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Abstract Given a collection IT of individual preferences defined on a same finite set of can-
didates, we consider the problem of aggregating them into a collective preference minimiz-
ing the number of disagreements with respect to IT and verifying some structural properties.
We study the complexity of this problem when the individual preferences belong to any set
containing linear orders and when the collective preference must verify different properties,
for instance transitivity. We show that the considered aggregation problems are NP-hard
for different types of collective preferences (including linear orders, acyclic relations, com-
plete preorders, interval orders, semiorders, quasi-orders or weak orders), if the number of
individual preferences is sufficiently large.

Keywords Complexity - Partially ordered relations - Median relations -
Aggregation of preferences

1 Introduction

The problem that we deal with in this paper can be stated as follows: given a collection
(called a profile) I1 = (R, R;, ..., R,,) of m binary relations R; (1 <i < m) defined on
the same finite set X, find a binary relation R* defined on X verifying certain properties
like transitivity and summarizing IT as accurately as possible. This problem occurs in dif-
ferent fields, for instance in the social sciences, in electrical engineering, in agronomy or in
mathematics (for references, see for example Hubert 1976; Barthélemy and Monjardet 1981,
1988; Barthélemy et al. 1986, 1989, 1995; Jiinger 1985; Reinelt 1985; Guénoche et al. 1994;
Charon and Hudry 2007). For example, in voting theory, X can be considered as a set of can-
didates, IT as a profile of individual preferences expressed by voters and R* as the collective
preference that we look for. Though the problem occurs in different fields, as said above, we
shall keep this illustration from the aggregation of preferences in the following.
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The aim of this paper is to study the complexity of finding R* (for the theory of com-
plexity, see for instance Garey and Johnson 1979 or Barthélemy et al. 1996). We consider
different types of ordered relations for the individual preferences of IT as well as for R*, but
we assume that the individual preferences of IT all belong to a set containing linear orders.
We show then that, for the considered structures for R*, the computation of R* is usually an
NP-hard problem if we assume that the number m of individual preferences is large enough.

Similar problems have already been studied, for instance the aggregation of a profile of
linear orders into a linear order by Orlin (1981), Bartholdi III et al. (1989), and Dwork et al.
(2001), the aggregation of a profile of binary relations into some partially ordered relations
by Wakabayashi (1986, 1998), the aggregation of a profile of some partially ordered rela-
tions into some partially ordered relations by Hudry (1989, 2004), the approximation of a
complete asymmetric relation (a tournament) by a linear order by Ailon et al. (2005), Alon
(2006), Conitzer (2006), and Charbit et al. (2007), the approximation of a symmetric relation
by an equivalence relation by Krivanek and Moravek (1986), the aggregation of a profile of
symmetric relations or of equivalence relations into an equivalence relation by Barthélemy
and Leclerc (1995) (see also Hudry 2008 for the complexity of other voting procedures).

The paper is organized as follows. Section 2 recalls the definitions of the ordered re-
lations that we take into account. In Sect. 3, we show how the aggregation problems can
be formulated in graph theoretical terms. Then we state our complexity results upon these
aggregation problems in Sect. 4. The conclusions take place in Sect. 5 and summarize the
main results obtained in Sect. 4.

2 The ordered relations

Given a finite set X, a binary relation R defined on X is a subset of X x X ={(x,y):x €
X and y € X}. We note n the number of elements of X and we suppose that n is large enough
(as assumed usually in the theory of complexity). We note x Ry instead of (x,y) € R and
xRy instead of (x, y) ¢ R. The following properties that a binary relation R can satisfy are
basic:

reflexivity: Vx € X, x Rx;

irreflexivity: Vx € X, xRx;

antisymmetry: ¥(x, y) € X2, (xRy and x # y) = yRx;
asymmetry: Y(x, y) € X%, xRy = yRx;

transitivity: ¥(x, y,z) € X3, (xRy and yRz) = xRz;
completeness: V(x, y) € X? with x # y, xRy or (inclusively) yRx.

From any binary relation R, we may define an asymmetric relation R“ (called the asymmet-
ric part of R) by: xRy < (xRy and yRXx).

By combining the above properties, we may define different types of binary relations
(see for instance Barthélemy and Monjardet 1981; Caspard et al. 2007; Fishburn 1985 or
Monjardet 1978). As a binary relation R defined on X is the same as the directed graph G =
(X, R) (i.e. (x, y) is an arc of G if and only if we have x Ry), we illustrate these types with
graph theoretic examples. Usually, it is possible to define reflexive or irreflexive versions
of the following structures; as reflexivity and irreflexivity do not matter for the complexity
results (see Lemma 1), we give only one version below among these two possibilities.

e A partial order is an asymmetric and transitive binary relation (see Fig. 1); O will denote
the set of the partial orders defined on X.
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Fig. 1 A partial order b c

Fig. 2 A linear order. The partial
order of Fig. 1 is not a linear
order, for instance because the

vertices a and d are not
compared

Fig.3 A tournament

Fig. 4 A preorder

A linear order is a complete partial order (see Fig. 2); £ will denote the set of the linear

orders defined on X.

e A rournament is a complete and asymmetric binary relation (see Fig. 3); 7 will denote
the set of the tournaments defined on X; notice that a transitive tournament is a linear
order and conversely.

e A preorder is a reflexive and transitive binary relation (see Fig. 4); P will denote the set
of the preorders defined on X.

o A complete preorder is a reflexive, transitive and complete binary relation (see Fig. 5);
C will denote the set of the complete preorders defined on X.

o A weak order (also sometimes called strict weak order) is the asymmetric part of a com-
plete preorder (see Fig. 6); VW will denote the set of the weak orders defined on X. Notice
that a weak order is a partial order (the converse is not necessarily true: it is easy to see
that the partial order of Fig. 1 is not a weak order, for instance because of vertices a, b, d).

e An interval order is a partial order R satisfying: V(x, y,z,1) € X*, (xRy and zR?) =

(xRt or (inclusively) zRy); Z will denote the set of the interval orders defined on X. The

previous relation means that the graph associated with a partial order cannot contain two

arcs (x, y) and (z, t) without containing also at least one of the two arcs (x, t) or (z, y)
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Fig.5 A complete preorder

Fig. 6 A weak order (namely,
the asymmetric part of the
complete preorder of Fig. 5)

(see Fig. 7); for instance, the partial order of Fig. 1 is not an interval order because of
the vertices b, c, d, e: we have bRc and dRe but we have not bRe nor d Rc. The name
“interval order” comes from the fact that such an order may be associated with intervals
defined on the set of real numbers and spread over the real axis (see Fig. 7). The relation
xRy then means that the interval associated with x is utterly on the left of the interval
associated with y; if the two intervals overlap, then we have simultaneously xﬁy and
yRx. The implication (xRy and zRt) = (xRt or (inclusively) zRy) means that, if the
interval associated with x (resp. z) is completely on the left of the interval associated
with y (resp. t), the interval associated with x must be on the left of the interval associated
with ¢ or the interval associated with z must be on the left of the interval associated with y.
Notice that the lengths of the intervals are not necessarily the same for all the intervals.

