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ABSTRACT

This paper presents a novel drum transcription system for
polyphonic music. The use of a band-wise harmonic/noise
decomposition allows the suppression of the deterministic
part of the signal, which is mainly contributed by non-
rhythmic instruments. The transcription is then performed
on the residual noise signal, which contains most of the
rhythmic information. This signal is segmented, and the
events associated to each onset are classified by support
vector machines (SVM) with probabilistic outputs. The
features used for classification are directly extracted from
the sub-band signals. An additional pre-processing stage
in which the instances are reclassified using a localized
model was also tested. This transcription method is evalu-
ated on ten test sequences, each of them being performed
by two drummers and being available with different mix-
ing settings. The whole system achieves precision and re-
call rates of 84% for the bass drum and snare drum detec-
tion tasks.

Keywords: Drum transcription, Rhythm analysis, high-
resolution methods

1 INTRODUCTION

Traditionally, automatic music transcription and music re-
trieval systems essentially focus on the transcription of
pitched melodic instruments. However, rhythmic infor-
mation proves to be very useful for many music informa-
tion retrieval tasks, as rhythm plays a key part in modern
popular music - especially dance music - and since people
without musical training exhibit better skills at rhythm-
related tasks (tapping, “beatboxing”, identifying a tempo)
than at melody-related tasks (singing, humming). Au-
tomatic transcription of drum tracks allows several spe-
cific applications, such as drum-controlled sound synthe-
sis, thythm-driven sound effects, musical genre identifica-
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tion for dance music, automatic DJing, as well as content-
based indexing.

Different approaches have been proposed to solve this
problem. A first possible approach, suggested in Gouyon
and Herrera (2001), is to segment the signal into indi-
vidual events, and to classify each event using machine
learning or statistical approaches. This method was ap-
plied in Gillet and Richard (2004) to the transcription of
drum loops, and was subsequently integrated in a drum
sequence retrieval system in which queries are formulated
with spoken onomatopoeia (Gillet and Richard, 2005a).
Such an approach is well suited for monophonic signals
- that is to say, signals in which no other instrument
than the drum kit is played - and for rather large tax-
onomies. However, in the context of polyphonic music
signals, these methods usually perform poorly, due to the
fact that the spectral or cepstral features used for classi-
fication are largely modified by the addition of harmonic
instruments. An efficient way of dealing with this prob-
lem is to perform a first recognition step with very generic
models, and then to retrain an adapted model on a selected
set of the recognized occurences (Sandvold et al., 2004).

Template matching and adaptation is another possible
approach which was introduced in Zils et al. (2002). Oc-
curences of a temporal “seed” template are detected in
the input signal using a cross-correlation measure. An
adapted template is built from these occurences, and the
process is iterated. This technique was refined by Yoshii
et al. (Yoshii et al., 2004), by performing the template-
matching in the time-frequency domain with a complex
spectral distance. This technique showed very promising
results for the detection of bass drum and snare drum in
polyphonic recordings, but requires the timbral character-
istics of each drum instrument to be constant across the
entire song.

Concurrent approaches consider drum transcription as
a source separation problem. Source separation aims at
extracting individual sound sources from music record-
ings, using information gathered from different sensors -
for example the two channels of a stereo recording (Barry
et al., 2004) or microphone arrays. An increasing num-
ber of works recently focused on single source audio sep-
aration (Vincent and Rodet, 2004). Source separation is
traditionally performed by means of statistical methods
such as Independent Component Analysis, which opti-
mizes an independence criterion on the separated source.



Once the different sources have been separated, and once
each instrument of the drum kit has been identified among
the separated sources, the transcription problem is equiv-
alent to a simple onset detection. However, it is not clear
how the separation should be performed. Prior knowledge
about the spectral characteristics, or statistical properties
of the drum track have to be introduced. Using prior sub-
spaces or dictionaries of spectral shapes is a possible ap-
proach which was successfully followed by FitzGerald et
al. (FitzGerald et al. (2003b), FitzGerald et al. (2003a)).
Another separation approach followed by Dittmar and
Uhle (Uhle et al. (2003), Uhle and Dittmar (2004)) re-
quires the identification of percussive components among
the separated sources.

