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ABSTRACT
The representation of moving objects in spatial database
systems has become an important research topic in recent
years. As it is not realistic to track and store the location
of objects at every time instant, one of the issues in this
domain has to do with handling uncertainty in the location
of moving objects. In this paper, we propose three statis-
tical methods for computing probabilistic estimates about
the location of a moving object at a certain time and show
how to use them for evaluating probabilistic range queries.
The focus is on applications dealing with the spatiotempo-
ral behavior of non-network constrained moving objects, for
monitoring or data-mining purposes, for instance.

General Terms
Measurement, Reliability

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications—
Spatial databases and GIS

Keywords
Spatio-temporal databases, moving objects, spatio-temporal
uncertainty

1. INTRODUCTION
The spatiotemporal databases research community is giv-

ing particular attention to moving objects applications. Real-
time systems, using recent information about object’s move-
ment for anticipation of events in near future, or histori-
cal systems, recording information about object’s movement
during large periods of time for monitoring or data-mining
purposes, are noteworthy examples. Both cases require func-
tionality allowing answering questions of the kind where and
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when. However, as it is not possible to continuously monitor
and record the location of moving objects, the knowledge
that may be captured and stored by computer systems is
only a partial representation of the spatiotemporal behav-
ior of real-world objects. This gives rise to the problem of
handling uncertainty in the location of moving objects.

There are several proposals to cope with this problem by
extending spatiotemporal query languages with adequate se-
mantics for dealing with uncertainty. The goal is to incor-
porate functionalities that allow answering questions such
as “Which were the moving objects that have been within a
certain area during some period of time, with a probability
of at least 80%”. Answering such kind of queries requires the
use of stochastic processes to model the reality. It is then
necessary to determine the aspects of the reality which one
wishes to take into account. The recorded positions of the
objects are certainly necessary but one can also use other
information such as the maximum speed.

Building stochastic processes satisfying the constraints of
position can be made using existing theory on conditioned
processes [3]. Building processes satisfying the constraint of
maximum speed can be made using the reflected processes
theory [12, 7]. However, there are no methods to build mod-
els where the two types of constraints are satisfied simulta-
neously.

This paper presents two approaches for dealing with the
computation of probabilistic estimates about the validity of
answers to spatiotemporal queries. The focus is on the his-
tory of object’s movement and it is assumed that the objects
move freely in space. One approach grounds on the defini-
tion of density functions over an area bounding the set of
all possible locations of a moving object at a certain time
instant. The other uses stochastic processes and a limited
number of constraints to generate trajectories between the
positions recorded for an object.

The remaining part of this paper is organized as follows.
Section 2 presents an overview of current proposals for deal-
ing with uncertainty in the location of moving objects. Sec-
tion 3 depicts the two main approaches that we have de-
lineated to solve the proposed problem and presents three
methods for computing probabilistic estimates about the lo-
cation of moving objects. Section 4 compares the proposals
in terms of expressivity and ability for dealing with the dif-
ferent semantics proposed in the spatiotemporal query lan-
guages literature. Finally, section 5 concludes the paper.



2. RELATED WORK
The location of moving objects is a continuous function

of time. However, measurement instruments are inherently
discrete and are not able to continuously capture the lo-
cation of moving objects. Consequently, movement knowl-
edge as it can be stored in a database system is just a par-
tial representation of the actual spatiotemporal behavior of
real-world objects. In such conditions, the answers to user
queries about object’s movement may not be consistent with
real-world events [9, 14].

2.1 Uncertainty of past, present and future po-
sitions of moving objects

There are two main approaches for dealing with partial
representations of movement information.

The first approach focuses on uncertainty about the fu-
ture spatiotemporal behavior of moving objects [11, 18, 14].
This approach addresses the needs of real-time applications
and location-based services: real-time traffic control, real-
time mobile workforce management, digital battlefields, etc.
These systems make use of speed patterns information in the
construction of future movements and uncertainty is fixed
in advance. This allows avoiding frequent updates of the
database. In fact, the database is not updated as long as
the actual object’s movement deviation from its expected
location is less than a previously fixed threshold.

