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Abstract— In new generation cellular networks, opportunistic
schedulers take advantage from the delay-tolerance of data
applications to ensure that transmission occurs when radio
channel conditions are most favourable. ”Proportional Fair” (PF)
is a well-known opportunistic scheduler that provides a good
compromise between fairness and efficiency when transmitting
long flows. Unfortunately, the PF algorithm is not efficient for
short transfers, which represent the majority of data flows. More-
over, the lack of coordination between opportunistic scheduling
and the congestion control mechanism of TCP induce very poor
performance especially for short-lived flows. In this paper, we
propose three enhanced scheduling approaches that significantly
reduce the transfer time of short flows without a significant
degradation of the QoS provided to long flows.

I. INTRODUCTION

Proportional fair scheduling has been largely studied in the
context of HDR(High Data Rate)/HDSPA (High Data Speed
Packet Access) based mobile networks [1], [2]. Despite all the
benefits resulting from opportunistic scheduling, it has also
been shown that the lack of coordination between the latter
and the congestion control mechanism of TCP induce very
poor performances [3]. In the cited paper, the authors propose
an enhancement to PF to deal with this issue when transmitting
long TCP flows. Nevertheless, the proposed approach does not
help in enhancing the QoS provided to short flows which are
the most adversely impacted by the mentioned lack of coor-
dination while they require the shortest response time. This is
critical since, as it has been shown by various Internet traffic
analyses [9], short flows represent the vast majority of Internet
flows. What is more, the PF algorithm is biased against short-
lived flows because it can not converge when the flow lasts a
few time slots resulting in suboptimal performances especially
at high loads.

In order to improve short flows performance, we propose in
this paper three flow size-aware scheduling mechanisms where
file size information is integrated in the PF algorithm to reduce
the Sojourn Time experienced by short flows. The proposed
approaches notably reduce the transfer time of short-lived
flows, without a significant degradation of the QoS provided
to long-lived flows.

The rest of the paper is organized as follows. In section
II, we present the radio propagation model and our traffic
hypothesis. In section III, we show how the PF is biased
against short-lived flows. In sections IV to VI, we present
our three flow size-aware scheduling mechanisms along with

analytical study and simulations to assess performances. We
give conclusions in section VII.

II. RADIO PROPAGATION AND TRAFFIC MODELS

In this section, we present the model of the radio resource
and the way it is shared among users. We then describe our
adopted hypothesis relative to the offered traffic.

A. The Propagation Model

Let P be the transmission power of the Base Station (BS),
γ the free space path loss and xk the fading (of unit mean)
for user k. The power received by user k situated at distance
r from the BS is then given by:

Pk (r, t) = P · γ (r) · xk (t) (1)

The adopted model for the free space path loss is:

γ = 1 if r ≤ ε and γ = ( ε
r )β otherwise

where β is the path loss exponent (taking values between 2
and 5) and ε is the maximum distance at which the full power
P is received.

B. The feasible rate

The feasible rate R of a user depends on the radio channel
and varies with time due to user mobility and fading effects.
The mobility will not be included in the model, nor will the
slow fading be.
We denote by C0 the maximum peak rate offered by the used
coder and by r0 the maximum distance at which this peak rate
is achieved, i.e., r ≤ r0 ⇔ R = C0.
For user k, the signal-to-noise ratio and energy-per-bit to noise
density ratio [4] are respectively equal to:

SNRk =
Pk

(η + Ik)
,
Eb

N0
=

W

R
· SNRk (2)

where W is the cell bandwidth, Pk the power received by user
k, η the background noise and Ik the interference due to other
BSs.
For a given target error probability, Eb

N0
must be greater than

a given threshold σ (taken as a constant as it is done in the
majority of references), the feasible data rate of user k is then
given by:

Rk = min[C0,
W

σ
· SNRk] (3)

We consider hexagonal networks, thus the interference suf-
fered by a user in a given cell is almost utterly generated by
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the 6 neighbouring BSs. An approximation of this interference
is given by the following [5]:

I(r) =P · [γ(2�− r) + 2 · γ
(√

(�− r)2 + 3�2
)

+

γ(2� + r) + 2 · γ
(√

(� + r)2 + 3�2
) ] (4)

where � is the cell radius that we suppose equal to 2 · r0

(larger values of � induce very small rates at the border of
the cell [5]).

