
Opportunistic Weighted Fair Queueing
Kinda Khawam, Daniel Kofman

GET/ENST Telecom Paris
Email: {khawam, kofman}@enst.fr

Abstract— The ongoing evolution towards the generalization
of wireless access to multi-service networks stresses on the need
for optimizing the control of radio resources and in particular,
for designing efficient scheduling approaches. The scheduling
mechanisms proposed for wireline links do not carry over to
wireless interfaces due to the variability of radio links capacity.
Efficient schedulers for the radio channel have to take into
account information relative to the channel state when allocating
resources to the various connected equipments. For the case
of delay tolerant traffic, the scheduler may take advantage of
terminals diversity. We propose in this paper a modified version
of the Weighted Fair Queueing (WFQ) algorithm, termed OWFQ
(Opportunistic WFQ), that notably increases the average system
performance through opportunistic scheduling while fulfilling
users’ QoS needs in terms of minimum realized throughput.

I. INTRODUCTION

The number of devices accessing the network through
wireless interfaces is growing fast and will overtake, in the
coming years, the number of wireline connected devices. This
evolution exacerbates the difficulties raised by the scarcity of
radio resources and increases the need for optimal utilization
of the latter, especially in the case of nowadays multi-service
networks. Scheduling is a key tool for optimizing resource
allocation under the QoS constraints imposed by multi-
service networks. The algorithms that have been proposed for
adapting fair queueing to the wireless domain (e.g. [5]) make
the assumption that the channel capacity is constant and try
to make short bursts of channel errors transparent to flows by
a dynamic reassignment of channel allocation over small time
scales. In this paper we follow a different approach: rather
than falsely assuming that the shared capacity is constant, we
propose to enhance the radio link utilization by allowing the
scheduler to make its decisions based on the knowledge of the
various terminals’ channel state. More precisely, we propose
a modified version of the Weighted Fair Queueing (WFQ)
algorithm [1], termed OWFQ (Opportunistic WFQ), that
notably increases the average system performance through
opportunistic scheduling while fulfilling users’ QoS needs in
terms of minimum realized throughput. Our mechanism can
enhance the performance of existing and future systems, as
those based on the 802.16 ([6], [7]) technology.

The rest of the paper is organized as follows. In Section II-C,
we present the proposed OWFQ mechanism and in Section III,
we prove analytically that OWFQ guarantees fairness among
competing flows. Section IV is devoted to performance com-
parison between WFQ and OWFQ in a wireless environment
impacted by fast fading. We conclude in Section V.

II. OPPORTUNISTIC WEIGHTED FAIR QUEUEING

Most scheduling algorithms designed for radio access divide
the flows in a simplistic and binary way into two categories:
good channel-state flows that can be scheduled and bad
channel-state flows that cannot be scheduled and consequently
relinquish their bandwidth to the former category. The sched-
uler keeps track of the excess bandwidth obtained by good-
channel state flows in order to restore it to bad channel-state
flows. Existing algorithms differ mainly by the compensation
process they propose. The main limitation of these works is
that channel condition is modelled as either ”good” or ”bad”
which is too simple to characterize realistic wireless channels.
Contrary to existing schemes, our approach profits from the
channel fluctuations by way of opportunistic scheduling, seek-
ing to augment overall Throughput under users’ QoS requests.
In this section, we present the radio resource model and then
introduce our scheduling mechanism.

A. The radio model

We consider a wireless system where the scheduling is
performed by a Base Station (BS) serving a multitude of
flows in a downlink channel of mean capacity C.