The second approach [9, 8] focuses on past movements. It
addresses the needs of mining applications of spatiotemporal
data: traffic mining, environment monitoring, etc. In this
case, the movement of an object is represented as a sequence
of observations and uncertainty in the location of moving
objects is closely connected with the size of the time intervals
between consecutive observations.

In both cases, there are physical constraints on the move-
ment of objects allowing limiting uncertainty in their posi-
tion at a certain time. In the following, we will designate the
set of all possible locations for a moving object at a certain
time by lens area, as suggested by Pfoser and Jensen [9].
For simplicity of presentation, we will also assume that the
objects move on a two-dimensional space.

When dealing with the anticipation of future events, the
lens area is a circle centered on the expected location of the
object O′ (Figure 1) [16, 18]. The point O corresponds to
the location where the object has been observed for the last
time and the arrow is a velocity vector. The cross points to
the actual location of the moving object. The circle bounds
the maximum deviation allowed for an object at a given time
instant. Objects are committed to send a location update
when the deviation reaches that bound.

Figure 1: Lens area in a real-time system

For past movements, when the maximum velocity of the
moving objects is known in advance, the lens area for a time
instant t between two consecutive observations o0 = (t0, p0)

and o1 = (t1, p1), is given by the intersection of two circles
(Figure 2.1 (a)). The variables t0 and t1 stand for the time
of observations, and p0 and p1 for the position of the object
at those time instants. The radius of the circle in the left
is r0 = vmax × (t − t0) and for the circle in the right is
r1 = vmax × (t1 − t).

The lens area for a time interval 〈ta, tb〉, such that t0 <
ta < tb < t1, is given by the intersection of an ellipsis, cov-
ering the set of all possible locations for the moving object
during 〈t0, t1〉, and two circles (figure 2.1 (b)). The radius
of circle in the left is ra = Vmax × (tb − t0) and for circle in
the right is rb = Vmax× (t1− ta). For a detailed explanation
of these formulas please refer to [8].

(a) Lens area at a time instant (b) Lens area for a time interval

Figure 2: Lens areas for monitoring and data mining
systems

Considering that we have methods that allow estimating
probabilities about the location of a moving object at any
time instant, the evaluation of spatiotemporal query expres-
sions could than be augmented with probabilistic estimates
about the validity of answers to users queries. Thus, it would
be possible to answer queries such as “Which are the planes
for which the probability of being inside Area C within 5
minutes is at least 40%?”, or “Which were the ships that
were in a certain area during a given time interval, with a
probably of at least 60%?”.

The notion of probabilistic range queries for real-time ap-
plications has been introduced by [18] and developed in [13,
14]. Recently, this notion was extended to deal with nearest-
neighbor queries about the movement of network and non-
network constrained moving objects [5]. The communica-
tion cost for updating the database was also investigated
[16].

On the other hand, [9, 8] have focused on dealing with un-
certainty in the location of non-network constrained moving
objects for monitoring and data mining systems. In ad-
dition, [6] discusses how the uncertainty of network con-
strained moving objects can be reduced by using reasonable
modeling methods and location update policies. Finally, [10]
added fuzziness in object location and considered the case
of moving objects that may change their geometry in time.

For an overview of moving objects databases literature
please refer to [2].

2.2 Probabilistic estimates about the location
of moving objects

Current proposals for evaluation of estimations about the
probability of presence of a moving object within a region
at a certain time instant are based on the definition of den-
sity functions over lens areas. For real-time applications,
the shape of lens areas is a circle [16, 18, 17]. The density
function may be uniform, assuming that all locations within
the circle have the same probability, or other user-defined
function based on the distance towards the center of the cir-



cle, as proposed in [5]. It is also considered that the lens
areas could have a complex geometry, but it is not shown
how to evaluate the density functions over those geometries.

