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Abstract— In 3G wireless networks, opportunistic schedulers
take advantage from the delay-tolerance of data applications to
ensure that transmission occurs when radio channel conditions
are most favourable. In the well-known opportunistic scheduler
”Proportional Fair” (PF), the Base Station (BS) serves only one
user per time slot which is optimal when the Signal-to-Noise
Ratio (SNR) scales linearly with the effective transmission rate.
However, for a logarithmic relation between the channel quality
and the transmission rate, scheduling one user at a time does not
always result in maximum channel utilization. For that reason,
we put forward in this paper a new scheduler that divides the cell
into two categories, serving alternately the first one in a CDMA
fashion and the second one according to the PF scheduler. The
mathematical and simulation analysis provided proves that the
proposed scheduler increases the overall throughput of the cell.

I. INTRODUCTION

Data Traffic is increasingly popular in 3G mobile networks.
New technologies like HDR (High Data Rate) [1] and its
equivalent in 3GPP, HSDPA (High System Data Packet
Access) [2], offer higher data rates than previous architectures
notably through the opportunistic scheduling: time is divided
into very short intervals (1.67 ms for HDR and 0.67ms for
HSDPA) and the BS transmits at full power to a single user
per time slot (intra-cell interference cancellation). However,
because the SNR does not scale linearly with the feasible
rate for all users, scheduling one user at a time may not
result in maximum channel utilization. We suggest in this
paper to divide the cell in two zones where slots will be
distributed across the different zones in a Weighted Round
Robin (WRR) fashion: users in the first zone will be served
according to regular CDMA while users in the second zone
will be served one at a time according to the PF algorithm.
We will show how this new hierarchical scheduler, termed
HPF, will increase the total throughput of the cell.

The rest of the paper is organized as follows. In Section
II, we present the proposed HPF approach. In Section III,
we analyse its performance; in particular we obtain analytical
results for the mean rate in Standard PF (SPF) and in HPF for
a fixed number of users. We also show how our hierarchical
scheduler improves the performance of the cell in terms of
average rate. In Section IV, we extend the model of our HPF
algorithm to accommodate a dynamic user configuration and
corroborate the results obtained by simulations. Finally, in
Section V, we give a brief conclusion.

II. A HIERARCHICAL SCHEDULING APPROACH

A. The Radio Resource

In this subsection, we present the model of the radio
resource and the way it is shared among users. We then
compute the peak rate of each user accordingly.

1) The Propagation Model: Let P be the transmission
power emitted by the BS and γk the free space path loss.
The power received by user k is then:

Pk = P · γk (1)

The adopted model for the free space path loss is:

γk = 1 if rk ≤ ε and γk = ( ε
rk

)β otherwise

where β is the path loss exponent (taking values between 2
and 5), ε is the maximum distance at which the full power
P is received and rk the distance separating user k from the
BS.

2) The feasible rate: For user k, the signal-to-noise ratio
and the peak rate Ck, which is assumed to follow a logarithmic
relation according to Shannon, are respectively given by:

SNRk =
φk · Pk

(η + IBS + Ik)
, Ck = W · log2(1 + SNRk) (2)

where W is the cell bandwidth, Pk the power received by
the user, η the background noise, φk the fraction of power
transmitted to user k by its BS, IBS the interference caused
by other BSs to user k and Ik the interference caused to user
k by its own BS and given by the following relation:

Ik = Pk · (fk(1 − φk) + hkφk) (3)

where fk is the orthogonality factor and hk is a self-noise
coefficient. We assume that hk < 1 which means that the
interference experienced by a user from its own signal is not
greater than the signal itself.

The authors in [3] showed that it is better for a BS to
transmit to only one user at a time rather than to transmit to
several such users simultaneously for hk < 1 , yet, we will
show here that this is not necessarily true if the feasible rate
does not scale linearly with the SNR.

For that, we consider a time interval during which the
total power level P at the BS remains constant and we
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suppose that throughout the interval a proportion φk of the
total power P is allocated to user k such that

∑
k φk = 1.