Let xi be the i.i.d. random variables (of unit mean)
representing the effect of fast fading experienced by flow i,
then the channel capacity of this flow at time t is:

Ci(t) = C · xi(t) (1)

As we consider Rayleigh fading, the random variables xi are
exponentially distributed. However, we choose to bound the
minimum value taken by xi to xmin 6= 0 to obtain a stable
system. Indeed, since E[1

xi
] = ∞, the mean service time is

also infinite and the system is not stable. Thus, we replace (1)
by the following:

Ci(t) = max
(

C · xi(t), C · xmin

)

(2)

B. Reminder on Weighted Fair Queuing

WFQ is a packet scheduling technique allowing guaranteed
bandwidth services. It is an approximation of the Generalized
Processor Sharing (GPS) scheduling which allows different
flows to have different service shares. In a link of capacity C,
WFQ guarantees to each flow i of weight ri, a minimum rate
<i given by:

<i = C ·
ri

∑

j rj

The WFQ scheduler assigns a start tag and a finish tag
to each arriving packet and serves packets in the increasing
order of their finish tags. We denote by pk

i the kth packet
of flow i, by A(pk

i) its arrival time and by S(pk
i) and F (pk

i),
respectively, the start and finish tags assigned to pk

i . The WFQ
behaviour is defined by the following equations:

S(pk
i) = max

(

V (A(pk
i)), F (pk−1

i)
)

(3)

F (pk
i) = S(pk

i) +
Lk

i

ri

(4)

where Lk
i is the size of packet pk

i and V (t) is the virtual time
at time t defined by:

dV (t)

dt
=

C
∑

i∈B(t) ri

(5)

with B(t) being the set of active flows at time t.

C. Opportunistic Weighted Fair Queuing

In order to account for the variability of the channel
capacity, we propose a new scheduler, named Opportunistic
WFQ (OWFQ), defined as follows (as in WFQ, packets are
scheduled in increasing order of their finish tags):

S(pk
i) = max

(

V (A(pk
i)), S(pk−1

i) +
Lk−1

i

ri

)

(6)

Whenever the BS finishes serving a packet at time TS, in
order to schedule the next packet, it computes the finish tag
for HOL (Head Of Line) packets of active flows according to
the following equation:

F (pk
i) = S(pk

i) +
Lk

i

ri · xi(TS)
(7)

The rationale behind OWFQ is as follows: the better the
channel quality experienced by a flow i, the greater the
value taken by xi and the lower the value taken by its finish
tag. As a result, its chance to be scheduled will increase.
Thus, potential candidates for accessing the channel may
be compelled to pass their turn in favour of flows with
better channel state which will obviously increase global
Throughput. Besides, flows that ”missed” their turn will
not wait ”too long” even if they experience persisting bad
channel state because we do not change the definition of the
start tag and therefore the state of the channel only impacts
one of the terms defining the finish tag. Indeed, the start tag
is still computed as in the original model and reflects how
frequently the present flow is served in respect to its weight.
For that reason, the penalized flow will eventually have the
smallest finish time among contending flows despite its large
virtual service time.

As we consider fast fading, the approach reaches its optimal
behaviour when the packet duration time Li

Ci
is in the same or

lower order of magnitude of fast fading variations. This is the
case when large capacities are provided to flows. Otherwise,

fragmentation of packets will enhance performances.

III. FAIRNESS GUARANTEE

Different metrics of fairness can be defined. In this section,
we use the weighted fairness concept as defined in [4] and
prove that, when using OWFQ,

∣

∣

∣

Wi(t1,t2)
ri

−
Wj(t1,t2)

rj

∣

∣

∣
is

bounded for any interval [t1, t2] in which both flows i and j
are backlogged, where Wi(t1, t2) is the aggregate service (in
bits) received by flow i in the interval [t1, t2].

The proof is obtained by establishing an upper and lower
bound on Wi(t1, t2) in Lemmas 1 and 2 respectively (detailed
proofs are found in VI).

Lemma 1: In an OWFQ server, if flow i is backlogged in
the interval [t1, t2], then:

Wi(t1, t2) ≥ ri · (v2 − v1) − Lmax −
Lmax

xmin

Where v1 = V (t1) and v2 = V (t2).

We conclude that OWFQ guarantees a minimum throughput
for each flow.