The geometry of lens areas in monitoring and data mining
systems is more complex than a circle, as figure 2.1(b) shows.
In [10], it is proposed to define an uniform distribution over
the lens area. Then, the probability of presence of a moving
object within a given region at a certain time instant is
30% if at least 30% of the lens area is within that region.
However, there are certain locations (e.g., those near the
center of the lens area) with higher probabilities then others
(e.g.,those near the boundary of the lens area). Hence, using
uniform distributions may not be adequate in such cases.

In addition, those methods based on density functions are
not adequate to deal with queries where the temporal do-
main is a time interval. Notice that the probability of pres-
ence of a moving object within a given area at a certain time,
should be less or equal than the probability of presence of
the same moving object within the same area during any
time that includes the previous one. However, this may not
be the case when using this kind of methods.

For instance, consider figure 3 where A is an area of inter-
est, L′ is the lens area calculated for the movement object
at a time instant t (1st case) and L′′ is a lens area for the
same object during time interval 〈ta, tb〉 ⊃ t (2nd case).

(1st case) (2nd case)

Lens area for t Lens area for 〈ta, tb〉 ⊃ t

Figure 3: Intersection of a lens area (L) with an area
of interest (A)

Considering that the distribution of probability in the
lens area is uniform, then the probability of presence of

the moving object within A at time t is P (t) = area(A∩L′)
area(L′)

and the probability of being within A during time 〈ta, tb〉
is P (〈ta, tb〉) = area(A∩L′′)

area(L′′) . As A ∩ L′ is equal to A ∩ L′′

and the area of L′ is lesser than the area of L′′ then, against
evidence, P (t) is greater than P (〈ta, tb〉).

In this paper we investigate solutions for these two issues
and we propose a novel method for defining non-uniform dis-
tributions over lens areas with complex geometries. We also
propose a new approach for estimating probabilities that is
adequate to handle queries about the movement of objects
where the temporal domain is a time interval.

3. PROBABILISTIC REASONING
This section presents the statistical tools that we propose

for the evaluation of probabilistic estimates about the loca-
tion of moving objects. We will denote the probability of
presence of a moving object within a given region during a
certain time tm, simply as P (tm). We only consider the past
objects’ movement and we assume that it is represented as
an ordered sequence of observations, denoted {(t, p)}, where
p is a two-dimensional value denoting the location of the
object at time instant t. We also consider that the objects

move freely in space with no obstacles or networks constrain-
ing their movements.

We have investigated two main guidelines for the imple-
mentation of the proposed statistical tools: the point-based
and trajectory-based approaches.

3.1 Point-based approach
As referred in section 2.2, there are several authors sug-

gesting using a density function to estimate the probability
of presence of a moving object at each point inside the lens
area. Then, assuming that t denotes a time instant, the
values of P (t) may be calculated using the weight of the
intersection of the lens area with the region considered, as
shown in formula (1).

P (t) =
WLensArea(t) ∩ Region

WLensArea(t)

(1)

The main issue is the definition of a density function over a
complex form, such as a lens area. Since we can easily define
a density function over a circle, we propose to perform an
anamorphosis of a lens area into a circle, as follows:

1. We define a local coordinates system for the lens area
to simplify the formulation of the lens area equation.

2. We define an anamorphosis of the lens area into a circle
of radius 1 and we associate a density of probability to
that circle.

3. We define a transformation of the density of probabil-
ity over the circle of radius 1 into a density of proba-
bility over the lens area.

4. We complete the process by the evaluation of P (t).

3.1.1 Lens area equations
The lens area is given by the intersection of two circles. If

one circle contains the other, the result of the intersection is
the smaller circle. This situation may arise for time instants
in the neighborhood of the instants of observations. Other-
wise, the result of the intersection is an area similar to the
one depicted in figure 4.

Figure 4: Lens area parameters

The lens area in figure 4 delimits the set of all possible
locations for a moving object at time instant t, between
two consecutive locations: p0, observed at instant t0, and
p1, observed at t1. As presented in section 2.1, the left
centered circle delimits the lens area of the object during
the time interval [t0, t]. The right centered circle delimits
the lens area of this object during the time interval [t, t1].