From (2) and (3), the feasible rate of user k is:

Ck,CDMA = W log2

(
1+

φkPk
η + IBS + Pk(fk(1 − φk) + hkφk)

)

Now we suppose that each user k is allocated the total power
P but for a fraction φk of the interval. During the period that
the BS transmits to user k, no power is allocated to other users
in the cell, thus user k endures no interference from other users
within the cell, and consequently the feasible rate of user k
during the whole interval is:

Ck,TDMA = φkW log2

(
1 +

Pk
η + IBS + Pkhk

)

The SNR of a user depends on the radio channel and varies
with time due to user mobility and fading effects. We will only
consider the impact of fast fading in our model by replacing
SNRk of user k by:

SNRk(t) = SNRk · xk(t) (4)

where xk(t) are i.i.d copies of some stationary process x(t)
with unit mean that represents the effect of fast fading. As we
consider Rayleigh fading throughout the paper, xk(t) follows
an exponential distribution.
It follows that the asymptotic rate for every user k is:

Ck = limT→∞
1
T

∫ T

0

Ck(SNRk(t))dt

=
∫ ∞

0

Ck(SNRk · xk) · g(xk)dxk

where g(xk) = e−xk , xk ≥ 0

To compare the two schemes, we compute the following

ratio Rk = limT→∞ 1
T

∫ T
0 Ck,CDMA(SNRk(t))dt

limT→∞ 1
T

∫ T
0 Ck,T DMA(SNRk(t))dt

:

Rk =

∫ ∞
0

log2(1 + φksnrkxk

1+snrk·(fk(1−φk)+hkφk) )e
−xkdxk

φk
∫ ∞
0

log2(1 + snrkxk

1+snrkhk
)e−xkdxk

where
snrk =

γkP

η + IBS
(5)

To evaluate Rk, we will plot it as a function of snrk for
different values of fk, hk and φk. In the special case where
fk = 0 and φk < 1, Rk is strictly greater than 1 meaning
that in the case of perfect orthogonality, it is always more
profitable to apply CDMA rather than TDMA especially for
high values of snrk as we can see in Figure 1 where Rk is
plotted for different values of φk. In Figure 2, Rk is depicted
for φk = 1/30, for 0.1 ≤ fk ≤ 0.9 and for hk = 0.03 which is
a reasonable value for hk ([5], [13]). We see that for fk ≤ 0.6,
it is better to apply CDMA rather than TDMA scheduling. In
Figure 3, Rk is depicted as a function of snrk for φk = 1/30,
for 0.01 ≤ hk ≤ 0.09 and for fk = 0.3. And we see that for
a moderate value of fk, it is always better to apply CDMA
rather than TDMA especially for high values of hk.

Fig. 1

RATIO FOR f=0

Fig. 2

RATIO FOR h=0.03

Fig. 3

RATIO FOR f=0.3

B. Delimiting the cell into zones

We saw in the preceding section that omitting to adopt a
simplifying model where the transmission rate received by
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users varies linearly in the SNR has lead us to the conclusion
that it is not always better to serve one user at a time. This
conclusion has driven us to divide the cell into two zones: in
the first zone, termed Zone 1, the peak rate is almost never
proportional to the SNR and thus TDMA scheduling does
not result in optimal performances, contrary to the second
zone, termed Zone 2, where this linearity is satisfied with
non-negligible probability and therefore TDMA scheduling is
appropriate. Our target is to define the previously introduced
zones in such a way that the two assumptions become more
realistic inside each zone.

We know that log2(1 + x) ≈ x/ ln(2) is valid for very
small values of x. Thus, we will adopt that approximation for
x ≤ 0.05 leading to a maximum deviation of 2.4% from the
actual value at x = 0.05. As a result, we assume that the
following approximation:

Ck,TDMA(t) ≈ φkW · SNRk(t)/ ln(2) (6)

is valid for

SNRk(t) = SNRk · xk(t) ≤ 0.05 (7)

where

SNRk =
Pk

η + IBS + Pkhk
(8)

denotes the SNR user k would get in the absence of fast fading.

Accordingly, we will define the geographical region in the
cell, termed Zone 1, where users do not profit fully from
TDMA scheduling because they almost never (we can say
with probability 99%) satisfy formula (7), i.e.:

P(SNRk · xk(t) ≥ 0.05) > 0.99 (9)

To compute (9), we need to evaluate (8) beginning with
IBS . For that we adopt the approach in [4] where the inter-
cell interference is caused by all BSs (working at maximum
power P ) in the network taken to be homogeneous with a
density of stations ρBS per unit of surface and thus we get:

IBS = P · γ(r)2πρBS
β − 2

rβ [(2R− r)2−β − (RS − r)2−β ]

with R being the cell radius and RS the network radius.