Lemma 2: In an OWFQ server, during any interval [t1, t2],
we have that:

Wi(t1, t2) ≤ ri · (v2 − v1) + Lmax

Theorem 1: For any interval [t1, t2] in which two flows i
and j are backlogged during the entire interval, the difference
in the service received is bounded by:

∣

∣

∣

∣

Wi(t1, t2)

ri

−
Wj(t1, t2)

rj

∣

∣

∣

∣

≤Lmax(
1

ri

+
1

rj

)+

Lmax

xmin

· max(
1

ri

,
1

rj

)

The result is easily obtained from Lemmas 1 and 2. We
conclude that OWFQ provides fairness guarantees.

IV. NUMERICAL EXPERIMENTS

The values chosen in the following numerical analysis are
inspired by the properties of 802.16 systems. We consider a
wireless channel of mean capacity equal to C = 10Mbps
subject to Rayleigh fading. Packet size follows the Bounded
Pareto (BP) distribution which is commonly used in analysis
because it can exhibit the high variance property as observed
in the internet traffic [8]. We denote the BP distribution by
BP (p, q, α) where p and q are respectively the minimum
packet size (50 bytes) and maximum packet size (1500 bytes)
and α is the exponent of the power law. The probability density
function of the BP distribution is:

fBP (x) =
α · pα

1 −
(

p
q

)α · x−α−1, p ≤ x ≤ q, 0 ≤ α ≤ 2

We take α = 1.16 and therefore the mean packet size equals
155 bytes.

We consider three independent permanent Poisson
processes of intensity λ/3 with the following weights
r0 = 0.5, r1 = 0.25 and r2 = 0.1. The global arrival process
is therefore a Poisson process of intensity λ. In order to vary
the load in the cell, we vary λ. We take xmin = 0.1 and we
normalize the mean capacity to C = 1.0. The buffer capacity
of each flow is limited to 106 packets. New packets generated
when the buffer is full are lost.

We consider two independent models, in the first, flows are
served according to the WFQ algorithm and in the second,
flows are served according to our Opportunistic WFQ. The
total load ρ is defined as the ratio of the total arrival rate, λ,
over the average capacity C. We first analyze and compare,
for both models, the impact of total load on the throughput,
the packet loss ratio and the percentage of packets served at
the minimum rate for each individual flow. Then we analyse
the impact of total load on delay.

Fig. 1. Mean Throughput per flow as a function of ρ

As we can see in Figure 1, for ρ ≤ 0.2, the OWFQ does not
realize any gain in terms of throughput compared with WFQ
which is natural since the probability of having more than
one bottleneck flow is negligible and therefore no advantage
is taken from taking into account the radio channel state.
Any scheduling policy based on opportunism will bring no
improvement in comparison with a non-opportunistic scheme
if there are not at least two active users present in the system
when the scheduling decision is made. For ρ ≤ 0.3, OWFQ
does not realize any gain in terms of throughput for flows 0
and 1 since only flow 2 has bottlenecked packets with non
negligible probability; according to simulation results, the
mean number of packets enqueued for flows 0 and 1 is strictly
inferior to 2 for this range of the total load. Nevertheless,
while the number of packets served at the minimum rate
in WFQ remains constant when ρ varies in the cited range,
(approximately equal to 9.6% of the total number of served
packets), the latter decreases in OWFQ as load increases

passing from 8% for ρ = 0.2 to 6% for ρ = 0.3. As for flow
2, the mean number of packets enqueued is around 2 which
means that the latter is often active and served simultaneously
either with flow 0 or flow 1. As a result, flow 2 realizes a
gain in mean throughput of approximately 20%.