The radiuses of the circles depend on the maximum velocity
(Vmax) defined previously:

r0 = Vmax × (t− t0) r1 = Vmax × (t1 − t) (2)

To make the formulation of the lens area parameters eas-
ier, we use a local coordinates system based on the lens area
axes (see figure 4). Let us consider d as the distance be-
tween p0 and p1. The origin o of the coordinates system
corresponds to the projection of the lens area summits over
the x-axis. Formally, o is considered as the center of mass,
i.e. the barycenter1, of points p0 with mass x1

d=(x1−x0)
, and

p1 with mass x0
d=(x1−x0)

, and is defined as:

o
�

0
0

�
= bar

n�
p0

�
x0
0

�
,
x1

d

�
,
�
p1

�
x1
0

�
,
x0

d

�o
(3)

Applying the Al-Kashi’s theorem (law of cosines) [1, 15],
we obtain the following abscises for p0 and p1 in the local
coordinates system:

x0 = − d2+r0
2−r1

2

2d
x1 = d2−r0

2+r1
2

2d
= d + x0 (4)

In the general case, the lens area is defined by two arcs
located in the half-plans x > 0 and x < 0. Otherwise, it is
a circle centered on p0 or p1. Hence, to represent the lens
area, we use the following equations, where fR(y) denotes
the right arc of the lens area and fL(y) denotes the left one:

fL(y) =

�
x1 −

q
r12 − y2 , in the general case

x0 −
q

r02 − y2 , if x1 −
q

r12 − y2 > 0

fR(y) =

�
x0 +

q
r02 − y2 , in the general case

x1 +
q

r12 − y2 , if x0 +
q

r02 − y2 < 0

(5)

Now, we can easily change from the global coordinates

system to the local one, by a translation of vector
� −o.X
−o.Y

�
,

that places the origin at o, followed by a rotation θ, such as:

cos θ = p1.X−p0.X
d

and sin θ = p1.Y−p0.Y
d

(6)

3.1.2 Lens area anamorphosis
As referred above, defining a density function over com-

plex objects such as lens areas would not be a simple task.
To cope with this problem, we use an anamorphosis, to
transform the lens area into a circle of radius 1 (figure 5).
The density function will be then defined over the circle.

To achieve such transformation, we define an affine bijec-
tion [15] between the lens area and the circle. This one-
to-one transformation preserves collinearity (i.e., all points
lying on a line initially still lie on a line after transforma-
tion), as well as the ratios of masses and distances (i.e.,
the barycenter of a line segment stills the barycenter of the
corresponding line segment after transformation). Hence,
determining the point in the circle that corresponds to a
point in the lens area, is formally defined as follows:

• Consider a point M

�
x
y

�
in the lens area (figure 5).

1Consider two points A1 and A2 defined by their cartesian
coordinates (x1, y1) and (x2, y2). The mass, also referred
to as the weighting coefficients, for each point is m1 and
m2, respectively. The barycenter of ((A1, m1), (A2, m2)) is
a point d with cartesian coordinates (xg, yg) such as: xg =
m1x1+m2x2

m1+m2
and yg = m1y1+m2y2

m1+m2

(a) 1st case

(b) 2nd case

Figure 5: Lens area anamorphosis

• Using the explicit equations (5), we can define the end-
points of the line segment containing M , as

Ll

�
xL = fL(y)

y

�
and Rl

�
xR = fR(y)

y

�
.

• Supposing that M is the barycenter of the line segment
LlRl, then M must verify equation (7). This means
that mass coefficients of Ll and Rl are proportional to
their distance from M .