By defining η = αP and taking ρBS = 1
πR2 , we get from

the path loss model and (5):

1
snrk

= αmax
(
(
rk
ε

)β , 1
)

+ ν(rk) (10)

with ν(rk) = 2
β−2 · ( rk

R )2[(2 Rrk
− 1)2−β − (RS

rk
− 1)2−β ]

We obtain from (8) and (10):

1
SNRk

= αmax
(
(
rk
ε

)β , 1
)

+ ν(rk) + hk (11)

Finally, from (9) and (11), and taking R = 2.0 · ε (higher
values of R induce very low rates at the border of the cell),
we have the following:

e
−0.05
SNRk > 0.99 ⇒ r < R1 ≈ 1.4 · ε (12)

obtained for β = 4.0 (urban environment), RS = 10R
(quasi-infinite network [4]), α = 10−10, hk = 0.03 which are
realistic parameters ([5], [6]) and fk = 0.1. Assumed values
for the orthogonality factor [6] are 0.4 for urban macro-cells
and 0.06 for urban micro-cells. The size of Zone 1 being
close to a micro-cell (a micro-cell is approximately equal in
size to half of a macro-cell), it is reasonable to assume that
fk = 0.1.

Therefore, users in Zone 2 are those who are situated
at a distance greater than R1 and for whom formula (6) is
valid with non-negligible probability.

Because TDMA scheduling is not appropriate to users
in Zone 1, we suggest to serve them in a CDMA fashion
(we prove in section III that this will result in a performance
enhancement) while continuing on serving users in Zone
2 in a TDMA fashion, more specifically according to the
well-known PF algorithm. To carry out this hybrid scheduling,
we suggest in this paper an alternative scheduling approach
to plain PF, termed HPF. At its first hierarchical level, HPF
distributes the slots between the two zones in a WRR fashion
(Zone 1 will be served with probability P(A1) and Zone 2
with probability P(A2)). And at its second level, HPF serves
users inside Zone 1 in a CDMA fashion and users inside
Zone 2 according to the PF algorithm. We show next that
HPF augments the overall mean capacity of the cell.

III. ANALYTICAL STUDY OF HPF VS. STANDARD PF

The total number of users present in Zone 1 is n1 and in
Zone 2 is n2. Traffic demand is uniformly distributed in the
cell.

A. The Average Peak rate in HPF

Proposition 1:
The Average Peak Rate obtained in Zone 1 is:

CHPF,1 = WP(A1)
∫ ∞

0

e−xkdxk
[
log2(1 + SNR(ε) · xk) ε

2

R2
1

+
∫ R1

ε

log2(1 + SNR(rk) · xk)2rkdrk
R2

1

]

with SNR(rk) = φk·snr(rk)
1+snr(rk)·(fk(1−φk)+hkφk) , φk = 1

n1
and

event A1={Zone 1 is being served}.

Proof:
The average peak rate of a user k belonging to Zone 1 served
according to HPF (CDMA scheduling) is:

CHPF,k,1 = WP(A1)
∫ ∞

0

log2(1 + SNR(rk) · xk)e−xkdxk

(13)
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The probability that user k is located between rk and rk+drk
in Zone 1 being 2πrkdrk

πR2
1

, we obtain CHPF,1.

Proposition 2:
The Average Peak Rate obtained in Zone 2 is:

CHPF,2 =WP(A2)
∫ ∞

0

fn2(xk)dxk
[

∫ R

R1

log2(1 + SNR(rk) · xk) 2rkdrk
R2 −R2

1

]

with SNR(rk) = snr(rk)
1+snr(rk)·hk

, fn2(xk) = e−xk(1 −
e−xk)n2−1 and event A2={Zone 2 is being served}.

