
sufficient there are errors. It can be seen that with an apatemumber of landmarks
the registration is very satisfactory. The best resultgyfé 4(d)) are obtained with 16
landmarks placed as in Figure 3(I). In particular, they uade high curvature points.
The lower part of the lungs is better registered and the vadlthe lungs are perfectly
superimposed. The results are considerably improved usingaindmarks, compared
to those obtained with 12 or less landmarks. This shows trentinimal number of
landmarks does not need to be very large if the landmarksoareatly distributed.

Figure 4: Results on real images. Superimposition of the CT image: with original PET be-
fore registration (a), the deformed PET image using 12 () E(c, d) landmarks. (e-h): same
results as in (a-d) showing only the contours of the lungskf Bn the CT image. The locations
and distribution of the landmarks in (c) are different frdme bnes in (d) what implies different re-
sults. Arrows show misregistrations. This illustratesithportance of the choice of the appropriate
landmarks.



5 Conclusion and Future Work

We have developed a non-linear registration method incatjppg constraints on defor-
mations of specified objects. It has been shown to be adaptedkiges which contain
rigid structures. The method consists in computing a dedtion guided by a group of
landmarks and with rigidity constraints. This method hasrbidlustrated on the exam-
ple of CT/PET registration, in pathological cases wheretrtissues undergo non-linear
transformations due to breathing while tumors remain ritridhis application, results are
very satisfactory and our algorithm avoids undesired tumisregistrations and preserves
tumor geometry and intensity.

One of the originalities of our approach, in particular cargal to the method in [9],
is that the positions of the landmarks are adapted to theeshafpthe structures in the
images. In addition to this, with our algorithm, the landksaare only defined manually
in one of the images (the CT) and automatically in the secaored(the PET) by means
of the ICP algorithm. In the illustrated application, as ttensformation near the tumor
is reduced by a weight depending on a distance measure, fahentimor segmentation
is not perfect, the registration remains consistent andsotMoreover, the tumor in CT
and PET has not necessarily the same size and shape, tediedaegistration of these
two modalities is very useful because all the informatiothef PET image is preserved.
This is very important in order to know the true extensionhaf pathology for diagnosis
and for the treatment of the tumor with radiotherapy, foragke.

The choice of the landmarks in the CT image is done manualthtomoment. How-
ever, future work aims at developing an automatic methodd&iming the landmarks
homogeneously distributed all over the surface and on tgieme of maximum curvature.
A quantitative measure of the alignment between the imagébewsed in order to find
the best distribution of the landmarks that minimizes thislarity measure.

It is also necessary to carry out a detailed study of theitigjgroperties of the tis-
sues surrounding a pathology. Replacing the distance bjhanfunction would then be
straightforward using our formulation.

Although validation is a common difficulty in registratiohd], we plan an evaluation
phase in collaboration with clinicians, as well as compariwith other methods.
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