M = bar

��
Ll,

xR − x

xR − xL

�
,

�
Rl,

x− xL

xR − xL

��
(7)

• Let us denote the maximum height of a lens area by
r. Depending on the shape of the lens area, r may be
equal to the length of the line segment between the
summits of the lens area (figure 5(a)), or it may be
equal to the radius of the smaller of the two circles that
define the lens area. The latter occurs for time instants
near to the instants of observations, when the lens area
is a circle or when it looks like the one presented in
figure 5(b). Equation 8 shows how to calculate r.

r =

( p
r0

2 − x0
2 , in the general case

r0 , if x0 > 0
r1 , if x1 < 0

(8)

• The points Lc and Rc in the boundary of the unity disk
(figure 5), that correspond to the points Ll and Rl in
the boundary of the lens area, are defined as follows:

Lc

�
−
q

1 − y
r

2

y
r

�
and Rc

� q
1 − y

r
2

y
r

�
(9)

• Point P in the unity disk is the image of M , obtained
by an affine one-to-one transformation of line segment
LlRl in the lens area into LcRc in the unity disk:

P = bar

��
Lc,

xR − x

xR − xL

�
,

�
Rl,

x− xL

xR − xL

��
(10)

• Hence, P is the image of M obtained by an anamor-
phosis α such as:

M
�

x
y

�
α→ P

�
2x−xL−xR

xR−xL

r
1 −

�
y
r

�2
y
r

�
(11)



3.1.3 Defining the density function
The density of probability over the lens area is then de-

fined through the density of probability over the unity disk.
However, we cannot simply apply the transformation and
keep the probability corresponding to each point, since the
differential surface element has been changed by the anamor-
phosis:R

L f (α (x, y)) dx dy 6= RD f (x, y) dx dy = 1

where, L denotes the lens area and D the unity disk.
(12)

Hence, the density of probability must be normalized to
guarantee that the whole probability is equal to 1. As in
computation it is not possible to deal with infinite sets, we
have introduced the notion of granularity g in this model.
We define g as the distance between two consecutive points
(granules). Hence, the coordinates of each point become
multiples of g. We define the weight of a point as its corre-
sponding density of probability over the unity disk. Consid-
ering all the points in a lens area, the sum of their weights
gives the total weight of the lens area Wtot.

Wtot =
X

m>0|m g−x0<r0

m<0|x1−m g<r1

X
n|(m g−x0)2+(n g)2<r0

2

f (α (m g, n g))

(13)
The probability associated to each point is defined as the

ratio of its weight over the total weight of the lens area.

P
�
M
�

mM g
nM g

��
=

f (α (mM g, nM g))

Wtot
(14)

3.1.4 Probability of presence of an object within a
region

Considering a region Z and a lens area L, then P (t) is
proportional to the weight of the intersection zone L ∩ Z.
As the space has been decomposed into granules, the value
of P (t) may be easily calculated by summing the weight of
the points within L that intersect Z:

P (t) =
1

Wtot

X
(m g,n g)∈L∩Z

f (α (m g, n g)) (15)

The computation of this probability may be performed
simultaneously with the computation of the total weight of
the lens area. The weight of each point in the intersection
zone is added simultaneously to the weight of the lens area
Wtot and to the weight of the intersection zone WL∩Z . Then,
P (t) is obtained as follows:

P (t) =
WL∩Z

Wtot
(16)

3.2 Trajectory-based approach
The Trajectory-based approach consists in the generation

of a large number of trajectories between each pair of consec-
utive observations recorded for the object. The probability
of presence of a moving object within a given region, dur-
ing a time interval ∆t, is then estimated by the number of
trajectories intersecting that region, over the total number
of trajectories generated (17).