Proof:
In Zone 2, users are served according to the PF algorithm and
we know that the latter schedules, at time slot t, the user with
the highest SNR relative to its current average SNR, i.e.,

user k∗ = argkmax
SNRk(t)
Tk(t)

with SNRk(t) = SNR(rk) · xk(t) and Tk being the expo-
nentially smoothed SNR, given by:

Tk(t+ 1) = (1 − 1
τ

) · Tk(t) +
1
τ
· SNRk(t) · 1luser(t)=k

with 1luser(t)=k being the indicator function which equals 1
if user k was chosen at time slot t and 0 otherwise. τ is a
time constant that captures the time-scales of the PF scheduler.

The random variables representing the fading being i.i.d,
we have that Tk = SNR(rk) · Uk, where Uk are identically
distributed random variables (but not independent).
If 1

τ → 0, then:

Tk → SNR(rk) · V (14)

where V is a constant. In practice, τ has large values because
this offers the opportunity of waiting a long time before
scheduling a user when its channel quality is maximal:
the scheduler is then expected to better exploit multi-user
diversity. As a result, we will adopt formula (14) in our
analysis. We refer to [7] for rigorous justifications of the
above claims.
Therefore, the average rate of a user k belonging to Zone 2
served according to the standard PF is:

CHPF,k,2 =WE[log2(1 + SNRk(t)) · 1l{A2}·
1l{ SNRk(t)

V · SNR(rk)
= maxl=1..n2

SNRl(t)
V · SNR(rl)

}]

=WP(A2)E[log2(1 + xkSNR(rk)) · 1l{xk = maxl=1..n2xl}]
=WP(A2)E[log2(1 + SNR(rk)xk)|Bn2 ]P(Bn2)

with Bn2 = {xk = max(x1, .., xn2)}.

Knowing that P(Bn2) = 1
n2

because the random variables
xk(t) are i.i.d, we obtain:

CHPF,k,2 = WP(A2)
∫ ∞

0

log2(1 + SNR(rk) · xk)fn2(xk)dxk
(15)

with fn2(xk) = e−xk(1 − e−xk)n2−1.

The probability that user k is located between rk and
rk + drk in Zone 2 being 2πrkdrk

π(R2−R2
1)

, we get CHPF,2.

B. The Average Peak rate in Standard PF

The analysis is identical to the one done in Zone 2 except
that P(A2) = 1 because the cell is considered as a whole.
Thus, we get from (15) the average peak rate of a user k:

CPF,k = W

∫ ∞

0

log2(1 + SNR(rk) · xk)fn(xk)dxk (16)

where SNR(rk) = snr(rk)
1+snr(rk)·hk

and fn(xk) =
e−xk(1 − e−xk)n−1.

Hence, the Average Peak Rate of the cell in Standard
PF is:

CPF = W

∫ ∞

0

fn(xk)dxk
[
log2(1 + SNR(ε) · xk) ε

2

R2
+

∫ R

ε

log2(1 + SNR(rk) · xk)2rkdrk
R2

]

We define the following two mean peak rates to evaluate later
the impact of HPF on both categories of users:

CPF,1 = W

∫ ∞

0

fn(xk)dxk
[
log2(1 + SNR(ε) · xk) ε

2

R2
1

+
∫ R1

ε

log2(1 + SNR(rk) · xk)2rkdrk
R2

1

]

CPF,2 = W

∫ ∞

0

fn(xk)dxk
[

∫ R

R1

log2(1 + SNR(rk) · xk) 2rkdrk
R2 −R2

1

]

C. Average Gain

1) Numerical Results: We begin by computing the ratio of
the mean peak rate obtained by applying CDMA divided by
the mean peak rate obtained by applying the PF algorithm:

�k =

∫ ∞
0

log2(1 + snrkxk

n+snrk·(fk(n−1)+hk) )e
−xkdxk∫ ∞

0
log2(1 + snrkxk

1+snrkhk
)(1 − e−xk)n−1e−xkdxk

We plot, in Figure 4, �k as a function of snrk, for hk = 0.03,
fk = 0.1 and n = 30. We can see that it is better to apply
CDMA when serving users until snrk goes approximately
below 5.0, which means for rk ≥ 1.5 · ε where it is preferable
to switch to the PF scheduling. This highlights the validity
and sensibility of the idea behind our hierarchical scheduler.
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Fig. 4

RATIO FOR f=0.1, h=0.03

To evaluate the average gain in the total average peak
rate of the cell, we compute the following ratios:

