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Abstract

We study some combinatorial and algorithmic properties of discriminating codes
in bipartite graphs. In particular, we provide bounds on minimum discrimina-
ting codes and give constructions. We also show that upperbounding the size of a
discriminating code is NP-complete.
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1 Definitions

Let G = (I ∪ A, E) be a bipartite, undirected graph. For any vertex v of
G, let N(v) denote the neighborhood of v. A subset C of A is said to be a
discriminating code of G if:

• ∀i 6= j ∈ I : C ∩N(i) 6= C ∩N(j), and

• ∀i ∈ I : C ∩N(i) 6= ∅.
For instance, I can be viewed as a set of individuals and A as a set of

attributes, with an edge between i ∈ I and a ∈ A if i owns a; a discriminating
code is then a set of attributes sufficient to distinguish all the individuals (for
a related notion, see [6]).

Discriminating codes are closely related to locating-dominating codes [3]
and to identifying codes [5] (see also [1] for references).
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The differences are that

• “codewords” must belong to a prescribed subset (namely, A),

• only some vertices (namely, the elements of I) must be distinguished.

We study some combinatorial and algorithmic properties of discriminating
codes. In particular, we provide bounds on minimum discriminating codes
and give constructions. We also show that upperbounding the size of a dis-
criminating code is NP-complete.

2 Upper bounds

Two individuals are called twins if their neighborhoods are equal; the graph
G = (I ∪ A, E) is said to be twin-free if no elements of I are twins. The
following is an obvious characterization of bipartite graphs admitting a dis-
criminating code:

Proposition 2.1 A necessary and sufficient condition for a bipartite graph
to possess a discriminating code is that it be twin-free.

Indeed, if there exist twins, they cannot be discriminated even by the whole
set A; otherwise C = A fits.

We now characterize minimality with respect to inclusion.

Proposition 2.2 Consider a twin-free bipartite graph G = (I ∪ A, E). A
discriminating code B is minimal for inclusion if and only if:

∀b ∈ B, ∃ i and j ∈ I : (N(i) ∩B)∆(N(j) ∩B) = {b},

where ∆ denotes the symmetric difference.

Proof Sketch: If some b ∈ B violates the condition, then it can be removed
without destroying the discrimination, thus B is not minimal.

Define the incidence matrix of such a B, also denoted by B, to be the
M ×N binary matrix whose rows are indexed by the bi ∈ B and columns by
the elements of I, with |I| := N and |B| := M .

We now use Proposition 2.2 to upperbound the size M of a minimal dis-
criminating code B.

Proposition 2.3 If B is minimal for inclusion, its rows are independent;
thus M = rk(B) ≤ rk(A) ≤ N.



Proof sketch: By Proposition 2.2, for any row b, there exist two columns,
say i and j, of B differing exactly on b. Thus, any linear combination (over an
arbitrary field) of rows involving b projects to a nonzero couple on coordinates
{i, j}.

Definition 2.4 Define the density ∆ of the discriminating code C by:

∆ := |C|/N.

Then, by the previous result, a minimum code has ∆ ≤ rk(A)/N ≤ 1.

Example 2.5

• Consider the Fano plane: |A| = 7, N = 7. Its incidence matrix A has rank
equal to 4 over GF(2), thus M ≤ 4. In fact, M = 4, and any 4 rows of A
can be chosen to form a minimal B.

• On the other hand, consider a graph G wich is a perfect matching. In this
case, A is the only discriminating code and we have: ∆ = |A|/N = 1, which
shows that the inequality ∆ ≤ 1 is tight.

3 The covering lower bound

As B satisfies ∀i ∈ I, N(i) ∩B 6= ∅, B is a covering of I.

Setting η = max
a∈A

deg(a), the classical covering bound reads:

M ≥ |I|
η

, i.e., ∆ ≥ 1/η.

Note that the maximal degree can be replaced by the average degree α.

4 An improvement on the covering bound

The previous bound reads: M × η ≥ N. Assume for simplicity that G is
attribute-regular, i.e., that η = α. If B is discriminating, one can associate
distinct lists of attributes to all individuals; at most M individuals can get
lists of size 1, and the remaining N −M will get lists of size at least 2. Thus,
a double-counting of edges gives: M × α ≥ M + 2(N −M), i.e.

M ≥ 2

α + 1
×N.(1)

Let’s call perfect a code meeting (1) with equality.

For any bipartite graph G = (I∪A, E), let Gc = (I∪A, F ) be the bipartite
complementary graph of G: an edge {i, a} with i ∈ I and a ∈ A belongs to F



if and only if it does not belong to E.

Proposition 4.1 If B is a discriminating code of G, then B is also a dis-
criminating code of Gc.