Combining equations (1), (3) and (4) , we have the subse-
quent result for negligible background noise:

Rk(r, t) =min
[
C0,

W

σ
· (P · γ(r) · xk(t) ÷ I(r))

]

=min
[
C0,

W

σ
· h

(�
r

)
· xk(t)

] (5)

where h−1(�r ) = (2�
r −1)−β +2 ·((�r − 1)2 + 3(�r )2)

)− β
2 +

(2�
r + 1)−β + 2 · ((�r + 1)2 + 3(�r )2)

)− β
2

We know that the PF system does not behave like a GPS
queue if the feasible rate Rk(r, t) does not vary linearly with
the i.i.d fast fading fluctuations xk(t) for all users, which is not
the case if there are users located at a distance r ≤ r0. For that
reason, we only consider users located between r0 < r ≤ �
with homogeneous fading and the following feasible rate:

Rk(r, t) = Ck(r) · xk(t) (6)

with

Ck(r) =
W

σ
· h

(�
r

)
(7)

being the mean rate of user k. As we consider Rayleigh fading,
xk follows an exponential distribution.

C. Traffic characteristics

We assume traffic demand is uniformly distributed in the
cell. Data flows arrive as a Poisson process of intensity λ·ds in
any area of surface ds. This assumption is fairly plausible since
traffic is due to the independent activity of a large population
of users, each individually having a very small intensity, which
can therefore be modeled by a Poisson process.
Flow size σ follows the Bounded Pareto (BP) distribution
which is commonly used in analysis because it can exhibit
the high variance property as observed in the internet traffic
and also because the maximum flow size can be set to mimic
the largest internet flow size. We denote the BP distribution
by BP (p, q, α) where p and q are respectively the minimum
and maximum flow size and α is the exponent of the power
law. The probability density function of the BP distribution is:

f(x) =
α · ( p

C

)α

1 −
(

p
q

)α · x−α−1, p ≤ x ≤ q, 0 ≤ α ≤ 2

where C is the mean rate of the flow.
We will consider the following scenario:

• 80% of flows are short flows whose size follows the
following distribution BP (1kbytes, 10kbytes, 1.16) of
mean E[σS ] = 2.4kbytes.

• While 20% of flows are long flows whose size follows the
following distribution BP (10kbytes, 5000kbytes, 1.16)
of mean E[σL] = 45.7kbytes.

Thus the load of short flows is approximately 17.5% and the
load of long flows is approximately 82.5%. Hence, we have
two classes of flows and we denote by dρS = 2πrdr ·λSE[σS ]
and by dρL = 2πrdr·λLE[σL] the traffic intensity respectively
generated by short flows and long flows whose distance to the
BS is between r and r+dr, where ρS = 0.8·ρ and ρL = 0.2·ρ.

III. PROPORTIONAL FAIR ALGORITHM

In the PF algorithm, time is divided into short intervals and
the BS transmits at full power to a single user per time slot.
At time slot t, the scheduled user is the one with the highest
feasible rate relative to its current average throughput, i.e.,

user k∗ = argkmaxRk(r,t)
Tk(r,t)

where Tk(r, t) is the exponentially smoothed throughput:

Tk(r, t+1) = (1− 1
τ

) ·Tk(r, t)+
1
τ
·Rk(r, t) ·1luser(t)=k (8)

where 1luser(t)=k is the indicator function which equals 1 if
user k was chosen at time slot t and 0 otherwise. τ is a
time constant that captures the time-scales of the PF scheduler.
Because the random variables representing the fading are i.i.d,
we have that Tk = Ck(r) · Uk where Uk are identically
distributed random variables (but not independent).
If 1

τ → 0, then

Tk → Ck(r) · g(n)
n

(9)

where n is the total number of active users and g(n) =
E[max(x1, .., xn)] is the PF scheduling gain. In practice, τ
has large values because this offers the opportunity of waiting
a long time before scheduling a user when its channel quality
is maximal: the scheduler is then expected to better exploit
multi-user diversity. As a result, we will adopt formula (9) in
our analysis. We refer to [6] for rigorous justifications of the
above claims. Therefore, the average rate of user k is:

E[Rk(r, t) · 1l{ Rk(r, t)
g(n)

n · Ck(r)
= maxl=1..n

Rl(r, t)
g(n)

n · Cl(r)
}]

= Ck(r) · E[xk(t) · 1l{xk(t) · n
g(n)

= maxl=1..n
xl(t) · n

g(n)
}]