We may derive another set from Z: the set 7 of relations such that the asymmetric part
is an interval order, sometimes called inferval relation (see Fig. 8). In other words, 7 is
definedby: J e J & J? e 1.

e A semiorder is an interval order R satisfying: Y(x, y, z,t) € X*, (xRy and yRz) = (xRt
or (inclusively) 7 Rz) (see Fig. 9); S will denote the set of the semiorders defined on X.
For instance, the interval order of Fig. 7 is not a semiorder because of the vertices b,
¢, d, e: we have cRe and eRd but we have not ¢cRb nor bRd. As an interval order, a
semiorder may be represented by intervals. In this case, all the intervals have the same
length. Then the implication (x Ry and yRz) = (x Rt or (inclusively) t Rz) means that, if
the interval associated with x (resp. y) is completely on the left of the interval associated
with y (resp. z), then the interval associated with any extra ¢ cannot overlap the interval
associated with x and the one associated with z simultaneously: the length of the interval
associated with ¢ is too small for that.

e A quasi-order is a reflexive and complete relation of which the asymmetric part is a
semiorder (see Fig. 10); Q will denote the set of the quasi-orders defined on X.
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Fig.7 Aninterval order (left), a possible representation as intervals (bottom) and the forbidden configuration
(right)

Fig. 8 A relation belonging e
to J (its asymmetric part is an
interval order; more precisely, its d
asymmetric part is the interval
order of Fig. 7) b
c
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Fig. 9 A semiorder (left), a possible representation as intervals (bottom), and the forbidden two configura-
tions—including the one of interval orders—(right)

e An acyclic relation (we should rather say circuitless, but acyclic is the usual term) is a
relation R of which the associated graph G is without any circuit (i.e., any directed cy-
cle) (see Fig. 11). In other words, if, for an appropriate integer k with 1 <k <n and

an appropriate numbering iy, i, ..., iy of some vertices Xi; of G, we have Xi Rx,-,+l for

1 < j <k —1, then we must have xikﬁxil ; A will denote the set of acyclic relations de-
fined on X.
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Fig. 10 A quasi-order. Its
asymmetric part is the semiorder
of Fig. 9

Fig. 11 An acyclic relation. Its
transitive closure is the partial
order of Fig. 1

Fig. 12 A relation belonging
to B (its symmetric part is
acyclic; more precisely, its
symmetric part is the acyclic
relation of Fig. 11)

We may derive another set from A: the set 3 of relations such that the asymmetric part
is acyclic (see Fig. 12). In other words, B is defined by: B € B < B € A.

Checking that a given relation (or a given graph) fulfills the requirements of these struc-
tures can be done in polynomial time with respect to n. From this remark, it will follow that
the decision problems associated with the problems considered below all belong to NP.

As said above, it is possible to get other structures by adding or by removing reflexivity
or irreflexivity from the above definition (and by changing asymmetry by antisymmetry or
conversely when necessary). In fact, the distinction between reflexive and irreflexive rela-
tions is not relevant for this study, as we shall see below (Lemma 1): the complexity results
will remain the same. Thus, in the following, we do not take reflexivity or irreflexivity into
account (for instance, we will consider that a linear order is also a preorder).

These types include the most studied and used partially ordered relations. We will also
consider generic binary relations, without any particular property. The set of the binary
relations will be noted R. We may notice several inclusions between these sets, especially
the following ones: VZ € {A4,B,C,Z, J,L,0,P,Q,R,S, 7, W}, L C Z; in other words,
a linear order can be considered as a special case of any one of the other types.

3 Formulations of the aggregation problems

In order to get an optimization problem to deal with, it is necessary to explicit what we mean
when we say that R* must summarize IT “as accurately as possible”. To do so, we consider
the symmetric difference distance §: given two binary relations R and S defined on the same
set X, we have

8(R,S)=|{(x,y) € X*:[xRy and xSy] or [xRy and xSy]}|.
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This quantity §(R, §) measures the number of disagreements between R and S. Though it
is possible to consider another distance, § is used widely and is appropriate for many appli-
cations. Barthélemy (1979) shows that § satisfies a number of naturally desirable properties,
and Barthélemy and Monjardet (1981) recall that §(R, S) is the Hamming distance between
the characteristic vectors of R and S and point out the links between & and the L; metric or
the square of the Euclidean distance between these vectors (see also Bogart 1973, 1975 and
Monjardet 1979, 1990).

Then, for a profile IT = (R, Ry, ..., R,,) of m relations, we can define the remoteness
A(IT, R) (Barthélemy and Monjardet 1981) between a relation R and the profile IT by:

A(H,R):ZS(R,Ri).

i=1

The remoteness A(IT, R) measures the total number of disagreements between I and R.

Our aggregation problem can be seen now as a combinatorial optimization problem:
given a profile II, determine a binary relation R* minimizing A over one of the sets
A B,C,Z,J,L,0,P,Q,R,S,T,W. Such a relation R* will be called a median relation
of IT (Barthélemy and Monjardet 1981). According to the number m of relations of the
profile and to the properties assumed for the relations belonging to IT or required from the
median relation, we get many combinatorial optimization problems. They are too numerous
to state all of them explicitly; so we note them as follows:

Problems P,(Y,Z) For ) belonging to {A4,5,C,Z,7J,L,0,P,9,R,S,7,W} and
Z belonging also to {4,B,C,Z,7,L,0,P,Q,R,S,T,W}, for a positive integer m,
P, (Y, Z) denotes the following problem: given a finite set X of n elements, given a pro-
file IT of m binary relations all belonging to ), find a relation R* belonging to Z with the
following property:

A(TI, R*) = Min{A(T1, R) for R € Z}.

We are going to study the complexity of the problems P,, (£, Z) for different sets Z more
particularly. In order to simplify the notations, P, (Z) will denote the problem P, (L, Z).
We will see that the parity of m will play a role in the study of the problems P,,(Z). Anyway,
it will be easy to see from the following computations that, if P, (Z) is NP-hard for some m
and some set Z, then P,,,(Z) will also be NP-hard (see Lemma 3 below).

We do not explicit the statements of the decision problems associated with the problems
P, (Y, Z), because they are obvious. Similarly, it is obvious to show that these decision
problems belong to NP. Thus, we deal with the NP-hardness of P, (), Z), but we could
have dealt with the NP-completeness of the decision problems associated with P, (), Z) in
a similar way.

To study the complexity of P, (), Z), we develop the expression of A(I1, R), for any
profile IT = (Ry, Ry, ..., R,) of m binary relations R; (1 <i <m) all belonging to ). For
this, consider the characteristic vectors r’ = (rjy)()(,y)E x2 of the relations R; (1 <i <m)
defined by rf(y =11if xR;y and ri_y = 0 otherwise, and similarly the characteristic vector
r = (Fxy)x,pex2 Of any binary relation R. Then, it is easy to get a linear expression of
A(IT, R):

SR.R)= D lry—ril= > lry—riP= > [ry(=2r)+rk]

(x.y)ex? (x.y)ex? (x.y)ex?
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hence

m
AMLRY =Y Y |ry—rhy

i=1 (x,y)ex?

and, after simplifications:

AMLRY=C— Y myy-ry

(x.y)ex?

with C=37" 3" oxeriy and myy, =300 (2L, — 1) =237" vl —m.

Notice that the quantities m,, can be non-positive or non-negative, and that they all have
the same parity (the one of m). If we consider a profile of m linear orders R; (1 <i <m),
then, for any i with 1 <i <m, we have ri_y + r;,x =1 for any x and y with x # y; hence it
comes, still for a profile of linear orders and still for x # y, the relation m,, = —m,,. From
this expression of A(I1, R), it would be easy to get a 0-1 linear programming formulation
of the problems P, (), Z) by adding the 0-1 linear constraints associated with each type
of median relation (but it will not be the way that we are going to follow in the sequel).
For example, the transitivity of R can be written: V(x, y,z) € X 3 Fay + 1y, — oz < 1 (see
for instance Wakabayashi 1986 or Hudry 1989 for details). Such a 0-1 linear programming
formulation was applied as soon as 1960 (Tucker 1960; see also Younger 1963, de Cani
1969, Arditti 1984, and more generally Barthélemy and Monjardet 1981 or Charon and
Hudry 2007 for references).

Before going further, the following lemma shows that reflexivity or irreflexivity of the
median relation do not change the complexity of the problems P, (), Z).

Lemma 1 For any set Z of median relations, let Z, (resp. Z;) be the set of median re-
lations got from the elements of Z by imposing the reflexivity (resp. irreflexivity) property.
Then, for any set ) and any integer m, P,,(Y, Z), P,,(Y, Z,), and P, (Y, Z;) have the same
complexity.