� = CHP F,1+CHP F,2
CP F

, �1 = CHP F,1
CP F,1

and �2 = CP F,2
CHP F,2

Following the assumption that users are uniformly
distributed in the cell, it is reasonable to suppose that
n1 = n · R2

1
R2 and n2 = n · R2−R2

1
R2 . To compute �, we still have

to set the values taken by P(A1) and P(A2). We begin by
setting the value of P(A2) such that users in Zone 2, in our
HPF, have the same chance to access the channel as users in
Standard PF situated in the same geographical area, for that
reason P(A2) = R2−R2

1
R2 and thus P(A1) = 1 − P(A2) = R2

1
R2 .

We obtain for n = 30: �1 ≈ 1.31, �2 ≈ 1.1 and � ≈ 1.16
which means that our HPF will lead to a total gain of 16% in
the average peak capacity of the cell without really affecting
users with low snr situated in Zone 2.
Nevertheless, if we want to realize more gain in the total peak
rate of the cell, we increase P(A1) at the expense of lowering
the rates realized by users in Zone 2. For instance, if we
serve Zone 1 twice as often as Zone 2, in other words if
we set P(A1) = 2/3 and P(A2) = 1/3, we obtain � ≈ 1.39
leading to a gain of 39%.

2) Simulation Results: We present in this section our
numerical experiments performed to illustrate the previous
results. Users are served according to the Standard PF (SPF)
and according to our HPF where slots are distributed such
that P(A1) = R2

1
R2 and P(A2) = R2−R2

1
R2 . The number of users

in each zone is fixed and equal to 15. We take W = 1.0,
hk=0.03, fk = 0.1 and ε = 1.0. In all experiments, we
determine the average rate per user and display the results
for users belonging to the same zone. We plot the average
rate realized by users occupying a ring of internal radius r
and external radius r + dr such that dr = 0.01 and compare
results with what we obtain using formulae (13) and (15)
respectively for Zone 1 and Zone 2 in HPF, and formula
(16) in SPF at r.

Zone 1 SPF HPF �1

NUM 0.187 0.246 1.31
SIM 0.189 0.251 1.33

Zone 2 SPF HPF �2

NUM 0.112 0.102 1.10
SIM 0.12 0.110 1.04

TABLE I

TOTAL AVERAGE PEAK RATE

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 1  1.05  1.1  1.15  1.2  1.25  1.3  1.35

M
ea

n 
R

at
e

r

SPF Analysis
SPF Simulation

HPF Analysis
HPF Simulation

Fig. 5

AVERAGE RATE FOR ZONE 1
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AVERAGE RATE FOR ZONE 2

In Figure 6, we notice a slight degradation in the average
rate in our model in comparison with SPF as predicted.
Whereas in Figure 5, we can see how close users benefit from
being served in a CDMA fashion rather than in a TDMA
fashion as it is done in the PF scheduler. Furthermore, we can
see how the analytical results give very precise estimations of
the simulation results as the two curves are indistinguishable.

In table I, we computed the mean rate obtained in each
zone by simulation and we compared it to the mean rate
obtained numerically from CHPF,1 and CHPF,2 for HPF and
from CPF,1 and CPF,2 for SPF respectively for Zone 1 and
Zone 2. We can see how the two sets of values are very close.
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Finally, we obtain for � the value 1.17 by simulation and 1.16
numerically.

IV. DYNAMIC MODEL OF HPF

In order for Zone x to behave like a Generalized Processor
Sharing (GPS) [8] system, the service rate of the latter must
only depend on the total number of users occupying it.
In Zone 1, the SNR of user k is:

SNRk,1 =
φk

α/γk + νk + f · (1 − φk) + h · φk (17)

In order for Zone 1 to behave like a GPS system, we need to
adopt the following two assumptions in our analytical model:

Hypothesis I: We compute the SNR at an ”average location”
within Zone 1 by replacing in (17) γk and νk by their
sample averages γI and νI for rk ranging from ε to R1. In
practical radio network dimensioning, it is not possible to
use the parameters of each user but average values of the
individual parameters among users ([9], [10]) which makes
this first assumption fairly plausible. Besides, considering
two ranges of r by considering two zones will give us much
more precise values for these parameters than those obtained
by considering the cell as a whole. The average parameters
are obtained according to the following:

α/γI+νI =
∫ R1

ε

α( rk

ε )β + ν(rk)
R2

1

2rkdrk+(
ε

R1
)2 ·(α+ν(ε))

(18)
Hypothesis II: Due to the fact that we are considering an
average value of the SNR, the impact of fading will not
be taken into consideration in the analysis. That is again a
reasonable assumption in a CDMA system where the fading
of the channel will be combated through the various available
techniques [11] (Space Time coding, Adaptive Modulation,
Dynamic Frequency Selection, etc.) and where the high rates
available in Zone 1 will further minimize the effect of fading.