= Ck(r) · E[xk · 1l{xk = maxl=1..nxl}]
=

Ck(r)
n

· E[max(x1, ..xn)] =
Ck(r) · G(n)

n

We see through the realized average rate that when the PF
algorithm converges, it behaves like a GPS system while
taking advantage from the channel variations with G(n) =
E[max(x1, ..xn)] being the multi-user diversity gain (which
is an increasing function in the number of active users n).
In the case of Rayleigh fading, we have G(n) =

∑n
i=1

1
i .
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However, the PF is not quite fair and efficient when serving
short-lived flows which is a real issue considering that these
flows represent the majority of elastic traffic. Indeed, the
PF performance is biased against short flows because the
algorithm does not have time to converge when the flow
lasts a few time slots. To highlight this fact, we give in the
following section the analysis of the dynamic model of PF,
in particular we give the analytical expressions for the mean
sojourn time of short flows and the mean throughput of long
flows and underline the discrepancy, at high loads, between the
mathematical model and simulation results for short flows.

A. The Analytical Study of PF

When convergence is reached, PF behaves like a GPS
system, we can thus compute the mean transfer delay for short
flows and mean throughput for long flows according to [7].
The stationary distribution of the number of active flows is:

π(x) =
∏x

i=1
ρ

G(i)∑ n
k=0

∏k
i=1

ρ
G(i)

where ρ =
∫ �

r0

dρ(r)
C(r) is the load in the

cell with dρ(r) = dρS(r) + dρL(r) and n is the maximum
number of admitted flows. C(r) follows from (7).
Using Little’s law, the mean transfer delay experienced by a
short flow k is E[SS,k] = E[σS ]·E[n]

Ck(r)·ρ·(1−B) , where B = π (x = n)
is the blocking probability and E[n] =

∑n
i=1 i · π(i) is the

mean number of active flows.
The throughput of a long flow k, defined as the ratio of the
mean long flow size E[σL] to the mean long flow duration, is
ThL,k = ρ·(1−B)·Ck(r)

E[n] .

B. Numerical experiments

We present in this subsection our numerical experiments
performed to illustrate the previous results. We consider a
system where users initiate file transfer requests as a Poisson
process of intensity λπ�2. Flow sizes are independent and
follow the composite heavy-tailed distribution presented in
section II-C. Users are served according to the PF algorithm
and at most n = 40 users are admitted in the system to
guarantee a minimum rate of Cmin = C(�)

40 . Guaranteeing
a minimum rate is a QoS notion appropriate for non-real time
users. New transfers generated when the maximum number of
users is already in progress are blocked and lost. We take W

σ =
5.0. We determine the normalized mean sojourn time for short
flows E[SS,k] ·Ck(r) depicted in Figure 1 and the normalized
mean throughput ThL,k

Ck(r) for long flows depicted in Figure 2.
We can see in Figure 2 how the analytical formulae provide
highly accurate estimates of results obtained by simulation for
long flows which is not the case when λ ≥ 3.0 (ρS ≥ 0.45)
for short flows as graphed in Figure 1. Indeed, in PF, it is
impractical to guarantee the same probability of accessing the
channel for all flows over short time scales; yet, over longer
time scales, as channel conditions vary, lagging flows can
”catch up” which is not possible for short flows. This situation
is, of course, further exacerbated at high loads when the cell is
crowded because short flows have to wait longer for their turn
which can have a severe impact on their Sojourn Time. This
problem is more emphasized by the large value taken by τ in
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MEAN THROUGHPUT OF LONG FLOWS

(8). However, reducing the value of τ is not an appropriate
solution because it deprives us from better exploiting multi-
user diversity. To overcome this inherent drawback of PF, we
propose in this paper three modified versions of PF where
short flows are given preferential treatment. We suggest in the
first algorithm, termed Size-Based Hierarchical PF (SB-HPF),
to isolate short flows from long flows, in order to protect the
former. Slots are first distributed among the two classes of
flows and inside each class, flows are served according to
the PF algorithm. In the second algorithm, termed Size Based
Adapted PF (SB-APF), we tweak the PF algorithm in a way to
augment the probability of short flows to access the channel.
The last algorithm, termed PF-LAS, is a unified version of both
PF and the LAS (Least Attained Service) algorithm, which is
known to favor short flows to the few largest flows.

IV. SB-HPF

Our hierarchical scheduler serves alternately short flows
(with a weight wS) and long flows (with a weight wL) that are
logically separated into two classes and applies independent
PF to each class.