Proof To show this result, consider any profile IT of m relations belonging to ) and any
relation Z belonging to Z. Let Z, (resp. Z;) be the reflexive (resp. irreflexive) relation got
from Z by imposing the reflexivity (resp. irreflexivity) property. Then it is easy to state the
following relations:

A Z)=ALZ) = Y my and ATLZ)=AMLZ)+ ) my.
x:(x,x)¢Z x:(x,x)eZ

Hence the result, since the computationof > . ., m.candof > ,m. can trivially
be done in polynomial time with respect to the size of the considered instance. O

Because of Lemma 1, we shall not pay attention from now on to reflexivity or irreflexiv-
ity: all the complexity results remain the same if we add or remove reflexivity or irreflexivity.

In the following, we will not consider the previous 0-1 linear programming formulation
to study the complexity of the problems P, (), Z), but a graph theoretic representation.
Indeed, we may associate a complete, symmetric, weighted, directed graph G = (X, Uy)
to any profile IT: the vertex set of G is X and G owns all the arcs (i.e. directed edges)
that a simple graph can own; in other words, we have: Ux = X x X — {(x, x) for x € X}
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(remember that reflexivity does not matter now on). The arcs (x, y) of G (withx € X,y e X
and x # y) are weighted by m,,. Then minimizing A(I1, Z) for Z belonging to one of
the sets A, B,C,7Z,7,L,0,P,Q,R,S,7,W is exactly the same as extracting a partial
graph H = (X, Z) from G in order to maximize ) _,m., while the kept arcs describe
the structure that Z must respect (H must belong to A, 5,C,Z, J,L,0,P,Q, R, S, T, W,
where these sets are seen as sets of graphs).

As we are going to deal with profiles of linear orders, the following question arises:
which weighted graphs G = (X, Ux) can be associated to a profile IT of linear orders?
Debord (1987) provided a characterisation of weighted graphs that represent profiles of
linear orders, at least when the number of linear orders is large enough. The number N (G)
of linear orders required in his construction is about me)->0 m,, when this quantity is not
equal to O (as it will be the case below).

Theorem 2 The graph G = (X, Ux) weighted by the (non-positive or non-negative) integers
myy represents a profile I1 of m linear orders if the following conditions are fulfilled:

1. all the weights m,, have the same parity;

2. m has the same parity as the weights m.,,;

3. V(x, )’) € Uy, Myy = —Nlyyx;

4. m > N(G), where N(G) is the number of linear orders in Debord’s construction.

It is sometimes possible to find a profile with fewer linear orders associated with G, but
minimizing the number of linear orders required for the construction of such a profile seems
quite difficult in general. Anyway, it is possible to construct a profile of N (G) linear orders
with N(G) = G(mey>0 myy) (when this sum is not equal to 0). From the particular value
N(G), it is easy to build a profile with as many linear orders as wished; this is specified by
the following lemma:

Lemma 3 Let G = (X, Ux) be a graph representing a profile of m linear orders. Then G
represents also a profile of m + 2 linear orders.

Proof Let Il be a profile of m relations associated with G. Then consider the profile got from
IT by adding any linear order and its reverse order. It is not difficult, from the computations
developed before Lemma 1 above, to show that G represents also this new profile. 0

It follows also from this construction that if, for some set Z and some integer m, P,,(Z)
is NP-hard, then P,,,(Z) is NP-hard as well, and so is P, (Z) for any integer p greater than
or equal to m and with the same parity as m. In particular, the NP-hardness of P, (Z) for m
greater than or equal to N(G) and with the same parity as N(G) will follow from the one
of P N(G) (Z )

Moreover, in the sequel, the weights will be upper-bounded by a polynomial in 7; then
the construction of IT can be done in polynomial time with respect to the size of G. Indeed,
in this case, N (G) is also upper-bounded by a polynomial in #; thus, as any binary relation
R defined on X can be described by O(n?) bits (for instance through the adjacency matrix
associated with the graph representing R), it is possible to code IT = (Ry, Ry, ..., Ry())
with O(n?-N (G)) bits, what we may upper-bound by a polynomial in 7, while the size of G
is at least about n” (at least 1 bit for the weight of each arc of G); hence the result.

From this polynomial link between the problems P, (Z) and their graph theoretic rep-
resentations, it appears that we may study the complexity of the problems P, (Z) with the
help of weighted graphs. It is what we do below. More precisely, we are going to study the
following decision problems, stated as graph theoretic problems:
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Problems Qo(Z) for Z € {A,C, T, L, S}

Instance: a graph G = (X, Uy) weighted by (non-positive or non-negative) even integers
myy With m,, = —m,, for x # y; an integer K;

Question: does there exist a partial graph (X,U) of G belonging to Z with
Z(x,y)eU myy > K?

Problems Q(Z) for Z€{A,C,I,L,S}

Instance: a graph G = (X, Ux) weighted by (positive or negative) odd integers m,, with
My, = —my, for x # y; an integer K;

Question: does there exist a partial graph (X,U) of G belonging to Z with
Z(x._v)EU myy > K?

Notice that, by Theorem 2, the graphs in the instances of Q¢(Z) or of Q;(Z) can be
polynomialy associated with a profile of linear orders, for an appropriate number of linear
orders.

In the following, we will apply the following (obvious) lemma:

Lemma 4

(a) Any partial graph of a graph without circuit is itself without circuit.
(b) Any graph without circuit can be extended into a linear order by adding appropriate
arcs.

4 The complexity results

In this section, we shall study the NP-completeness of the problems Q((Z) and Q(Z). The
NP-hardness of the problems P, (Z) for the considered sets Z will follow. As the belonging
of the problems Qy(Z) and Q;(Z) to NP is obvious for Z € {A,C,Z, L, S}, we shall omit
to verify this belonging in the sequel.

The complexity of P,(L£) has been established by Dwork et al. (2001). From this, the
complexity of P, (L) follows immediately for any even integer m > 4, as stated by Theo-
rem 5.

Theorem 5 Let m be any even integer with m > 4. Then P,,(L) is NP-hard.

Proof The NP-hardness of P4(L) is shown by Dwork et al. (2001). The NP-hardness of
P, (L) for m > 4 follows from the one of P,(£) by adding (m — 4)/2 times a linear order
L and (m — 4)/2 times the reversed order of L to the profile of four linear orders associated
with any instance of P,(L), as described above, after Lemma 3. O

As a corollary of Theorem 5, we get obviously the NP-completeness of Q¢(L), even
if the absolute values of the weights of the instances of Q(£) are upper bounded by any
constant greater than or equal to 4.

Corollary 6 Qo (L) is NP-complete, and remains so if all the (even) weights are upper-
bounded by any (even) constant m with m > 4.
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Proof 1t is shown in Sect. 3 how to build, in polynomial time, an instance of Qy(£) from
any instance of P, (L) for m even. Moreover, in this case, the weights of the instance of
Qo(L) are upper-bounded by m. Hence the statement of Corollary 6, from Theorem 5. [J

Remark 7

1. Notice that, as shown by Monjardet (1973), when all the linear orders of the profile agree
to consider a candidate x as better than another candidate y, then any median linear order
must also consider x as better than y (this is the unanimity property). From this remark,
it is easy to show that P, (L) is polynomial (see Charon and Hudry 2007 for details).

2. Anyway, it is possible to show that Q,(£) remains NP-complete when the absolute values
of the weights of the instances of Q((£) are upper-bounded by 2 (or even equal to 2; see
Remark 11). This qualitative difference with respect to P,(L) illustrates the fact that,
in spite of their likeness, problems P, (L) and Q(£), and more generally problems
P, (2) and Qy(2) for Z belonging to {A,B,C,Z,J,L,0,P,Q,R,S,7T,W}, do not
necessarily behave similarly, even if the absolute values of the weights of the instances of
Qo (L) are upper bounded by m. In other words, dealing with graphs instead of profiles
may introduce a bias if we do not take care.

Theorem 8 Let m be any even integer with m > 4. Then P,,(A) is NP-hard.