In this paper, we extend our previous works on drum
transcription to the case of polyphonic music signals, by
proposing a novel transcription system. This system is
based on a separation step followed by a more traditional
machine learning approach. The source separation step
aims at removing the contribution of the non-rhythmic in-
struments, in order to get as close as possible to a mono-
phonic transcription problem, solved by support vector
machine classifiers. Contrary to traditional source sepa-
ration approaches that require the number of sources to be
known in advance, and the separated sources to be identi-
fied and combined, the noise subspace projection consid-
ers the entire drum track as a single source. The paper is
organized as follows: section 2 presents the overall prin-
ciple of the system. Section 3 and 4 respectively detail the
source separation and classification stages. Model adap-
tation is detailed in section 5, along with another possi-
ble post-processing module taking into account the time
structure of the drum patterns. Following a section 6 pre-
senting the evaluation results, section 7 suggests some
conclusions.

2 SYSTEM ARCHITECTURE

The goal of our system is to transcribe the drum track
of polyphonic music signals. The information we aim
at extracting from the signal is thus a sequence of
(onset, instrument) pairs describing its drum track,
where onset is the onset time, and instrument the drum
instrument, or the combination of instruments played at
this time. In the scope of this study, two instruments
are used, the bass drum and the snare drum. While the
drum kits played in popular music include other percus-
sion instruments (cymbals, hi-hats, tom-toms, cowbell...),
the bass drum and snare drum sequences are often suffi-
cient to characterize the typical drum patterns of different
musical genres. Moreover, all the existing query by voice
(also known as ’query by beatboxing”) systems - Kapur
et al. (2004), Gillet and Richard (2005a), Nakano et al.
(2004) - rely on such a labelling of the content.

The input signals can be either monophonic or stereo-
phonic. In case of stereophonic signals, a simple pre-
processing stage aims at building an optimal monophonic
mix from the left and right channels, by maximizing an
impulsivity criterion. The next stage is the decomposition
of the input signal z(t) into eight non-overlapping sub-
bands x(t), & = 1..8. The noise subspace projection

stage extracts the stochastic part of each sub-band signal
e (t).

Then, an onset detection algorithm identifies the onset
times from the sub-band signals e (t). For each detected
event, a feature vector f is computed. Two parallel sup-
port vector machines are finally classifying the onset in
one of the four possible categories (no event, bass drum,
snare drum, bass drum and snare drum mixture).

An optional model adaptation stage trains localized
SVM classifiers from the transcription. Optional pre-
processing stages can also use language-modeling, or re-
lated methods, to incorporate higher-level information
about drum patterns.
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Figure 1: System architecture. Optional modules are
drawn in dotted lines.

The overall architecture of the system is summarized
in figure 1.

3 DRUM SIGNAL EXTRACTION

The drum signal extraction module used in this study
shares common characteristics with the system described
in Gillet and Richard (2005b), where it is used for a
source-separation task rather than for transcription. This
section summarizes its salient features.

3.1 Pre-processing of stereo signals

While a large amount of music collections (CD-audio
quality or compressed music files) consist in stereo sig-
nals, most of the algorithms used for music transcription,
or for the extraction of high-level descriptors such as mu-
sical genre or tempo, operate on mono signals. This can
be explained by the fact that automatic music transcrip-
tion or description aims at extracting high-level informa-
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tion which is preserved when the music signals is reduced
to a single channel from a stereo pair. However, the extra
information available in an additional channel can be used
to build an enhanced signal which can be optimized for a
specific task.

We observed that in popular music signals, in a rather
large number of cases, a monophonic mix with an en-
hanced percussive content could be obtained by simply
mixing the left and right channels of the recording with
appropriate gains. This can be explained by the fact
that many popular music recordings use the so-called
”panoramic” mix, in which each instrument is recorded
as a single monophonic source that is mixed with two dif-
ferent gains on the left and right channels.

Thus, our approach consists in selecting a pair of gains
for each channels, in order to maximize an impulsiveness
criterion on the envelope of the remixed monophonic sig-
nal.

We tested this approach on a collection of 55 signals of
popular music. In 17 cases, a source (most of the time the
bass) was removed in the mono signal z(¢). In 3 cases,
the non-rhythmic instruments were barely audible in the
optimal mono signal z(t).

3.2 Extraction of the stochastic component

The principle of this stage is to use a band-wise har-
monic/noise decomposition to obtain the stochastic part of
the signal in different frequency bands. Since drums are
mixed loudly in popular music, and since unpitched per-
cussive sounds have a very strong stochastic component,
it can be seen that the stochastic part of music signals is
mostly contributed by the drum sounds. As an illustration,
the spectrograms in figure 2 show the similarity between
the stochastic part of a snare drum + guitar mixture, and
the isolated snare drum sound.
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Figure 2: Spectrograms of a snare drum and a guitar note
(top). Stochastic and harmonic components of a snare
drum+guitar mixture (bottom).