A. The Analytical Study of SB-HPF

Because the two classes of flows, served by means of
PF, behave like a GPS system, we can compute the average
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transfer delay for short flows and the average realized
throughput for long flows. The stationary distribution of the

number of active flows in class Z is: πZ(x) =
∏x

i=1
ρZ

G(i)∑ nZ
k=0

∏k
i=1

ρZ
G(i)

where ρZ =
∫ �

r0

dρZ(r)
C(r)·wZ

is the load in class Z and nZ

is the maximum number of admitted flows in that class.
From Little’s law, the mean transfer delay experienced
by a short flow k is E[SS,k] = E[σS ]·E[nS ]

Ck(r)·wS ·ρS ·(1−BS) where
BS = πS (x = nS) is the blocking probability for short flows
and E[nS ] =

∑nS

i=1 i · πS(i) is the mean number of active
short flows.
The throughput ThL,k of a long flow k, defined as the
ratio of the mean long flow size E[σL] to the mean long
flow duration, is ThL,k = ρL·(1−BL)·Ck(r)·wL

E[nL] where
BL = πL (x = nL) is the blocking probability for long flows
and E[nL] =

∑nL

i=1 i · πL(i) is the mean number of active
long flows.
The allocation of slots being dynamic, the proposed scheduler
will guarantee a minimum throughput ThL,k and a maximum
sojourn time E[SS,k] for each flow k.

1) Numerical experiments: We present in this section our
numerical experiments performed with the same parameters as
those presented in section III-B. Users are served according
to PF (n = 40) and according to SB-HPF that comprises 2
different scenarios:

• SB-HPF(2,1) where short flows receive 2 times more slots
than long flows, i.e.,wS = 2/3 and wL = 1/3. To obtain
the same minimum rate as in PF (Cmin = C(�)

40 ), at most
26 short flows (Cmin = C(�)

26 · 2
3 ) and 14 long flows

(Cmin = C(�)
14 · 1

3 ) are admitted simultaneously.
• SB-HPF(1,2) where long flows receive 2 times more slots

than short flows, i.e.,wL = 2/3 and wS = 1/3. To obtain
the same minimum rate as in PF, at most 26 long flows
(Cmin = C(�)

26 · 2
3 ) and 14 short flows (Cmin = C(�)

14 · 1
3 )

are admitted simultaneously.

In all experiments, we determine the normalized average
sojourn time for short flows E[SS,k]·Ck(r) and the normalized
average throughput for long flows ThL,k

Ck(r) . Figures 4 and 6
illustrate the mean sojourn time for short flows as a function of
arrival rate and indicate that the analytical formulae provide a
highly accurate estimate for SB-HPF, which proves that the PF
converges well for short flows when they are separated from
long flows. Figures 5 and 7 illustrate the mean throughput for
long flows as a function of arrival rate and indicate that the
analytical formulae give a lower bound on simulation results at
low loads, while at high loads, the two sets of values coincide
as predicted. As for results, we can see that short flows profit
largely from being isolated from long flows for λ ≥ 3.0
because there are relieved from the bias in the behaviour of
PF. For smaller values of λ, the mean number of short flows is
strictly smaller than 1 in SB-HPF, which means that there are
rarely more than two short flows present simultaneously and
thus they do not profit from the gain resulting from multi-user
diversity. For the same values of λ, there are more flows in the

Fig. 3
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MEAN THROUGHPUT OF LONG FLOWS FOR SB-HPF(2,1)

system served according to the original PF and so short flows
profit from the benefits of opportunistic scheduling without its
mentioned adverse effects in a crowded cell. The gain obtained
for short flows at high load comes at the expense of long flows
who will see a degradation in their performances in terms of
mean throughput. Nevertheless, the degradation is not severe
at low loads because long flows profit from the surplus of
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slots reserved to short flows. As for high loads, although this
deterioration in performances is limited by admission control,
it comes at the cost of relatively high blocking rates as depicted
in Figure 3. However, in SB-HPF(1,2), long flows perceive
only a slight degradation in terms of mean throughput at a
cost of acceptable blocking rates at high loads in comparison
with the original PF. As for short flows, we can see in
Figure 4 that for λ ≥ 3.0, they realize much lower transfer
delays in comparison with PF. We conclude that SB-HPF(1,2)
is beneficial at high loads, exactly when the PF falls short
from treating fairly short flows, while still preserving the
performances of long flows.
In what preceded, we supposed that we had an ideal knowledge
of the size of each flow, yet, this is not the case in the real
world. Since the majority of data flows are short flows, we
will run another set of experiments where we will start off
optimistically by considering that every new flow is a short
flow. If a flow turns out to be a long flow (the number of
packets received for this flow goes beyond a certain threshold
(10Kbytes)), then the system switches it to the class of long
flows. As we can see from Figure 8, short flows suffer from
increasing transfer delay in SB-HPF(1,2) as compared with
PF. This was expected as the main benefit of the proposed
algorithm vanishes when long and short flows are initially
mixed. The bias of PF against short flows reappear because
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MEAN SOJOURN TIME OF SHORT FLOWS (WITH MBAC)