P (∆t) =
#trajectories(∆t) ∩ region

#trajectories generated
(17)

Figure 6: Trajectory-based approach

Let us now consider a motion section defined by three
consecutive observations, as shown in figure 6. Let T0,1 (re-
spectively T1,2) be the set of the N0,1 (respectively N1,2)
trajectories generated for the first (respectively second) step
of the motion section. Let Z0,1 (respectively Z1,2) be the
subset of the K0,1 (respectively K1,2) trajectories that do
not intersect the forbidden region. The obtained set of tra-
jectories over the two steps of the motion section is then
T0,2 = T0,1 × T1,2, and the subset of the trajectories that
do not intersect the forbidden region is Z0,2 = Z0,1 × Z1,2.
Thus, the probability of presence of the moving object in the
given region during the query window ∆t may be calculated
as follows:

P0,2(∆t) =
#(T0,2 −Z0,2(∆t))

#T0,2
=

#T0,2 −#Z0,2(∆t)

#T0,2

P0,2(∆t) = 1− #(Z0,1(∆t)×Z1,2(∆t))

#(T0,1 × T1,2)

P0,2(∆t) = 1− #Z0,1(∆t)#Z1,2(∆t)

#T0,1#T1,2
= 1− K0,1

N0,1

K1,2

N1,2

Hence:

P0,2(∆t) = 1− P 0,1(∆t)P 1,2(∆t)

For the general case, where 0 < i < j, we obtain:

Pi,j(∆t) = 1−
Y

k∈[i,j−1]

P k,k+1(∆t) (18)

The key issue for this approach is the development of a
generator for movement data. The generated movements
should be random, but they must comply with some physical
constraints on the movement of real world objects.

We have implemented two kinds of generators that we
designate by the Brownian motion generator and the vector-
oriented motion generator. Only the latter requires knowing
the maximum velocity of the object.

3.2.1 Brownian motion generator
The Brownian motion is originally used to describe the

movement of particles that receive a random number of im-
pacts of random strength, from random directions, during
a certain period of time. The movement of the particles
between two impacts is linear and uniform. No other inter-
action with the particles exists. This theory has been firstly
set by Robert Brown in 1827, when observing pollen parti-
cles floating on water. It is applied today to many different
domains, like financial assets modeling or signal processing.
In the later the Brownian motion theory is used to simu-
late noise associated to processed signals. A brown noise



(or ”Brownian”), is a noise in which each successive sample
is a small random increment or decrement above the pre-
vious sample. We follow a similar process to generate our
Brownian movements.

Brownian movements
In our case, Brownian movements are generated between
consecutive observations. Hence, the origin and the des-
tination of each generated movement must coincide with
the given observations. The Brownian movement generation
consists in a suite of constant steps between the origin and
the destination. The number of steps is fixed in advance.

We propose two generators of Brownian movements. The
first one generates one-dimensional Brownian movements.
This kind of movement does not engender backward steps.
The moving object executes a suite of constant steps fol-
lowing the same direction: from the origin to the destina-
tion. Time is also decomposed on a regular (uniform) basis.
Within each step the projection of the movement over the
line defined by the origin and destination is uniform. How-
ever, the movement over the perpendicular directions is di-
rected by a Brownian law. Figure 7.a shows a representation
of the so-called one-dimensional Brownian motion.

a) One-dimensional b) Two-dimensional

Figure 7: Brownian motion

The second generator combines two one-dimensional Brow-
nian motions to obtain a random movement, called two-
dimensional Brownian movement. There is no longer regu-
larity between the generated movement steps. In particular,
we can observe backward movement steps. Thus, the move-
ment is more realistic and our experiments revealed that the
set of trajectories generated covers an area that is closer to
the shape of a lens area, than that one covered by the one-
dimensional generator. This kind of movement is illustrated
in figure 7.b.

Implementation
To implement the generators described above, we define the
Brownian as follows:�

B0 = 0
Bk = Bk−1 +

√
p . N(0, 1) ∀k ∈ [1, n− 1]

(19)

where n is the number of points of the Brownian, p is
the fixed step and N(0, 1) is a generator of random values
accordingly to a Gaussian law, with a zero average value and
a variance equal to 1.

As the origin and destination of the movement are preset,
the Brownian generator must fulfill the following criteria:
B̃0 = B̃N−1 = 0. This is obtained in the following equation:

B̃k = Bk − k
Bn−1

n− 1
∀k ∈ [0, n− 1] (20)

The advantage of the one-dimensional Brownian motion is
that it is simple to implement. This movement is generated
easily using a Brownian value to which we apply a rotation
and a translation. The obtained vector is then added to an
initial movement vector obtained on the basis of uniform
movement following the axis origin-destination.