Proof Let Il be the profile of any instance of P, (£). Let M (IT) (respectively M _4(IT)) be
the value of a minimum solution of IT with respect to P, (L) (respectively P,,(A)). We are
going to establish a link between M (IT) and M 4 (IT).

For this, let G = (X, Uy) be the graph associated with IT, and assume that G is weighted
by (non-positive or non-negative) even integers ni,, with my, = —m,, for x #y.

Let (X, L) be a linear order which is an optimal solution for G when we want to extract
from G a linear order with a maximum weight. We may write L as the union of two subsets
L* and L™ of Uy, with LT ={(x, y) € L with m,, >0} and L~ = {(x, y) € L with m,, <
0}. Let 1 denote the sum of all the positive weights of G: u = Z,M>0 my; notice that u
depends only on G. Because of the relation m, = —m,, and because (X, L) is a linear order,
we have: (0= sy = D0 o M. MOTeover, 3y My =30 g M +
> (x.er- Mxy- Hence the relation } )y myy =23/« myy — u. Notice that (X, L™)
is an acyclic graph. So, from any solution (X, L) optimal with respect to the search of a linear
order, we may draw a solution (X, L™) with respect to the search of an acyclic relation with
Zu,},)eﬁ Myy = (Z(x’y)eL myy + p)/2. Remember the relations (see above): A(TI, L) =
C— Z@J)GL myy and A(TT, L) = C — Z(M)EH my,. Hence the equalities A(TT, L1) =
(C—u+ A1, L))/2=(C — p+ M,(IT))/2, and then, by definition of a minimum, the
inequality M 4(IT) < (C — u + M. (I1))/2.

Conversely, let (X, A) be an acyclic graph which is an optimal solution for G when we
want to extract from G an acyclic relation with a maximum weight. According to Lemma 4,
we may extend A into a linear order L with A C L. Set L~ = L — A. Quite obviously, all the
arcs which belong to L™ have a non-positive weight (otherwise, as a linear order is acyclic,
it would have been possible to add the positive arcs to A, a contradiction with the optimality
of A). We may write )\ ; Muy =3 caMuy+ D (o yep- My As above, we have also
the relation po =3\ oauy = Do ep- My SO D My =20 My — [
From any solution (X, A) optimal with respect to the search of an acyclic relation, we may
draw a solution (X, L) with respect to the search of a linear order with Z(H)E LMy =
23+ y)ea Mxy — 1. Hence, after some computations similar to the previous ones: M (TT) <
2M 4(IT) — C + .
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We conclude from this and from the previous inequality: M (IT) =2M 4(IT) — C + pu.
So, computing M, (IT) and computing M 4(IT) have the same complexity. Hence the
statement of Theorem 8, because of the NP-hardness of P, (L) for any even m with
m > 4. O

Notice that, from the polynomiality of P,(L), it is possible to show that P,(A) is poly-
nomial.

To study the complexity of P, (L) when m is odd, we use a recent result, dealing with
the so-called Feedback Arcset Problem (FAS) when applied to tournaments. This problem
can be stated as follows, for general oriented graphs.

Problem FAS

Instance: a directed, asymmetric graph H = (Y, W); an integer h;
Question: does there exist W' C W with |W'| < h and such that removing the elements
of W’ from H leaves a graph (Y, W — W') without any circuit?

This problem has been known to be NP-complete for a long time (Karp 1972; see also
Garey and Johnson 1979). Its status for tournaments remained open until recently. Indeed,
Alon (2006), Conitzer (2006), and Charbit et al. (2007) show independently that FAS is also
NP-complete even if the graph H of the considered instance is assumed to be a tournament.
We call FAST this variant of FAS (it is also known as Slater’s problem—see Slater 1961—as
well as under other names—see for instance Charon and Hudry 2007 for a survey on Slater’s
problem):

Theorem 9 The following problem is NP-complete.

Problem FAST

Instance: a tournament 7 = (Y, W); an integer &;
Question: does there exist W' C W with |W'| < h and such that removing the elements
of W' from T leaves a graph (Y, W — W') without any circuit?

From the NP-completeness of FAST, it is easy to derive the one of Q;(£):

Theorem 10 Problem Q,(L) is NP-complete, even if all the weights involved in the in-
stances of Q1(L) belong to {—1, 1}.

Proof Let T = (Y, W) and h be any instance of FAST, where T is assumed to be a tourna-
ment and /& an integer. We transform this instance of FAST into an instance G = (X, Uy)
and K of Q(£) as follows. First, we set X =Y. For all the arcs (x, y) of Ux, we choose
the weight m,, as equal to 1 if (x, y) belongs to W, to —1 otherwise. Notice that, as T is
a tournament, we have m,, = —m,, for any arc (x, y): so this transformation defines an
instance of Q;(L£). Then we set K =n(n — 1)/2 — 2h.

This transformation is obviously polynomial with respect to the size of the instance (7', i)
of FAST.

Moreover, it keeps the answer.

Indeed, assume that (7', h) admits the answer “yes”. Then there exists W' C W with
|[W'| < h and such that the graph (Y, W — W’) is without any circuit. By Lemma 4b, we
may complete (Y, W — W’) into a linear order (X, L), with W — W’ C L. Notice that it
may happen that L contains some elements of W’. But, in any case, there are at most |W’|
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elements of L which do not belong to W, and thus which have a weight equal to —1. The
other arcs of L have a weight equal to 1. So, the weight of (X, L) is at least equal to |W —
W’'| — |W'|, i.e. at least equal to |W| — 2|W’|, which is greater than or equal to K, since W
owns n(n — 1)/2 elements while |W’| is less than or equal to /.

Conversely, assume that the built instance (G, K) of Q;(£) admits the answer “yes”:
there exists a linear order (X, L) extracted from G with a weight greater than or equal
to K. Then define W’ as the set of the arcs belonging to W butnotto L : W =W — L.
As W — W’ is included into L which is without circuit, then, by Lemma 4a, (Y, W — W)
is without circuit. Moreover, the arcs (x, y) of L which do not belong to W are such that
(y, x) belongs to W’ (because of the completeness of a tournament and of a linear order).
The weights of these arcs are equal to —1, while the other arcs of L, which belong to W,
have a weight equal to 1. So, the weight of L, which is greater than or equal to K, is also
equal to |W| — 2|W’|. This involves that |W’| is less than or equal to 4. So, the instance (7,
h) of FAST admits the answer “yes”.

This completes the proof. 0

Remark 11 From the NP-completeness of Q;(£) when all the weights are equal to —1 or
to 1, it is easy to draw the NP-completeness of Q(£) when all the weights are equal to —2
or to 2: it is sufficient to double all the weights and the integer K of any instance of O (L)
to obtain polynomialy an instance of Q((£) admitting the same answer. Anyway, P>(L) is
polynomial (see Remark 7).

The transformation described in Remark 11 can be done more generally from any prob-
lem Q;(Z) into the problem Qy(Z), for any set Z. Anyway, we will not apply such a
transformation below. On the contrary, we will first establish the NP-completeness of some
problems Qy(Z) because we can exploit the possibility of some weights equal to 0. Then
it is easy, by changing the range of the weights to establish the NP-completeness of the
homologous problems Q;(Z). This is specified by the next lemma.

Lemma 12 Let Z be a set of relations. If Qy(Z) is NP-complete, then Q(Z2) is also NP-
complete, even if the range of the weights involved in Q(Z) is upper-bounded by n* times
the range of the weights involved in Qy(Z).

Proof Let (Gg, Ko) be any instance of Q((Z). We define an instance (G, K;) of Qy(2)
as follows. First, we set G| = Gy, but the weights of Gy and of G; will not be the same.

Let mgy (respectively m;y) denote the weight of an arc (x, y) of G (respectively of G). If
mgv is not equal to 0, we set m}(v = 2n2m2v +1if mgv is positive, or m}w =2n? mgv —1
otherwise. For each pair of arcs (x, y) and (y, x) with mgy = m?x =0, we set (m)lcy =1 and

m,, =—1)or (m,, =—1andm} = 1) arbitrarily. Notice that the weights m, , of G, satisfy

thé: requirements of Problem Q(Z). Notice also the following relation, for any arc (x, y):
my, =2n*m{, £ 1. Last, we set K| =2n*Ko —n(n —1).