Moreover, notice that G is α-attribute-regular if and only if Gc is (N −α)-
attribute-regular. From the previous proposition and the above, we get:

Theorem 4.2 Let B be a discriminating code of G. Then we have:

|B| ≥ max(d (
2

α + 1
× |I|) e, d (

2

|I| − α + 1
× |I|) e).

5 Lower bounds based on the discrimination

The classical information-theoretic lower bound yields:

M ≥ log2 N.

This is tight: pick B = [1, M ], I = P(B).

There is a simple improvement when the graph is attribute-regular, with
deg(a) := ωN :

M ≥ (log2 N)/h(ω),

where h(x) := −x log2 x − (1 − x) log2(1 − x) is the binary entropy function.
This is also tight: pick again B = [1, M ], I =

(
[1,M ]
ωM

)
.

6 Infinite graphs

We present results on three classical examples of infinite bipartite graphs. The
proofs will appear in the full paper.

First, the p-ary complete trees (p ≥ 1), for which we have:

Theorem 6.1 Let p and d be any positive integers. For the complete p-ary
tree (p fixed) of depth d:

• if p = 1 (infinite path), then limd→∞ ∆ = 2
3
.

• if p ≥ 2, then limd→∞ ∆ = p2

p2+1
.

Remark. Notice that when p grows, ∆ tends to 1, the upper bound of
Proposition 2.3.



The second example is the square grid (a regular graph with α = 4), for
which the improved covering bound (1) gives:

∆ ≥ 2/(1 + α) = 2/5.

This can be in fact constructively achieved, so that we have:

Theorem 6.2 The square grid admits a perfect discriminating code of density
∆ = 2/5.

The last infinite graph is the hexagonal mesh (a regular graph with α = 3),
for which the improved covering bound (1) gives:

∆ ≥ 2/(1 + α) = 1/2.

Here also, this can be constructively achieved:

Theorem 6.3 The hexagonal mesh admits a perfect discriminating code of
density ∆ = 1/2.

7 Attribute-regular graphs

We know from Section 2 that the size of a discriminating code of minimum
cardinality cannot exceed N and that this bound can be reached. We may be
more specific for attribute-regular graphs.

Theorem 7.1 Let α be a positive integer and let G be α-attribute-regular
graph with |I| = N . Let B be a discriminating code of minimum cardinality.
The only graphs G with |B| = N are the ones with α = 1 or α = N − 1 and
admitting a matching of cardinality N .

Similarly, for α = 2 or α = N − 2, we can characterize the α-attribute-
regular graphs for which |B| = N − 1 holds for any discriminating code of
minimum cardinality. On the other hand, for 3 ≤ α ≤ N − 3, it is pos-
sible to build an infinite family of α-attribute-regular graphs such that any
discriminating code of minimum cardinality has size equal to N − 2.

8 Nonconstructive upper bound

Consider a random incidence (M × N) matrix B, every entry being chosen
independently equal to 1 with probability p (Bernoulli distribution).



Proposition 8.1 There exists a discriminating code B with

M > (2 log2 N)/h(p).

Remark. This is twice the lower bound of Section 5.

Proof sketch: Denote by πij the probability that the two columns i and j be
equal. Then πij = 2−Mh(p). By the Union Bound, we get for the probability π
of occurrence of identical columns (twins): π ≤

(
N
2

)
2−Mh(p).

For M > (2 log2 N)/h(p),
(

N
2

)
2−Mh(p) is less than 1. Hence π < 1, and

there exists a discriminating code of size M .

9 Complexity results

The following problem has been shown to be NP-complete in [2] (for references
and notations on the theory of complexity, see [4]):

Problem Π (Identification)

Instance: A graph G = (V, E), an integer K.

Question: Is there an identifying code in G of size at most K?

The problem addressed in this paper is the following:

Problem Π′ (Discrimination)

Instance: A bipartite graph G′ = (I ′ ∪ A′, E ′), an integer K ′.

Question: Is there a discriminating code in G′ of size at most K ′?

Proof sketch. Let G = (V, E) be the graph of any instance of Π. Then, set
I ′ = V and A′ = {N(v) : v ∈ V }, where N(v) still denotes the neighborhood
of v, and define E ′ by: E ′ = {{j, N(i)} if j ∈ N(i) in G}. Last, set K ′ = K.

It is easy to show that G admits an identifying code of size at most K if
and only of G′ admits a discriminating code of size at most K ′ (more precisely,
if B is an identifying code of G, then {N(b) : b ∈ B} is a discriminating code
of G′, and conversely).

This yields the reduction Π < Π′, thus implying the NP-completeness of
Π′.
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