Let τ be the path generated between two points A(xa, ya)
and B(xb, yb) and τd the path from A to B following a
straight line:8<: τd(0) = A

τd(n− 1) = B

τd(k) = A + k
~AB

n−1
∀k ∈ [0, n− 1]

(21)

The one-dimensional movement is then calculated for each
step using the following formula, where σ is a user defined
parameter that enables amplifying the Brownian values:

τ(k) = τd(k) + trans(rot(σ . B̃k)) ∀k ∈ [0, n− 1] (22)

The generation of two-dimensional Brownian movement
requires using four parameters σ[2,2] instead of a single σ,
and two independent Brownians.

τ(k) = τd(k) +

�
σ11 σ12

σ21 σ22

�
.

 
B̃1

k

B̃2
k

!
∀k ∈ [0, n− 1]

(23)
The shape of the movements generated is influenced by the

four parameters σ[2,2]. The parameters in the first line have
an influence on the shifting of positions in the direction of
the line connecting the origin and destination, and the other
parameters have an influence on the shifting of positions in
the perpendicular direction.

3.2.2 Vector-oriented motion generator
This movement generator may be suitable for applications

where it is possible to estimate in advance the maximum
velocity of the moving objects. It may also be applicable
for situations for which the Brownian movements doesn’t
represent a realistic solution.

Vector-oriented movements
A vector-oriented movement is a movement composed of a
suite of steps, each one is calculated using a random speed
and orientation values. The main issue for this approach
is the convergence of the generated movements towards the
chosen destination, without interfering with the desirable
random features of the generated values. To deal with this
problem, we have defined a circumference with a center at
the origin and radius equal to the distance between the ori-
gin and the destination. Then the movement generated must
converge towards the circumference. For each step, the cape
angle is generated accordingly to a distribution centered to-
wards the closest point of the circumference. Once a point
of the circumference is attained, it is enough to perform a
rotation to make the last point generated coincide with the
destination intended (figure 8).

Implementation
The time interval between two observations is decomposed
into steps representing the smallest unit for the simulation.
All steps have the same duration. New orientation and speed
values are generated at each step accordingly to the following
criteria:



Figure 8: Generation of vector-oriented movements

• For the cape angle, the distribution is centered towards
the closest point of the circumference. Considering
that αavg(n) is the mean value of the angles generated
for steps 1 through (n − 1), the new orientation α(n)
generated at step n is bounded by ∆max, as follows:

α(n) ∈ [αavg(n)−∆max, αavg(n) + ∆max] (24)

• For the speed value at step n, the distribution is cen-
tered on the average speed vavg(n), which should be
equal to the average speed required to reach the closest
point of the circumference.

Our experiments revealed that the trajectories generated
converge quickly towards the neighborhood of the circum-
ference, but after that, they turned around during a certain
time before reaching it.

To cope with this situation, we tried to decrease the vari-
ance of the random variables over time accordingly to a cho-
sen law (linear, quadratic or exponential). In this way, con-
vergence is imposed artificially but the results obtained were
satisfactory for our model.

Finally, it may arise that, during the generation of a move-
ment, we obtain a average speed value greater than the max-
imum speed allowed. In this case, that generated part of the
movement is simply discarded and a new one is generated.

4. COMPARISON OF THE METHODS
The point-based and the vector-oriented methods are ap-

plicable to systems where it is possible to estimate the max-
imum velocity of the objects in advance. Otherwise, the
Brownian motion method should be used.

The point-based method allows estimating values for P (t),
only when t is a time instant. Extending this method to cope
with time intervals is not trivial and we were not able to find
a solution allowing maintaining the desirable properties from
the statistical point of view.

The vector-oriented motion method allows estimating val-
ues for P (t), where t is a time instant or a time interval.