For 0.4 ≤ ρ ≤ 1.0, the gain obtained from multi-user
diversity is tangible: for flow 0, the gain in mean throughput
as compared to WFQ varies from 6% for ρ = 0, 4 to 128%
for ρ = 0.4. For flow 1, the gain varies from 6% to 127%
and for flow 2, the gain varies from 25% to 128%. Moreover,
at ρ = 1.0, flow 0 and flow 1 lose respectively 30% and 70%
of their packets in WFQ due to buffer overflow while no
packets losses have been observed during the simulation time
in the OWFQ case. Besides, 9.6% of the packets are served
at Cmin in WFQ against respectively 4% and 2% in OWFQ.
As for flow 2, the number of lost packets, at ρ = 1.0, is
85% in WFQ against 55% in OWFQ while the number of
packets served at Cmin is limited to 0.4% in OWFQ (their
number remains the same in WFQ for all flows and equals
9.6% whatever the load is). Besides, the differentiation in
the service received by flows 0 and 1 appears in OWFQ at
ρ > 0.8 while it appears earlier in WFQ at ρ = 0.7 which
highlights the efficient allocation of resources in OWFQ.

For 1.0 < ρ ≤ 1.5, the gain in mean throughput for
flow 0 is around 137%, while at ρ = 1.5 half of packets are
lost in WFQ and only 10% in OWFQ. The number of packets
served at Cmin for flow 0 is around 5% in OWFQ. For flow 1,
the gain is around 136% and while the number of lost packets
is only lowered from 90% to 80% at ρ = 1.5, the number of
packets served at Cmin is around 1% in OWFQ. As for flow
2, the gain in throughput is around 129% and although the
blocking probabilities are alike in both scenarios, the number
of packets served at Cmin is only 0.1%, at ρ = 1.5, in
OWFQ. We conclude that, in addition to notably increasing
performances in terms of realized throughput, our approach
protects flows at much higher rates than in plain WFQ.

The last remark allows predicting that Opportunistic
WFQ will lead to a reduction in average sojourn times.
We analyse now the impact of the total load on the
relative deviation dT of the Mean Sojourn Time in the
WFQ case, termed TWFQ, from the Mean Sojourn Time
in the OWFQ case, termed TOWFQ, which we define
as dT = |TWFQ − TOWFQ| /TWFQ × 100. We can see
from Figure 2 that the Mean Sojourn Time in OWFQ is
dramatically reduced as compared to WFQ. Therefore, the
gap in the realized mean throughput between OWFQ and
WFQ will widen even more in a realistic model based on
the TCP protocol where the delay experienced by packets
has severe negative repercussions on the overall performances.

We analyse now the Total Throughputs. We denote by
CWFQ and COWFQ the Total throughput for the WFQ and
the OWFQ cases respectively. From Figure 3, we can see

 30

 40

 50

 60

 70

 80

 90

 100

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

dT

Load

dT 0
dT 1
dT 2

Fig. 2. dT as a function of ρ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

To
ta

l T
hr

ou
gh

pu
t

Load

owfq
wfq

Fig. 3. Total Throughput as a function of ρ

the remarkable gain realized in terms of Total throughput in
OWFQ in comparison with WFQ. We notice also that CWFQ

converges to 0.36 which is very inferior to the mean capacity,
given by the following:

E[C(t)] = C ·

∫

∞

0

max(x, 0.1) · e−xdx ≈ C

which in our experiments is approximately equal to 1.0 (we
chose C = 1.0). To interpret this result, we observe that our
model is equivalent to a model of constant capacity C fed
by the same arrival process as in the original model but with
packets of length Li

xi
. We thus have the following stability

condition:

λ · E[
Li

xi

] ≤ C (8)

From (8), we have that:

λ · E[Li] · E[
1

xi

] ≤ C ⇒ λ · E[Li] ≤
C

E[1
xi

]

Hence, the actual mean capacity of the system is:

C

E[1
xi

]
=

C
∫

∞

0
1

max(x,0.1) · e
−xdx

≈ 0.36 · C (9)

which explains the result obtained in WFQ.