This transformation is obviously polynomial.

Let us show that the answer is kept. Indeed, if (G, K() admits the answer “yes”, there
exists a partial graph H of G, satisfying the properties of Z and with a weight greater
than or equal to Kj: Z(x,weﬂ mgy > K. If we consider H as a partial graph of G, as H

contains at most n(n — 1) arcs and because of the relation m! > 2n2m(x’y — 1 for any arc

y
(x, y), its weight with respect to G is atleast Ky: >~ oyml >3 o, (2n*m) —1) >

2n’Ky —n(n — 1) = K. So the answer admitted by (G, K;) is also “yes”.
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Conversely, if (G, K;) admits the answer “yes”, there exists a partial graph H of
G, satisfying the properties of Z and with a weight greater than or equal to K :
Z(X,),)EH mi_y > K. If we consider H as a partial graph of G, let us show that its weight
with respect to Gy is at least K. Assume the contrary. It would involve the following
inequality: Z(x,weﬂ mgy < Ko — 1. As H contains at most n(n — 1) arcs and because
of the relation miy < 2n2m2y + 1 for any arc (x,y), we would have: Y m}c), <
2(Ko — Dn? +n(n — 1) = K, — 2n, a contradiction with Z(w)eH m;y > K. So (Gy, Kyp)
must admit the answer “yes”, and this completes the proof. 0

For the next results relative to the complexities of the problems P, (Z), for appropriate
sets Z, we keep only the range of the values of m (expressed with the help of the usual
function #) for which the problems P, (Z£) are NP-hard, even if more accurate results may be
derived from the theorems dealing with the complexities of the problems Q¢ (Z) or Q(Z2).

For P,,(£) with odd values of m, we may derive the next corollary from Theorem 10:

Corollary 13 There exists a function {(n) with ¢(n) = 6 (n?) such that, for m > ¢ (n) and
with m taking odd values, P,,(L) is NP-hard.

Proof We know from Sect. 3 that we may construct, in polynomial time, a profile IT of
N(G) linear orders associated with the graph G of the proof of Theorem 10, with N(G)
= A(n?). Set £(n) = N(G). With the help of this construction, it is trivial to polynomi-
aly transform Q,(£) into the decision problem associated with P;(,)(£). The NP-hardness
of P, (L) follows, and yields, by Lemma 3, the one of P, (L) for m > {(n) and with
m odd. O

As more generally the transformation from a problem Q¢ (Z) or Q(Z), for some appro-
priate set Z, to the corresponding problem P,,(Z) with m even or odd is always the same as
in Corollary 13, with a number of linear orders m greater than or equal to N(G), we shall
shorten the proofs of similar corollaries in the sequel.

Similar results may be obtained for P,,(A) when m is odd. We first consider Q;(A).

Theorem 14 Problem Q,(A) is NP-complete, even if all the weights involved in the in-
stances of Q1(A) belong to {—1, 1}.

Proof We transform any instance (7 = (Y, W), h) of FAST into an instance (G, K) of
Q1 (A) as in the proof of Theorem 10, except for K, which we set equal to n(n — 1)/2 — h.
The transformation remains polynomial.

It keeps also the answer.

Indeed, if (T, h) admits the answer “yes”, then there exist W' C W with |W’'| < h and
such that (Y, W — W’) is without any circuit. Then we may consider the same graph (X, W —
W’) (remember that X is equal to Y) as an induced subgraph without circuit of G. Moreover,
the weight of (X, W — W’) is equal to n(n — 1)/2 — |W’|, which is greater than or equal to
K since |W’| is less than or equal to .

Conversely, if (G, K) admits the answer “yes”, then there exist A € Uy with a weight
greater than or equal to K such that (X, A) is without circuit. Then, by removing from (X, A)
all the arcs (if any) with a weight equal to —1 (such an arc does not belong to W), we get
another graph (X, A") with A’ C W and still with a weight greater than or equal to K. Then
it is easy to show that W' = W — A’ gives the answer “yes” to (7, h). |
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Fig. 13 the graph H of an
instance of BFAS

Corollary 15

L.

Problem Qy(A) is NP-complete, even if all the absolute values of the weights involved in
the instances of Qo(A) are upper bounded by 2.

2. There exists a function ¢ (n) with ¢ (n) = 0(n?) such that, for m > ¢ (n) and with m taking
odd values, P,,(A) is NP-hard.

Proof

1. It is sufficient to apply the transformation described in Remark 11 to show the NP-
completeness of Qy(.A) from the one of Q(A).

2. The proof is quite similar to the one of Corollary 13 (see the comment after the proof

of Corollary 13). As the positive weights involved in the proof of the NP-completeness
of Q1 (A) are equal to 1, we get that £ (n) = 0 (n?) is sufficient to yield the NP-hardness
of P (A). The NP-hardness of P, (A) for m > ¢(n) follows, from Lemma 3. O

To study the complexity of the problems Q¢(Z) and Q,(2) for Z € {C,Z, S}, we use a

variant of FAS, that we call BFAS.

Problem BFAS

Instance: a directed, asymmetric, and bipartite graph H = (Y U Zy, W, U W,) where
Yy={yi:1<i<|Yylland Zy ={z;: 1 <i <|Zyx| = |Yy|} give the two classes of
H and with W, = {(z;, y;) for 1 <i < |Ygl|} and W, C {(y;,z;) for 1 <i <|Yy| and
1<j<|Yyl, i#j},and with |W; U W,| = O(|Yy U Zy|); an integer h;

Question: does there exist W C W, with |W’| < h and such that removing the elements
of W’ from H leaves a graph (Yy U Zg, (W, — W') U W,), without any circuit?

Figure 13 shows how such a graph H looks like.

Theorem 16 Problem BFAS is NP-complete.
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Proof 1t is easy to show that BFAS belongs to NP (details are left to the reader). To prove
that it is NP-complete, we transform into BFAS a variant of the well-known problem called
Vertex Cover, variant in which the considered graph is assumed to be planar:

Problem Planar Vertex Cover (PVC)

Instance: an undirected planar graph G = (X¢, U); an integer g;
Question: does there exist X’ C X with | X’| < g and verifying the following property:
V{x,y}eU,x e X' orye X' (X is then a vertex cover of G of cardinality at most g)?

It is known that VC is NP-complete for general graphs (Karp 1972) and remains so even
when restricted to planar graphs (Garey and Johnson 1977). Let (G, g) be any instance of
PVC. We define an instance (H, h) of BFAS as follows, with p = |X¢|:

— for any vertex x; € X (1 <i < p), we create two vertices of H: y; and z; (1 <i < p)
andweset Yy ={y;, 1 <i<pland Zy ={z;, 1 <i < p};

— for any edge {x;, x;} of H, we create two arcs of H: (y;,z;) and (y;, z;); W> will denote
the set of these arcs: W, = {(y;, z;), (¥}, zi), for i and j such that {x;, x;} belongs to U};

— we complete H by adding all the arcs of the form (z;, y;) for 1 <i < p; they constitute
the set Wy : Wy = {(z;, ;) for 1 <i < p};

— weset g =h.

Notice that the number of vertices of H is equal to twice the number of vertices of G, and
that the number of edges of H is equal to twice the number of edges of G plus the number of
vertices of G. As G is assumed to be planar, the number of edges of G is upper-bounded by
three times the number of vertices of G (see Diestel 2005 for instance). Hence the relation
WU W, =0(Yn UZy).

Then we claim that G admits a vertex cover of cardinality at most g if and only if H
admits a feedback arc set included into W, of cardinality at most 4.