An important aspect of this approach is that the esti-

mation of the number of sources, as well as their identifi-
cation is not needed.

3.2.1 Filter bank

The use of a filter bank is justified by two reasons. Firstly,
the noise subspace projection performs better on narrow-
band signals, in which the noise can be considered as
white. Moreover, a filter bank with an octave decompo-
sition allows the tracking of a fixed number of sinusoids
per octave - a very suitable approach for mixtures of har-
monic signals. Secondly, a polyphase implementation of
the filter bank greatly reduces the computational cost of
the noise subspace projection, by allowing the signals in
each sub-band to be downsampled.

The filter bank used in our system is an octave-
band (dyadic) filter bank, with M = 8 voices - each
frequency band being one octave large. The sam-
pling rate of the input being equal to 44100 Hz, it re-
sults in the following eight frequency bands (in Hz):
[0,172], [172,345], [345,689], [689,1378], [1378,2756],
[2756,5512], [5512,11025] and [11025, 22050]. The fil-
ter was implemented using a 100th order FIR filter as a
prototype.

3.2.2 Noise subspace projection

The noise subspace projection stage is based on the Ex-
ponentionally Damped Sinusoidal (EDS) model (Badeau
et al., 2002). According to this model, the signal can be
decomposed in a harmonic part, modelled as a sum of si-
nusoids with an exponential decay; and a noise part de-
fined as the difference between the original signal and the
harmonic part.

While it is possible to estimate the sinusoids using
a classical Fourier analysis, this approach suffer from
the the resolution limit of the short-term Fourier trans-
form. Subspace-based approaches, also known as high-
resolution methods do not have such limitations, and are
therefore used in this study. A window of length L is
extracted from the original signal, defining a signal vec-
tor z. The L-dimensional space containing x is split in a
p = 2n-dimensional space containing the signal part, and
a L—p-dimensional space containing the noise; where n is
the number of exponentionally damped sinusoids tracked.
The noise vector, corresponding to the stochastic part of =
can be computed by directly projecting = on the noise sub-
space. An entire signal can be processed using an overlap-
add method.

The tracking of the signal subspace itself is achieved
using the classical EVD iterative algorithm (Badeau et al.,
2002), with 46ms long windows, using a 3/4 overlap.

The number of sinusoids in each frequency band was
manually adjusted. Two sinusoids are used for z1 (¢) (low-
est frequency band, in which only the bass is playing), five
for x2(t), ten for x3(t) and z4(¢); and eight for the other
bands. Using an insufficient number of sinusoids might
leave harmonic components in the output signal; while
using too many sinusoids might remove all the significant
timbral information from the input signal. The number of
sinusoids in each band can also be automatically selected
by appropriate methods (Badeau et al., 2005), at the cost
of an increased computational burden.



The output of the noise subspace projection is thus 8
sub-band noise signals ey (t). Because of the multirate
implementation of the filter bank, these signals need to be
resynchronized in time, by upsamling them and by apply-
ing a synthesis filter.

4 ONSET CLASSIFICATION
4.1 Onset detection

In the case of drum transcription of polyphonic music, a
peculiarity of the onset detection problem is that we are
not interested in detecting all the onsets - only the on-
sets corresponding to drum events are of interest. A first
possible approach is to design the onset detection module
in such a way that only onsets associated to drum instru-
ments are detected. Unfortunately, even after the noise
subspace projection, the residual noise signals still con-
tain attacks or transients from pitched instruments. An-
other approach is thus to handle the case of non-percussive
events later in the machine learning stage.

Most of the onset detectors are based on sub-band de-
compositions (Klapuri, 1999). For this reason, it seems
relevant to directly use the sub-band noise signal to detect
onsets. Each of these sub-band noise signals is half-wave
rectified and low-pass filtered, the resulting signal being
noted by (¢). While the first order relative difference func-
tion 41log(bx(t) + A) is often used to detected onsets, we
observed that simply using a derivative gave a higher ac-
curacy. Thus, onsets are found by peak-picking %bk (t).

4.2 Features extraction

For each onset localized at time ¢, we compute the follow-
ing features over a 100ms long window starting at ¢:

e The energy in the first 6 sub-bands. These features
can be directly computed from the decomposition.

e The average of the 12 first MFCC (without c() across
successive frames. The MFCC are computed on the
noise signal >, éx(¢)

The inclusion of the first MFCC coefficient ¢y gave
slightly worse results. The use of the 4 spectral moments
did not increase the accuracy either - it is very likely that
these features are highly sensitive to the noise subspace
projection.