We have developed a tool that implements the two meth-
ods just referred. Figure 9 is a screenshot for a simulation
using the vector-oriented method. It shows a static spatial
region (a triangle) and a sequence of three observations (the
dots in the origin and destination of the trajectories). The
ellipses are the lens areas for the time intervals defined for
each pair of consecutive observations. The shaded area, cor-
responding to the intersection of two circles with the ellipsis
in the left, is the lens area for a time interval previously
defined. The lines represent the trajectories generated ac-
cording to the specifications presented in this paper. The
window in the bottom shows that the value estimated for
the probability of presence of the moving object within the
triangle during the time interval considered was 16.667%.

Figure 9: Vector-oriented motion tool

The Brownian motion method should be used for systems
where the maximum velocity of the moving objects cannot
be estimated accurately in advance. Under these circum-
stances, it is not possible to define lens areas.

The simulation depicted in figure 10 is similar to the pre-
vious one. Notice that this tool displays static polygons in
a triangulated form and trajectories are not actually dis-
played. Instead, it is used a color scale, where the color of
the pixels in the lens area are darker for smaller probabilities
and lighter for higher probabilities.

Figure 10: Brownian motion tool

These two figures also show that the density of trajec-
tories within lens areas is not uniform. In both cases, the
density of trajectories around the shortest path between two
consecutive observations is higher than for locations faraway
from this path.

For methods grounding on a maximum velocity value, it
is also possible to guaranty that when P (t) = 0, the mov-
ing object has not been within the specified region during
that time. Consequently, these methods may also be used
to implement semantics adequate to answer questions such
as “Which were the moving objects that surely have been
within a specified region during a certain time” or “The list
of all moving objects that could have been within a specified
region”, as proposed in [8].

The same does not hold for Brownian motion, as the pa-
rameters used for carrying out this method do not allow
establishing an accurate bounding of lens areas.

It is also possible to implement other semantics. For in-
stance, one may be interested in defining a probable operator
and consider that probable means a probability of at least
80%, unlikely means at most 20%, or that a query yields
true if the probability is at least 60%, among many others
reasoning possibilities.



5. CONCLUSION
This paper deals with the computation of estimates about

spatiotemporal events for moving objects systems. The fo-
cus is on the history of object’s movement and it is assumed
that the objects move freely in space.

We have followed two main approaches, a point-based ap-
proach and a trajectory-based approach, and proposed three
methods, with different features, that may be applied to a
wide range of moving objects systems. We succeeded on two
main points: (1) We have developed a method based on non-
uniform statistical distributions for estimating the location
of moving objects at a certain time. This task was espe-
cially hard, due to the complex geometry of the lens area
that bounds the possible locations of a moving object in the
past. (2) We have explored an approach based on stochas-
tic processes theory, to model the movement of an object
between two locations. These locations correspond to ob-
servations stored in a database system. This approach was
used to implement two methods for handling uncertainty in
the location of moving objects.

At a first glance, it seemed that the point-based approach
was the most obvious solution. This also was the solution
that was envisaged in the literature. However, when us-
ing non-uniform distributions, the method based on this ap-
proach is considerably more difficult to implement than the
others. Besides, this method is only applicable to answer
probabilistic queries about the location of a moving object
at a certain time instant, i.e., time intervals are not allowed.
On the other hand, trajectory-based methods are able to
cope with both cases and they also are simpler to imple-
ment.

The emphasis of this paper was on feasibility – identifi-
cation of possible approaches and development of methods
to put them into practice – and expressivity – which are
the domains of application and the limitations, when ap-
plying these methods to the implementation of the different
semantics proposed in spatiotemporal literature –.

We are currently working on the evaluation of the perfor-
mance and the reliability of the methods proposed in this
paper. The former, benchmarking for performance evalua-
tion, would indicate which method is the most efficient from
response times point of view. The latter concerns the quality
of the estimations. This is an interesting issue, also raised
in [4], as we are interested in comparing the reliability of the
results of probabilistic queries, but in fact we do not know
which are the true results.
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