In section IV-B, we will prove the validity of these two hy-
pothesizes through simulation by showing that the discrepancy
between the values obtained by making these two assumptions
in the analytical model, from those obtained by simulation,
where these assumptions are omitted, is negligible. Finally,
we have the following, for φk = 1

n1
:

SNRI(n1) = (n1 · (α/γI + νI + f) + h− f)−1

As a consequence, each user will get the following rate when
the BS divides its transmission power P equally between
active users:

C1 = W log2(1 + SNRI(n1))P(A1)

In Zone 2, we know from (15) that the rate of user k is:

CHPF,k,2 =WP(A2)
∫ ∞

0

e−xk(1 − e−xk)n2−1·
log2(1 + xk · SNRk,2)dxk

with SNRk,2 = (α/γk + νk + h)−1.

We define the following:

Fk,2(n2) =
CHPF,k,2

WP(A2) · log2(1 + SNRk,2)
(19)

By plotting Fk,2(n2) as a function of R1 ≤ r ≤ R for different
values of n2, we can see in Figure 7 that it varies slightly and
can be well approximated by a constant for every value of n2.
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Fig. 7

Fk,2(n2) AS FUNCTION OF r

Thus, we define F2(n2) that consists in replacing γk and
νk by their average values γII and νII in (19). The average
parameters are obtained according to:

α/γII + νII =
∫ R

R1

α( rk

ε )β + ν(rk)
R2 −R2

1

2rkdrk (20)

We adopt the subsequent approximation Fk,2(n2) ≈ F2(n2)
necessary for Zone 2 to behave like a GPS system. We
compute the following standard deviation |Fk,2(n2)−F2(n2)|

Fk,2(n2)

for R1 ≤ r ≤ R and 1 ≤ n2 ≤ 15 realizing that the
maximum deviation from the real value is approximately
0.15 at n2 = 15 and r = R. We will further validate this
approximation through simulation.

A. The Processor Sharing Model

Users arrive as a Poisson process of intensity λ · ds in
any area of surface ds. Flow sizes are i.i.d and σ is the
corresponding random variable. We denote by ρ = λ ·E[σ] the
traffic density and by dρ(r) = ρ · 2πrdr the traffic intensity
generated by users whose distance to the BS ranges between r
and r+dr. The maximum number of simultaneously admitted
users in Zone x will be limited to nMax,x in order to guarantee
a minimum rate which is a QoS notion appropriate for non-
real time users. New transfers generated in a zone where they
are already nMax,x transfers in progress are blocked and lost.
Based on the above analysis, we see that, in every zone, each
user k is served at a fraction Fx(nx) of some constant ck,x
whenever there are nx active users in its zone:
In Zone 1

F1(n1) = log2(1 + SNRI(n1)) (21)
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ck,1 = W · P(A1)

In Zone 2

F2(n2) =

∫ ∞
0
e−xk(1 − e−xk)n2−1 log2(1 + xk · SNRII)dxk

log2(1 + SNRII)
(22)

ck,2 = W · P(A2) log2(1 + SNRk)

with SNRII = (α/γII + νII + h)−1

We see from (21) and (21) that Fx(.) is an arbitrary
positive function satisfying the subsequent constraints for
nx ≤ nMax,x:

0 ≤ Fx(nx) ≤ ∞ (I) and nx · Fx(nx) ≤ ∞ (II)