they are no longer isolated from long flows. However, in
SB-HPF(2,1), short flows are served frequently enough so
that the PF algorithm converges even when they are served
along with long flows. Their transfer delays are notably lower
than what they obtain in plain PF. As for long flows, we
can see in Figure 9 that the degradation in term of mean
throughput is acceptable in comparison with PF, but more
importantly these performances are obtained for blocking
rates that are comparable with those of PF. We conclude
that when the size of flows is not known a priori, the SB-
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HPF(2,1) scenario lowers remarkably the mean Sojourn Time
of short-lived flows without penalizing long-lived flows too
much. Nevertheless, we can still remedy this slight degradation
in performance for long flows through Measurement-Based
Admission Control (MBAC). In MBAC, it is the performance
of long flows that will trigger the blocking of new arrivals
because of the discrimination performed against these flows.
Since the number of ongoing flows is limited, the system
will easily compute the throughput realized by each long flow
without facing scalability issues, and whenever any of these
throughputs goes below a predefined minimal value, Thmin,
all new arrivals are blocked. New flows are admitted back in
the system if all throughputs realized by long flows go beyond
another predefined value ( δ · Thmin with δ > 1). For each
λ, Thmin will be set equal to the throughput obtained for
long flows by the analytical formula for SB-HPF(2,1). The
improvement obtained for long flows comes at the price of a
slight increase in blocking rates. We have thus significantly
favoured short flows without penalizing long flows.

V. SB-APF

We know that the PF scheduler serves the user with the
highest feasible rate relative to its current average throughput
(this ratio is commonly called RICQ) and so in order to favour
short flows, we propose to increase their RICQ (or to reduce
the RICQ of long flows) thus increasing their chance to be
selected by the scheduler. In order to do that, two methods
are put forward: the first one is termed SB-APF-a and the
second SB-APF-b.

A. SB-APF-a

Aiming to increase the RICQ of short flows in comparison
with long flows, we chose in this algorithm to divide the RICQ
of the long flows by a constant A greater than 1. Thus short
flows will have more chance to be picked by the scheduler in
comparison with long flows.

1) Analytical Study: Long flows will be indexed by 0 and
short flows by 1. The exponential throughput of a long flow i is
T0,i = A·g(n0)

n0
·C0,i and of a short flow i is T1,i = g(n1)

n1
·C1,i.

The number of long and short flows are respectively n0 and
n1. The average rate of a long flow i is:

E[R0,i · 1l{R0,i

T0,i
= maxk=0,1maxl=1,..,nk

Rk,l

Tk,l
}]

=C0,i · E[x0,i · 1l{ x0,i · n0

A · g(n0)
≥ n1

g(n1)
· Z1} · 1l{x0,i = Z0}]

=
C0,i

n0
· E[Z0 · 1l{Z0 ≥ A · n1 · g(n0)

g(n1) · n0
· Z1}]

(10)
with Zk = max(xk,1, .., xk,nk

).

We denote by fk(z) the density function of Zk. The
random variables xk having an exponential distribution of
unit mean, we get fk(z) = nk · e−z · (1 − e−z)nk−1. Thus
(10) yields C0,i

n0
· ∫ ∞

0
f1(x)

∫ ∞
A·g(n0)n1

g(n1)n0
·x y · f0(y)dydx.