Indeed, assume that there exists a vertex cover X’ of G with |X’| < g. Then let W’ be
defined by: W' = {(z;, y;) for x; € X'}. We clearly have W/ C W and |[W'| = |X'| < g =h.
Moreover, assume that there exists a circuit in the graph (Yg U Zg, (W) — W) U W,). Then
this circuit necessarily goes through an arc (z;, y;) for some i such that x; does not belong
to X’ and then goes through an arc (y;, z;) for an appropriate j(1 < j < p); the only way
to go on the circuit is to follow the arc (z;, y;) (it is the only arc with z; as its tail), which
involves that x; does not belong to X'. But, as the arc (y;, z;) exists in H, {x;, x;} must be
an edge of G, and this edge is not covered by X’, a contradiction.

Conversely, assume that (H, ) admits a subset W’ of W, which is a feedback arc set of
cardinality at most /. Define X' as the set of vertices of G associated with the elements of
W’ : X' = {x; for (z;, y;) € W'}. Then obviously: | X'| < g. Moreover, assume that X’ is not a
vertex cover of G. It means that there exists an edge {x;, x;} of G with x; ¢ X" and x; ¢ X'.
So, similarly, we have in H : (z;, y;) ¢ W' and (z;, y;) ¢ W’. But in these conditions, the
arcs (z;, yi), (i, 2j), (zj, yj), and (y;, z;) (these four arcs do exist in H') define a circuit in
the graph (Yy U Zy, (W; — W) U W), and W’ is not a feedback arc set, a contradiction.

So the proposed transformation keeps the answer. As it is trivially polynomial with re-
spect to the size of the transformed instance (G, g), BFAS is NP-complete. O

We now study the complexity of the problems Q((Z2) for Z € {C, Z, S}.

Theorem 17 For Z € {C,Z, S}, Qo(2) is NP-complete.
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Proof Let Z belong to {C,Z, S}. As for the other problems above, Q((Z) obviously belongs
to NP. We transform BFAS into Q¢ (Z). Let (H = (Yy U Zy, W) U W,), h) be any instance
of BFAS, with the same notations as above (with p = |Yy| = |Zy|); in particular, we have
|[W, U W,| = O(p). Let (G, K) be the instance of Q((Z) defined by:

— the vertex set of G is X = Yy U Zy (then we have | X| =n =2p);

— the arc set of G is Uy;

— for any arc (x,y) of G, the weight m,, of (x,y) is equal to: 2 if (x,y) € W, =2 if
(y,x) e Wy,4p —2if (x,y) € Wy, —(4p —2) if (v, x) € W,, 0 otherwise;

- K=@p—-2)|W,|+2p — 4h.

Notice that G is well defined since H is asymmetric, and that all the weights are even.
Moreover, the transformation is clearly polynomial with respect to the size of the instance
(H, h) of BFAS.

Now, assume that the instance (H, h) of BFAS admits the answer “yes”: there exists
W’ C W, with |W’| < h and such that the graph (X, (W; — W’) U W,) is without any circuit.
We prove that the instance (G, K') admits also the answer “yes”. If we consider (X, (W, —
W)U W,) as a subgraph of G, its weight is 2| W, — W’| 4+ (4p — 2)|W,|. By Lemma 4b, we
may complete (X, (W, — W’) UW,) into a linear order (X, L) (that we shall consider as an
interval order if Z is Z, or as a semiorder if Z is S, or as a complete preorder if Z is C) by
adding appropriate arcs. Among these extra arcs, there are at most |W’| arcs (x, y) such that
(¥, x) belongs to Wy, i.e. at most |W’| arcs with a weight equal to —2, while the other extra
arcs all belong to Uy — (W, U W,) and have a weight equal to 0. More precisely, the weights
of the arcs of L belonging to W, are equal to 2; there are at least |W; — W’| such arcs. The
weights of the |W,| arcs of L belonging to W, are equal to 4p — 2. The weights of the arcs
(x,y) of L such that (y, x) belongs to W, are equal to —2; there are at most |W’| such arcs.
The other arcs of L have a weight equal to 0. Hence, since |W;| = p and W' C W:

D my Z2AWy— W+ (4p — 2)|Wa| = 2|W'| =2p + (4p — 2)|Wa| — 4 W/|

(x.y)eL

and, since |W'| < h: Z(M)GL My, >2p+ (4p — 2)|Ws| —4h = K. So (G, K) admits also
the answer “yes”.

Conversely, assume that (G, K) admits the answer “yes”. We consider two main sub-
cases: Ze€{Z,S}or Z=C.

4.1 1stsubcase: Z € {Z, S}

Since a semiorder is an interval order, there exists I C Uy with Z(x’ yer Mxy = K and such
that (X, 1) is an interval order. We want to show that then the instance (H, k) of BFAS also
admits the answer “yes”. Notice that if 4 is greater than or equal to p, the answer of (H, h)
is trivially “yes”; so, assume that we have 7 < p — 1. Let us show that I contains all the
arcs of W,. Assume the contrary. The arcs of / with a non-negative weight would be at most
the p elements of W; (with a weight equal to 2) and at most |W;| — 1 arcs of W, (with a
weight equal to 4p — 2). So we would get: Z(x,y)el myy, <2p 4 (4p —2)(|W>| — 1). On the
other hand, we are supposed to have: Z(H)E, myy, > K = (4p —2)|W,| +2p — 4h. From
these two inequalities, we draw 4h > 4 p — 2, which is incompatible with # < p — 1. Hence:
W, C I and, because of the antisymmetry of /, there is no arc in I of the form (z;, y;)
with i # j. We prove now that we may construct a linear order L with Z(x, yerMxy = K
from 1. For this, set J =1 — {(x, y) € I with m,, = 0}, and gather the vertices of X into the
following three sets:
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Fig. 14 The graph induced by J
for Q¢(2) when Z is equal to 7
orS

— Xl = {yk S YH, Ik € ZH such that (styk) € J}
— Xo={yx € Yy, 2k € Zy such that (y, zx) ¢ J and (zx, yx) ¢ J}
— X3 ={yx € Yy, zx € Zy such that (y, zx) € J}.

The situation is illustrated by Fig. 14. We are going to show that the dashed arcs of Fig. 14
do not exist in fact. Notice that, as a subset of / which contains no circuit, J contains no
circuit.
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The dashed arcs with their two extremities inside X cannot exist, otherwise there would
exist a circuit in J. Now consider an arc (y;, z;) with y; € Yy, z; € Zg (thus i # j) and
with an extremity inside X; and the other inside X,. As one extremity belongs to X, the arc
(zi, yi) or the arc (z;, y;) exists in 1, and thus in J since its weight is not equal to 0. Also,
by construction of G, (y;, z;) is an arc of G, and thus of I (W, C I). Assume without lack of
generality that (z;, y;) belongs to I (and thus to J); then y; and z; belong to X, while y; and
z;j belong to X,. In this case, as [ is transitive, the arcs (y;, z;), (z;, yi), (i, z;) involve the
existence of the arc (y;, z;), a contradiction with the belonging of y; and z; to X». Last, the
dashed arcs with their two extremities inside X, cannot exist in /. Indeed, assume that such
a pair of arcs (y;, z;) and (y;, z;) existin I, and thus in J, with y; € Yy N X5, y; € Y N X,
zi€ZyNX,, and z; € Zy N X, (i # j) (notice that if one of these two arcs exists in J,
the other one must exist too). As y;, y;, z;, and z; belong to X, the arcs (y;, z;) and (y;, z;)
do not belong to J, and thus do not belong to . But then the arcs (y;, z;) and (y;, z;) of 1
do not respect the definition of an interval order. So the look of J is as the one shown by
Fig. 14 without the dashed arcs.