In OWFQ, the behaviour of the system is much more
complex so we cannot provide a similar analytical evaluation
of the capacity. The gain shown in Figure 3 is of course due

OWFQ Thi Thj COWFQ

6 0.3088 0.1544 1.39
10 0.2367 0.1184 1.78
14 0.1798 0.0896 1.89

TABLE I

WFQ Thi Thj CWFQ

6 0.0798 0.0398 0.359
10 0.0475 0.0238 0.357
14 0.0342 0.0171 0.359

TABLE II

to the usage of an opportunistic approach.

To show that the gain obtained increases with the number
of users (multi-user diversity), we run three sets of simulations
with respectively n = 6, 10 and 14 flows at overload. For
every value of n, flows are divided into two categories with
equal number of flows (n

2). All flows of a given category
have the same weight and the weight of flows of the first
category is twice the weight of flows of the second category.
We compute the Total Throughput CWFQ and COWFQ for
both schedulers, given by (Th1 + Th2) · n

2 , where Th1

and Th2 denote, respectively, the average rate of flows of
categories 1 and 2.

First, we notice that COWFQ increases significantly
with the number of flows. We also observe that CWFQ is
approximately equal to 0.36 for all values of n, which was
expected from formula (9). To estimate the gain obtained
in terms of realized Total Throughput, we compute the
relative deviation of COWFQ from CWFQ by applying the
following formula Gn = |CWFQ − COWFQ| /CWFQ. We
get the subsequent results G6 ≈ 2.87, G10 ≈ 3.99 and
G14 ≈ 4.26. Hence, we can see that the achieved gain is
significant and that it increases with the number of served
flows, which means that our scheduler takes advantage of
flows diversity. Moreover, we see that for both schedulers,
we have Thi ≈ 2 · Thj and thus, the differentiation in the
realized throughputs is achieved.

V. CONCLUSION

Fair queueing has long been a popular paradigm for guar-
anteeing minimum throughput for users or flows sharing a
wireline link. In this paper, we propose a new scheduler that
couples opportunistic scheduling with weighted fair queueing
to enhance overall performances in the case of wireless links
by taking advantage from the radio channel variations. We
proved analytically that the Opportunistic WFQ guarantees
fairness among users and we showed through simulations that
our solution provides significantly better performances than
the WFQ approach. In future work, we will evaluate the
interactions of the proposed scheduler with the dynamics of
TCP and we will integrate to its mechanism previous proposed
ideas allowing to deal with the case where certain flows are

blocked due to very bad channel quality.

VI. APPENDIX

A. Proof of Lemma 1:

If ri ·(v2−v1)−Lmax−
Lmax

xmin
≤ 0, Lemma 1 holds trivially

since Wi(t1, t2) ≥ 0. Hence, we consider the case where:

v2 > v1 +
Lmax

ri

+
Lmax

ri · xmin

(10)

Let packet pk
i be the first packet of flow i to receive service

in (v1, v2). To observe that such a packet exists, we consider
the following two cases:

• Packet pn
i such that S(pn

i) < v1 and S(pn
i) +

Ln
i

ri
> v1

exists: since flow i is backlogged in [t1, t2], we conclude
that V (A(pn+1

i)) ≤ v1. From (6), we get S(pn+1
i) =

S(pn
i)+

Ln
i

ri
. Using the fact that S(pn

i) < v1, we get that
S(pn+1

i) < v1 + Lmax

ri
. Also, using (10), we deduce:

S(pn+1
i) < v2 (11)

Since S(pn+1
i) = S(pn

i) +
Ln

i

ri
> v1, using (11), we

conclude that S(pn+1
i) ∈ (v1, v2).

• Packet pn
i such that S(pn

i) = v1 exists: pn
i may finish

service at time t < t1 or t ≥ t1. In either case,
since flow i is backlogged in [t1, t2], we conclude that
V (A(pn

i)) ≤ v1. Hence S(pn+1
i) = S(pn

i) +
Ln

i

ri
. Using

the fact that S(pn+1
i) < S(pn

i) + Lmax

ri
and S(pn

i) = v1,
we get from (10) that S(pn+1

i) < v1 + Lmax

ri
< v2.