Another value of interest to our algorithm is the probability
of short flows to access the channel because increasing this
probability comes down to reducing the mean sojourn time
of short flows. The conditional probability that a short flow i
has a relatively better channel than a long flow j is:

P(
R0,j

T0,j
≤ R1,i

T1,i
|R1,i) = 1 − e

−A
g(n0)·n1
g(n1)·n0

·x

The resulting asymptotic time fraction assignment P1,i for a
short flow i is given by:

P1,i =
∫ ∞

0

[
(P(

R0,j

T0,j
≤ R1,i

T1,i
|R1,i))n0

· (P(
R1,k

T1,k
≤ R1,i

T1,i
|R1,i)

)n1−1 · e−xdx
]

=
∫ ∞

0

(1 − e
−A

g(n0)·n1
g(n1)·n0

·x)n0 · (1 − e−x)n1−1 · e−xdx

=
n0∑

k=0

n1−1∑
l=0

Cn0
k Cn1−1

l (−1)k+l(1 + l + kA
g(n0)n1

g(n1)n0
)−1

For A = 1.0, n0 = n1 and n = n0 +n1, we get P1,i = 1
n and

thus we have the original PF, but for A > 1.0, P1,i > 1
n while

the asymptotic time fraction assignment for a long flow j, P0,j ,
is smaller than 1

n . We conclude that SB-APF-a increases the
chance of short flows to access resources and hence reduces
their transfer times.

2) Numerical Experiments: We present in this section our
numerical experiments performed to illustrate the previous
results. We set n0 = n1 = 20 in SB-APF-a and n = n0+n1 =
40 in PF. Users are served according to PF and according to
our SB-APF-a that is run for different values of A that ranges
from 1.1 to 2.5. We determine in the first set of experiments the
probability to access the channel for short flows and compare
it to P1,i. We determine in the second set of experiments the
normalized average rate for long flows and compare to (10)
divided by C0,i.

The results as graphed in Figures 12 and 13 show that the
analytical formulae give pretty exact estimates of the values
obtained by simulation. However, the formulae in SB-APF-a
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Fig. 12

ACCESS PROBABILITY OF SHORT FLOWS

Fig. 13

MEAN THROUGHPUT OF LONG FLOWS

consistently overestimate the access probability for short flows
and underestimate the mean throughput for long flows. This is
once again due to the fact that the PF performance is biased
against short flows as explained in section III. For that reason,
it is better to separate short flows and long flows as we did in
SB-HPF so that short flows profit fully from the preferential
treatment they are given. As for performance, we see that we
have an increase in the access probability for short flows at
the expense of a decrease in throughput for long flows.

B. SB-APF-b

For this algorithm, aiming to increase the RICQ for short
flows, we reduce the value of their average throughput by
omitting to update it every time we serve a short-lived flow
according to (8) but once every Y times. We hide from the
PF algorithm the fact that these flows are being served as
frequently as they really are, consequently, short flows will be
served promptly and receive additional time slots.

1) Numerical Analysis: We now give a brief proof to show
that updating the average throughput Ti of user i every 1

Y
times will increase its probability to be served in comparison

with a user j that is treated in a regular fashion according to
the PF scheduling politic. Omitting to update Ti every time
user i is served leads us to replace it by Ti − a with a < Ti,
the value of a increasing with the value of Y . For a fading
Rayleigh channel, the conditional probability that user i has a
relatively better channel than user j is:

P(
Rj

Tj
≤ Ri

(Ti − a)
|i) = 1 − e

−x· Ti
(Ti−a)

The resulting asymptotic time fraction assignment Pi of user
i is given by the following:

Pi =
∫ ∞

0

(1 − e
−x· Ti

(Ti−a) ) · e−xdx =
Ti

(2Ti − a)
(11)

From (11), we deduce that the asymptotic time fraction assign-
ment Pj of user j is equal to Pj = 1 − Pi = (Ti−a)

(2Ti−a) . Given
that Ti > a, it is obvious that Pi > Pj , and the greater the
value taken by Y , the greater will be the value taken by a and
consequently the more Pi is greater than Pj . We have proved
then that SB-APF-b increases the chance of short flows to be
served and thus reduces their transfer time. Unfortunately, a
more elaborated analysis is not possible because we do not
know what value will be taken by a for a given value of
Y . Thus, we restricted to simulation results to evaluate the
performance of SB-APF-b in comparison with PF. Due to lack
of space and to the modest benefit obtained from this algorithm
we refrain from presenting the results. The reason behind these
performances is that short flows are often too short to profit
from the preferential treatment they are given and, as they are
not separated from long flows, they still endure the bias of PF.