Now, set J' = J U {(z,y) € W, for y € X, and z € X,} (with respect to Fig. 14, we add
all the horizontal arcs from the right to the left with their two extremities in X,). As the
vertices of X, are linked only with vertices of X3, it is easy to see that J' is still without
any circuit. As the weights of these arcs are positive, then: Y ;i >3 0 My =
> (eyyer Mxy = K. As J' is without circuit, by Lemma 4b, we may extend J' into a linear
order L. As we have W, C I and as, for any index k with 1 <k <n, y; and z; are now
linked by an arc belonging to J', all the arcs that we add in order to define L from J' have
a weight equal to 0. Hence Z(x,y)eL Myy = Z(x,y)ej’ myy = K. Now consider the set W' =
(W UW,) — (W, UW,)N L : W is the set of the arcs of H which have been removed from G
in order to get the linear order (X, L); by Lemma 4a, the graph induced by (W; U W,) — W',
i.e. by (W, U W,) N L, is acyclic because (X, L) is circuitless. Moreover, we have:

W[ = (Wi UW2) — (Wi UWo) N L| = [(W UW,)| — [(Wi UW2) N LI

Suppose that we have |W’| > h. There are |(W; U W,)| — W'| arcs which belong simultane-
ously to W; U W, and to L. As the weights of the other arcs are non-positive, we get:

D miy S2/(Wi U W) — W =2|W UWy| —2|W'| <2|W, UW,| —2h =K,
(x,y)eL

a contradiction. It involves that W’ satisfies all the conditions and the answer admitted by
(H, h) is “yes”. This completes the proof for the subcase Z € {Z, S}.

4.2 2nd subcase: Z=C

As for the previous case, we are going to prove that, if the answer admitted by the instance
(G, K) is “yes”, then we can build a linear order which gives this answer “yes”. Then the
conclusion will be the same as above.

So, assume that there exists a subset C of Uy such that (X, C) is a complete preorder
with Z(X’ yec Mxy = K. As above, this inequality involves that C contains all the elements
of W, and no arc (x, y) such that (y, x) would belong to W, (details are left to the reader).
Let D be the set made of the arcs of C with a non-zero weight: D = C — {(x, y) € C with
m, = 0}. Moreover, gather the vertices of X into the following three sets:
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Fig. 15 The graph induced by D
for Qp(C)

— X1 ={yx € Yu, 2x € Zy such that (z;, yr) € D and (yx, zx) ¢ D}
— Xo ={yr € Yy, zx € Zp such that (yi, zx) € D and (zx, yx) ¢ D}
- X3 ={yx € Yu, zx € Zy such that (y, zx) € D and (zx, »r) € D}.

The look of the graph induced by D is given by Fig. 15. We are going to show that the
dashed arcs of Fig. 15 do not exist in D.

Indeed, let (y;, z;) be such an arc of D with z; € Zy and y; € Yy. Then its weight is not
equal to 0, and it is the same for (y;, z;), which thus belongs to D (and to C). If we assume
that the four vertices y;, y;, zi, and z; belong to X; U X3, then the arcs (z;, y;) and (z;, y;)
belong to D, and so to C, and, by transitivity of C, the arcs (z;, y;) and (z;, y;) also belong
to C, and then to D, since the weights of these arcs are not equal to O (they are the opposites
of the weights of the arcs (y;, z;) and (y;, z;), which are not equal 0, since these two arcs
belong to D), what is impossible, as shown above. So, the look of the graph induced by D
is the one depicted by Fig. 15 without the dashed arcs.
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The next step consists in showing that we may extract a set D’ of arcs from D such that
D’ is without circuit while its weight Z(X’ ven My is still greater than or equal to K. For
this, let D’ be defined by D' = D — {(y;, z;) for y; € X3, z; € X3} (in other words, with
respect to Fig. 15, we remove the—almost—horizontal arcs inside X3 and directed from
the left to the right). As the removed arcs have a negative weight, we get: Z(x' yep Mxy =
Z(x,y)g pMxy = K. Moreover, D' is without circuit. Indeed, consider any circuit in D; it is
also a circuit in C, which is transitive. Such a circuit must contain an arc of the form (z;, y;)
with y; € Yy and z; € Zg (since it is the only way to go from Zy to Yy in the graph induced
by D). Because of the transitivity of C applied to the considered circuit, (y;, z;) must also be
an arc of C and, because its weight is not equal to 0, of D. So y; and z; must belong to X3;.
Hence the removal from D of the arcs (y;, z;) with y; € X3, z; € X3 leaves a graph (induced
by D’) without any circuit.

We may now conclude. As D’ is without any circuit and by Lemma 4b, we may complete
it into a linear order L by adding appropriate arcs. As D’ already contains W, and, for
1 <i < p, exactly one of the two arcs (y;, z;) or (z;, y;), the extra arcs have a weight equal
to 0. So, we get: - \cp Mxy =D, yyep Mxy = K. Then it is sufficient to apply the same
argument as in the first subcase to show the existence of a subset W’ of W; U W, which gives
the answer “yes” to the instance (H, h) of BFAS. This completes the proof for the subcase
Z=C. |

Corollary 18 For Z € {C, T, S}, there exists a function {(n) with ¢(n) = 0(n?) such that,
for m > ¢(n) and with m taking even values, P,,(Z) is NP-hard.

Proof As above, we may associate a profile of linear orders to the graph constructed in
the proof of Theorem 17. With the same notation as in this proof, the required number of
linear orders is at most ), .. There are at most O(n) arcs whose weight is not equal
to 0. When the weight is not equal to 0, the weight is at most O(n). Hence the relation:
mev>0 Myy = O?). So, there exists a function ¢(n) = 8(n?) such that P;)(2) is NP-
hard. The statement of Corollary 18 follows, by applying Lemma 3. O

Remark 19 If we transpose the proof of Theorem 17 in terms of preferences, we build a
profile of linear orders such that there exists an optimal interval order, or an optimal semi-
order, or an optimal complete preorder which is in fact a linear order. An interesting open
problem would be to characterize the profiles of linear orders for which such a situation
always occurs. Notice that it is not necessarily the case when the median relation must just
be a partial order, as shown by the example of Fig. 16.

For this graph, it is easy to show that all the arcs with a weight equal to 8 constitute a
partial order which is not a linear order (it is not even an interval order); its weight is equal
to 48. Consider now any linear order L extracted from this graph. If L does not contain the
6 arcs with a weight equal to 8, its weight is less than or equal to 5 x 8 + 3 x 2 =46, what
is less than 48. If L contains the 6 arcs with a weight equal to 8 and an arc (o, B) with a
weight equal to 2 (one “horizontal” arc from the right to the left with respect to Fig. 16),
then, because of its transitivity, L must contain the two arcs with a weight equal to —2
which are not (8, o) (what involves that L cannot contain the 6 arcs with a weight equal to
8 and more than one arc with a weight equal to 2), and so its total weight cannot exceed
6 x 8+ 1x2+2x (—2)=46.1If L contains the 6 arcs with a weight equal to 8 and none of
the arcs with a weight equal to 2, then, because of the completeness of a linear order, L must
contain the 3 arcs with a weight equal to —2, and its total weight cannot exceed 48 — 6 = 42.
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Fig. 16 A graph representing a profile of linear orders and for which the optimal partial order is not a linear
order

In all the cases, the total weight of L is less than 48, and therefore no linear order can be an
optimal partial order of the graph of Fig. 16.
The next theorem provides similar results when m is odd:

Theorem 20 For Z € {C,Z, S}, the problems Q,(Z) are NP-complete. For Z € {C,Z, S},
there exists a function ¢(n) with ¢(n) = 68(n*) such that, for m > ¢ (n) and with m taking
odd values, P,,(Z) is NP-hard.

Proof The NP-completeness of Q;(Z) for Z € {C,Z, S} comes from the application of
Lemma 12 and from the NP-completeness of Qy(Z) for the same sets (Theorem 17).