Since S(pn+1
i) = v1 +

Ln
i

ri
> v1, we conclude that

S(pn+1
i) ∈ (v1, v2).

Since either of the two cases always holds, we conclude
that packet pk

i such that S(pk
i) ∈ (v1, v2) exists. Furthermore,

we have the additional following result:

S(pk
i) < v1 +

Lmax

ri

(12)

Let pk+m
i be the last packet to receive service in the virtual

time interval (v1, v2). Thus, F (pk+m+1
i) ≥ v2. From (6) and

(7), we know that at time TS:

F (pk+m+1
i) = S(pk+m

i) +
Lk+m

i

ri

+
Lk+m+1

i

ri · xi(TS)
(13)

We deduce the following result:

S(pk+m
i) ≥ v2 −

Lk+m
i

ri

−
Lmax

ri · xmin

(14)

Using the tagging scheme in Section II-B, we can derive the
following:

S(pk+m
i) = S(pk

i) +

m−1
∑

j=0

Lk+j
i

ri

(15)

Thus, from (14) and (15), we get that:

S(pk
i) +

m
∑

j=0

Lk+j
i

ri

≥ v2 −
Lmax

ri · xmin

(16)

From (12) and (16), we get the following result:
m

∑

j=0

Lk+j
i

ri

≥ (v2 − v1) −
Lmax

ri

−
Lmax

ri · xmin

Since Wi(t1, t2) ≥
∑m

j=0 Lk+j
i , Lemma 1 follows.

B. Proof of Lemma 2:

The set of flow i packets during time interval [t1, t2] have
start tags at least v1 and at most v2. This set can be partitioned
in two subsets:

• Set D consisting of packets that have start tags at least
v1 and strictly inferior to v2. Formally, D = {k|v1 ≤
S(pk

i) < v2 ∧ F (pk
i) ≤ v2}. For packets in D, using (6)

and (7), we get
∑

k∈D lki ≤ ri · (v2 − v1).
• Set E consisting of packets that have start tags equal to

v2 and finish tags strictly greater than v2. It is obvious
that at most one packet belongs to this set, because

S(pk
i) = v2 ⇒ S(pk+1

i) = S(pk
i) +

Lk+1
i

ri

> v2

Hence
∑

k∈E lki ≤ lmax.
We conclude that Lemma 2 holds.

REFERENCES

[1] A. Parekh. and G. Gallager, A generalized processor sharing approach
to flow control in integrated services networks: the multiple node case,
IEEE/ACM Trans. on Networking, vol. 1-3, pp. 344-357, June 1993.

[2] P. Goyal, H. Vim, and H. Chen, Start-time Fair Queuing: A Schedul-
ing Algorithm for Integrated Services Packet Switching Networks,
IEEE/ACM Trans. on Networking, vol. 5, pp. 690-704,Oct 1997.

[3] H. Zhang, Service disciplines for guaranteed performance service in
packet-switching networks, Proceedings of IEEE, October 1995.

[4] S. Golestani, A self-clocked fair queueing scheme for broadband
applications, Proceedings of the IEEE INFOCOM ’94, pp. 636-646,
1994.

[5] V. Bharghavan, S. Lu, and T. Nandagopal. Fair queueing in wireless
networks: Issues and approaches. IEEE Personal Communications
Magazine, Feb 1999.

[6] A. Gosh, Broadband wireless access with WiMax/802.16: current
performance benchmarks and future potential, IEEE Communications
Magazine.

[7] http://www.wimaxforum.org/
[8] Crovella M., Bestavros A., Self-Similarity in World Wide Web traffic:

Evidence and possible causes, IEEE/ACM Transactions on Network-
ing, pp 835-846, December 1997.