Thus, every zone behaves like a GPS system with equal but
time varying service allocation as users randomly enter and
leave the system. As a consequence, we can directly apply
the formulae in [8] regarding the stationary state distributions
of our system with the assumption that users arrive according
to a Poisson process. Such a system has the well-known
insensitivity property which means that performance depends
mainly on the load factor (and the maximum number of users
in presence of an admission control policy), and not on the
distribution of the flow size which is continually changing
given the ever varying nature of data applications. Hence,
our scheduling approach, in addition to increasing the overall
throughput of the cell, relieves it from dimensioning issues.
The stationary distribution of the number of active users:

In Zone x:

πx(n) =
ρn

x

ψx(n)·n!∑nMax,x

k=0
ρk

x

ψx(k)·k!

where ψx(n) =
∏n
i=1 Fx(i) and ρx is the load in Zone x:

with ρ1 =
∫ R1

ε
dρ(rk)
ck,1

= ρπ(R2
1−ε2)

WP(A1)
and

ρ2 =
∫ R
R1

dρ(rk)
ck,2

= ρπ
WP(A2)

∫ R
R1

2rkdrk

log2(1+SNRk,2)

Using Little’s law, we find that the flow throughput Thk,x
of user k in Zone x, defined as the ratio of the mean flow size
E[σ] to the mean flow duration, is given by:

Thx,k = cx,k · ρx (1 −Bx)
E[nMAX,x]

where, in Zone x, Bx = πx (n = nMax,x) is the blocking
probability and E[nMax,x] =

∑nMax,x

i=1 i · πx(i) is the mean
number of active users.

B. Simulation Results

We present here our numerical experiments performed to
illustrate the above results. We consider a system where users
initiate file transfer requests as a Poisson process of intensity
λT = λπR2 and traffic demand is uniformly distributed in the

cell. At most 15 users are admitted simultaneously in each
zone (nMax,x = 15). The system operates in a time-slotted
fashion with a slot duration equal to 2ms. We take W = 1.0,
h = 0.03, f = 0.1 and ε = 1.0. Flow sizes are independent
and exponentially distributed with normalized mean equal to
20. Users are served according to our hierarchical approach of
PF where each zone is served at a time (P(A1) = P(A2) =
1/2). We obtain respectively from (18) and (20), α/γI +νI ≈
0.05 and α/γII + νII ≈ 0.5. The divergence in the preceding
two values show the difficulty to give fitting mean values for
the parameters γk and νk when we consider the entire cell.
This explains why we failed to find an appropriate analytical
model for the Standard PF as it covers the whole cell.
We determine the Normalized Throughput per user Tx,k/cx,k
and display the Average Normalized Throughput for users
belonging to the same zone as a function of 1

λT
.

The simulation results obtained are compared to the analytical
results of subsection IV-A. For Zone 1, we run two sets of
simulations to show that the proposed GPS model is still
valid in spite of the two restrictive hypothesizes considered in
section IV-A: in the first set of simulations, fading is omitted,
while in the second set, we consider a Rayleigh fading channel.
However, in two sets of experiments the parameters γI and
νI are not taken as constants as in the analytical model but
vary with distance. In the simulations we run for Zone 2, the
parameters γII and νII are not taken as constants as in the
analytical model but vary with distance. Figures 8 and 9 depict
the Average Normalized Throughput as a function of 1

λT
.
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THROUGHPUT AS A FUNCTION OF 1
λT

IN ZONE 1

In Figure 8, we can see how the analytical results are very
close from the simulation results when fading is omitted.
Nevertheless, when fading is taken into consideration the
simulation results follow the same trend as the analytical
results and are reasonably close. In Figure 9, we can see how
the analytical formulae provide highly accurate estimates of
the simulation results especially at moderate to high loads.
Therefore, we can fairly consider that the proposed analytical
model approximates very well the behaviour of our HPF.
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V. CONCLUSION

This work suggested decoupling the cell into two zones and
serving each zone in a WRR fashion using an appropriate
scheduler. We chose to apply the PF algorithm for Zone 2
because the SNR is almost proportional to the feasible rate of
users belonging to this zone and because of the moderate to
bad conditions of its channel which requires serving one user
at a time to cancel intra-cell interference. Whereas, for Zone
1 we chose to serve its users in a CDMA fashion because
of the logarithmic relation between their SNR and their
feasible rate and because of the good channel condition they
experience. We proved that our scheduler globally increased
the performance in terms of average rates besides the fact that
it is completely scalable which frees it from dimensioning
issues.
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