Different transformations were tested on this feature
set. Performing a Principal Component Analysis on the
data set did not significantly increase the performances;
however, it could be seen that the first 12 components
contributed in 96 % of the total variance. Performing the
classification on these 12 first principal components re-
duced the computational cost of the learning / classifica-
tion steps, without any significant accuracy loss.

4.3 SVM classification

The classification problem presented in this work is
slightly different from a more traditional ”segment and
classify” approach. Firstly, some of the onsets to clas-
sify are not occurences of drum instruments, and must

be recognized as such and discarded. Secondly, the
small number of categories used in our studies is well
suited for a binary classification approach. Thus, we
decided to train two classifiers, one of them detect-
ing the presence of bass drums, and the other detect-
ing the presence of snare drums. When the input on-
set does not correspond to an occurence of a percus-
sion instrument, the pair of classifiers will output the pair
(non bass drum, non snare drum).

The classifiers used are Support Vector Machines
(Vapnik, 1995), which are well suitable for binary clas-
sification problems, and show very interesting general-
ization properties. A general-purpose kernel (radial ba-
sis function) was used. The implementation chosen was
SV MU ght (Joachims, 1999).

The output of a SVM is classically an uncalibrated
value - its sign being used for the decision, and its abso-
lute value roughly expressing the distance to the decision
boundary. A method to obtain posterior probabilities from
this uncalibrated value has been described in Platt (2000).
The output of the SVM f(x) is mapped to the interval
0, 1[ with a sigmoid function: p(z) = oa7m+s- The
parameters A, B are fitted using maximum likelihood es-
timation on a subset of the training data. Typically, a large
fraction of the training set is used to perform the SVM
learning, and the remaining part is used to estimate the
parameters A and B.

The availability of posterior probabilities allow fur-
ther post-processing stages, such as those described in the
next section. Moreover, it is easier to adjust the decision
threshold with scaled, probabilistic values, than with an
uncalibrated output. Such adjustements are necessary if
the users of the transcription system need to adapt the ra-
tio of "miss” and “false alarm” errors to their own specific
applications.

S POST-PROCESSING STAGES
5.1 Adaptation

We decided to follow an approach similar to the one de-
scribed in Sandvold et al. (2004). This approach con-
sists in performing a first recognition step using a gen-
eral model - in our case this general model consists in the
SVM classifiers presented in the previous section, the pa-
rameters of which have been learned on the whole training
set. Then, the N recognized instances are ranked using
a likelihood measure, and a subset of them (containing
kN examples) from which the best recognition scores are
achieved is selected. In our case, we used the probabilis-
tic output of the SVM classifier as a likelihood measure,
instead of manually ranking the recognized instances as it
was done in the work of Sandvold et al. A “localized” or
adapted model is subsequently learned on this small train-
ing set. The recognition is finally performed again on the
whole sequence, this time using the excerpt-specific, lo-
calized model.

Different values have been tested for the value of k,
the best results being achieved with £ = 0.4 (40% of the
recognized instances are used to retrain the system).



5.2 Periodic decisions

Different language-modeling techniques have been pro-
posed to incorporate high-level information into drum
transcription systems. Short-term models, such as n-
grams (Gillet and Richard, 2004) usually model the time-
dependencies in acoustic features caused by overlapping
strokes. It also models simple stereotypical patterns, such
as tom fills. In the context of our study, in which only
two categories of instruments are used, such a model is
not particularly useful. In fact, the different n-sequences
of bass-drum and snare drums are almost equiprobable in
our database. A similar problem occured with periodic n-
grams (Paulus and Klapuri, 2003): as our database covers
different styles, the different sequences were also almost
equiprobable.

We finally decided to follow a different approach,
which requires no prior training, and is only based on
the repetitive nature of drum patterns. In order to clas-
sify an event occuring at time ¢, we fuse the classification
results for the events occuring at time ¢, ¢ — M and t + M,
where M is the duration of a bar or pattern. M can be
automatically estimated from the audio signal (Klapuri,
2003), or from the symbolic transcription obtained at the
previous stage (Meudic and St-James). To evaluate our
method independently of pattern duration estimation er-
rors, the pattern duration was manually annotated for each
file. Different operators were tested for the fusion, such as
weighted means, products, median, and the Yager t-norm
(For a review of different aggregation operators, see De-
tyniecki (2001)).