VI. PF LAS

The third algorithm is a modified version of the flow size-
aware scheduler LAS [8]. LAS favours short flows without
prior knowledge of flow sizes. To this end, LAS gives service
to the flow that has received the least service. An implemen-
tation of LAS needs knowing the amount of service so far
received by each flow. LAS scheduling is optimal with respect
to the average time in the system among all work-conserving
disciplines that do not take advantage of precise knowledge
of the flow length, when the service time distribution has a
decreasing hazard rate (DHR) (which is the case for Internet
flow traffic).
We calculate the mean response time T ( S

C ) for flows with
size S and average data rate C in LAS. Let F ( S

C ) be the
distribution function of the flow service time. Let mn

S be
the nth moment of the truncated distribution at S. Namely,

mn
S,C =

∫ S
C
p
C

yndF (y) + ( S
C )α · (1 − F

(
S
C

)
).

The utilization factor for the truncated distribution is ρS,C =
λ ·m1

S,C where λ is the intensity of arrivals at the cell (taken
to follow a Poisson process).
The average response time of user i with service time Si is:

Ti(
Si

Ci
) = (W (Si, Ci) +

Si

Ci
) · (1 − ρSi,Ci

)−1 (12)

with W (Si, Ci) = λ
2 · m2

Si,Ci
· (1 − ρSi,Ci

)−1
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A. Wireless LAS

We run the LAS algorithm in the previous wireless envi-
ronment with Rayleigh fading. We approximate the average
sojourn time of user i with service time Si from (12) (the
average rate Ci being equal to E[Ri]). Accordingly, the
scheduler picks, at time slot t, user i∗ = argimaxE[Ri]

Si(t)
.

B. PF-LAS

This algorithm seeks to improve the performance of wireless
LAS by taking into account the instantaneous variations of the
channel condition. Therefore, the scheduler picks, at time slot
t, user i∗ = argimax

(
E[Ri]
Si(t)

·Ri(t)
Ti(t)

)
, where Ti(t) is the average

throughput.
We know that Ri(t)

Ti(t)
= Ci·xi(t)

Ci·Ui(t)
= xi(t)

Ui(t)
and to get the average

response time for user i, we replace in (12) Si by Si · Ui

xi
. But

as we modified the PF algorithm, the exponential throughput
does not converge to what we obtained in (9) and consequently
Ui �= g(n)

n where n is the number of active users. We compute
then a lower bound on the average response time experienced
by flows. A lower bound for a flow i is obtained when the
latter realizes always the highest rate among the n possible
rates, n being the mean number of users present in the system
and when Ui keeps its initial value U0:

Tmax(
Si,max

Ci
) = (W (Si,max, Ci)+

Si,max

Ci
)(1−ρSi,max,Ci

)−1

with Si,max = Si·U0
E[x1,..,xn] = Si·U0∑ n

k=1
1
k

.

C. Numerical experiments

We consider a system where users initiate file trans-
fer requests as a Poisson process of intensity λπ�2

(traffic demand is uniformly distributed in the cell).
Flow sizes are independent following the BP distribution
BP (1kbytes, 1000kbytes, 1.16). Users are served according
to the Wireless LAS termed WLAS and according to our PF-
LAS. In all experiments, We determine the average Sojourn
Time for short flows and the average Throughput for long
flows. We take U0 = 0.5. Figure 14 displays the mean sojourn
time as a function of flow size for short flows (whose size
goes up to 40 Kbytes) for λ=20 indicating that the analytical
formulae provide an exact estimate for WLAS and that the
Lower Bound (LB) computed for the sojourn time in PF-LAS
is tight enough that it can be fairly considered as an estimation
of this sojourn time. As for results, the gain obtained in PF-
LAS in terms of mean transfer delay is considerable.
Figure 15 displays the Mean Throughput of long flows for
λ=20 and 15 and shows, contrary to the previous algorithms,
how long flows profit greatly in PF-LAS and realize notably
higher throughputs in comparison with WLAS.

VII. CONCLUSION

This paper proposes and analyses three opportunistic
scheduling approaches where flow size information is taken
into account by the scheduling policy. The proposed size-
aware schedulers reduce the latency for short flows while
exploiting user diversity, thus, allowing the wireless channel
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to be utilised efficiently, without significantly disturbing the
performances of long flows.
This work only validates the potential impact of the proposed
scheduling mechanisms; a deeper analysis is being carried out,
under more realistic scenarios, as well as an evaluation of the
feasibility of the proposed solutions.
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