In the transformation involved in this application of Lemma 12, the weights are, broadly
speaking, multiplied by 2n2. So, now, the sums of the weights of the graphs involved in
the instances of Q;(Z) are upper-bounded by a function ¢ (n) taking odd values and with
¢(n) = 6(n*) (instead of 6(n?) in Corollary 18). Hence the NP-hardness of Py (2) for
Z e{C,Z,S}, and then of P, (Z) for m > ¢(n) and m odd by Lemma 3. O

To study the complexity of the problems P, (3), P,(7), P,(Q) and P, (W), we first
prove a lemma. In order to state it, we introduce a new notation. For any set Z of binary
relations defined by some properties, we define Z¢ as the set of preferences which are the
asymmetric part of a preference belonging to Z. In particular, we have B* = A, C* =W,
J=7,9*=S,and P =O.

Lemma 21 For any set Z and any integer m, P,,(Z) and P,,(Z%) have the same complexity.

Proof The result comes from the fact that we have A(I1, Z) = A(I1, Z%), for any profile I1
of linear orders and any element Z of Z. 0
Corollary 22

1. For m > 4 and with m taking even values, P, (B) is NP-hard.
2. There exists a function ¢ (n) with ¢ (n) = 0(n?) such that, for m > ¢ (n) and with m taking
odd values, P,,(B) is NP-hard.
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3. There exists a function ¢ (n) with ¢ (n) = 6 (n?) such that, for m > ¢ (n) and with m taking
even values, P, (J), P,(Q) and P,,(W) are NP-hard.

4. There exists a function ¢ (n) with ¢ (n) = 6 (n*) such that, for m > ¢ (n) and with m taking
odd values, P, (7), P,(Q) and P,, (W) are NP-hard.

Proof These results come as consequences of Theorem 8, Corollary 15, Corollary 18 and
Theorem 20, and from the application of Lemma 21 to Z =8, Z2=7, Z = Q and to
Z=C. O

The last result of this section deals with any set ) containing L.

Theorem 23

1. For any even integer m > 4, for any set Y with L C Y, for Z € {A, B, L}, P, (Y, Z) is
NP-hard.

2. There exists a function { (n) with ¢ (n) = 0(n?) such that, for m > ¢ (n) and with m taking
odd values, for any set Y with L C ), for Z € {A, B, L}, P,,(Y, Z) is NP-hard.

3. There exists a function ¢ (n) with ¢ (n) = 0(n?) such that, for m > ¢ (n) and with m taking
even values, for any set Y with L C Y, for Z € {C,Z, T, Q,S, W}, P, (¥, Z) is NP-hard.

4. There exists a function { (n) with ¢ (n) = 6 (n*) such that, for m > ¢ (n) and with m taking
odd values, for any set Y with L Y, for Z € {C,Z,7, Q,S, W}, P, (), Z) is NP-hard.

Proof The previous results give the statement of Theorem 23 for ) = £. For £ C ), it is
sufficient to consider any instance of the NP-hard problem P, (Z) (that is, P, (L, Z)) as
an instance of P, (), Z). This transformation (the identity !) is obviously polynomial and
keeps the answer. Hence the result. U

In particular, we may apply Theorem 23 when ) is any one of the sets A, B,C,Z, J, L,
O,P,9,R,S,T,or W, but also to “mixed” profiles belonging to any union of two or more
sets A, B,C,Z,7,L,0,P,Q,R,S, 7, or W, for instance to profiles which may contain
tournaments, preorders, and interval orders simultaneously.

5 Conclusion

The previous section was devoted to NP-hard problems. There are also some problems
P,,()Y, Z) which are polynomial. It is trivially the case for P, (), R) and for P, (), 7),
for any set ) and any integer m. Indeed, if we consider the associated graph theoretic prob-
lems (similar to the problems Qg and Q; defined in Sect. 3) but with respect to a profile of
relations all belonging to ) (then the relation m,, = —m,, is no longer necessarily true), it
is easy to see that an optimal solution consists in keeping all the arcs of G with a positive
weight for Z =R, or in keeping, for each pair of arcs (x, y) and (y, x), the arc with the
greatest weight for Z = 7 (see for instance Hudry et al. 2006). Another polynomial case,
quite interesting, is the one of the so-called unimodular orders; in this case, the aggregation
of unimodular orders into a unimodular order is polynomial (see Black 1948).

Anyway, it seems that properties like transitivity or the lack of circuits usually lead to
NP-hard problems. The previous complexity results illustrate this trend. We may summarize
them by the table of Fig. 17. In this table, the letter “P” means that P, (), Z) is (trivially)
polynomial, while “NPH” means that the considered problem P, (), Z) is NP-hard. In this
case, we indicate the range of a lower bound of the number m of relations inside the profile
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asymmetric part: interval order ()

Median relation (Z)

acyclic relation (A)

asymmetric part: acyclic (B)
complete preorder (C)

interval order (7)

linear order (£)
partial order (O)
preorder (P)
quasi-order (Q)
binary relation (R)

semiorders (S)

tournament (7))
weak order (W)

IMe Y™ with £LC Y,
m odd with m > ¢ (n)
NPH, ¢(n) = 0(n?)
NPH, ¢ (n) = 6(n?)
NPH, ¢(n) = 0(n*)
NPH, ¢ (n) = 6(n*)
NPH, ¢ (n) = 0(n*)
NPH, ¢ (n) =6(n?)
?

N
NPH, ¢ (n) =0(n*)
P
NPH, ¢ (n) = 6(n*)
P

NPH, ¢(n) = 6(n*)

IMe Y™ with LC Y,
m even with m > ¢ (n)
NPH, ¢(n) =4
NPH, ¢(n) =4
NPH, ¢ (n) = 6(n?)
NPH, ¢ (n) = 6(n?)
NPH, ¢ (n) = 0(n?)

NPH, ¢(n) =4
?
?

NPH, ¢ (n) = 0(n?)
P

NPH, ¢ (n) = 6(n?)
P

NPH, ¢(n) = 0(n?)

Fig. 17 Complexity of the problems Py, (), Z)

which ensures that P, (), Z) is NP-hard; for instance, “NPH, ¢(n) = 6(n?)” in the row
associated with A and with the column “m odd with m > ¢(n)” means that there exists a
constant A such that, for m > An? with m odd, the problem P,,(), A) is NP-hard.

To my knowledge, when not trivial, the complexity for lower values of m remains
unknown. In particular, it would be interesting to know whether some of the problems
P,,(), Z) remain NP-hard if m is a given constant. The result by Dwork et al. (2001) shows
that it is the case for P, (), £) for any set ) containing £ and when m is an even constant
greater than or equal to 4 (and 4 is the lowest possible value if Y is equal to £). It is also
the case, still for m even and greater than or equal to 4, for Z = A or Z = . It would be
interesting to decide whether it is still the case for fixed values of m with m odd or for other
sets Z.

As a general result, remember that all the results displayed in the table of Fig. 17 remain
the same if we add the reflexivity or the irreflexivity to the considered types of relations.

In this table, we see that the lower bounds of m are not the same when m is odd or when
it is even: in this case, the ratio between these bounds, for a given structure Z, is n?. As
noticed above, this comes from the fact that, for m even, we may apply 0 as a weight of the
arcs of the graph representing the profile (which means that there is a tie between the two
candidates represented by the extremities of this arc); when m is odd, we replace 0 by 1 or
—1 and, broadly speaking, we multiply the other values by 2n? to compensate. Hence the
ratio n? between these two cases.

Last, we may see that some cases are not solved, marked by “?” in Fig. 17: it is when
the median relation must be a partial order or a preorder. The structure of partial order is
more constrained than the structure of binary relation, but less than the one of linear order
or of interval order for instance. With this respect, it is a kind of intermediary structure, and
maybe the complexity for finding a median partial order is also between the polynomiality of
the search of a median binary relation and the NP-hardness of the search of a median linear
order. Nevertheless, I conjecture that the search of a median partial order or of a median pre-
order is also NP-hard (it is the case for profiles of binary relations, as shown by Wakabayashi
1986, when we have m > 2 for a median partial order and m > ¢ (n) with {(n) = 0(n®) for
a median preorder). Because of Lemma 21, notice that it is sufficient to prove that one is
NP-hard in order to prove that both are. But such a proof remains to be found.
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