6 EVALUATION AND RESULTS
6.1 Database

In order to avoid the tedious manual annotation of pre-
existing material, and to enable a wide range of exper-
iments, we recorded our own database. This database
makes use of “training sessions”, also known as “minus
one” CDs. Such CDs are used for the teaching of drum-
ming, and allow students to practice on the top of a music
accompaniment from which the drum track has been re-
moved. We selected ten excerpts from two “minus one”
CDs. The excerpts are one minute long, cover various
styles (blues, twist, metal, funk, celtic...) and are mostly
played by acoustic instruments (bass, electric guitar, sax,
accordion...) with a few synthetic keyboards (FM electric
piano, organ).

Two professional drummers were asked to play a
rhythmic accompaniment on the top of the excerpts, which
were played through headphones. Each drummer brought
his own drum kit. Inter-sequence variability was intro-
duced by the use of different kinds of sticks (includ-
ing bundled sticks) and by asking the drummers to ad-
just their playing style according to the genre of each se-
quence. Both drummers played in a rather nuanced style,
which introduced intra-sequence variability - a character-
istic not present in databases using synthetic or sampled
drum sounds. The performances were recorded with 8 mi-
crophones (A Beyer 88 for the bass drum, a Shure SM57
for the snare drum, a Schoeps CMC with cardiod capsule

for the hi-hat, two Shure SM58 for the highest tom-toms,
a Sennheiser 441 for the low tom and two Audio-Technica
AT4040 for the overheads), amplified by 4 Behringer Ul-
tragain Pro Mic2200 dual pre-amplifiers, on a Tascam
MX?2424 digital multitracker (8 channels were used). A
stereo mix was generated from the 8 tracks, using pan-
ning, equalization, and compression. This stereo mix and
the original ”minus one” excerpts were finally mixed with
different relative levels. First of all, a reference mix was
produced, in which the drums and other instruments were
well-balanced. Then, two other mixes were produced, in
which the drums were respectively amplified and attenu-
ated by 6dB. The stereo drums mix was also kept. This re-
sults in 80 stereo different signals (10 excerpts x 2 drum-
mers X 4 mixes).

The annotation was obtained semi-automatically, by a
simple onset detection algorithm on the bass drum / snare
drum tracks, the output of which was manually checked
and corrected. The average number of events (on both the
bass drum and snare drum tracks) per excerpt is 178.

6.2 Evaluation metric

The correctness of the transcription was evaluated by pre-
cision and recall measures. Let Ny be the total number of
events detected by the system, N, the number of correct
events detected by the system; and /N the actual number
of events to be detected. Precision and recall are defined
as:

.. N,
recision — ——
p N,

n=—-=
reca N

As it is possible to adjust the decision rules to favor
precision or recall, we chose a decision rule in which
the two kinds of errors, “false alarms” and “misses™ are
roughly balanced. The f-measure, which is defined as:

2 - precision - recall
F-measure =

precision + recall

is another measure of the accuracy of the system,
which is independent of the chosen precision/recall trade-
off.

It is worth noting that a small deviation is allowed be-
tween the actual onset and the detected onset: events are
considered as correctly detected when they are detected
within 50ms of the reference onset.

6.3 Evaluation protocol

Experiment 1: Robustness In order to test the accuracy
and robustness of the transcription system under different
kind of mixing conditions, we repeated for each of the 4
mixes (drum only, balanced, attenuated drums, amplified
drums) the following procedure:

e Train the SVM on the events detected from the 10
excerpts played by drummer A.

e Evaluate the SVM on the 10 excerpts played by
drummer B.



e Repeat the process after having exchanged A and B.

The precision, recall and F-measure obtained for each
drummer and excerpt are averaged. It is worth to mention
that the stereo pre-processing stage was not used in this
first experiment.

More generally, considering the available data, this
two-folds protocol is the most adapted to show the gener-
alization capabilities of the learning algorithms. However,
it is necessary to keep in mind, while interpreting the re-
sults of our experiments, that the training set is relatively
small.

Experiment 2: Performance of the stereo pre-
processing The same experiment was repeated using a
stereo pre-processing stage, and the results were com-
pared.

Experiment 3: Post-processing Results for a “base-
line” system are obtained using a protocol similar to the
one used in experiment 1, except that only the balanced
mix is used. Results are then computed with the model
adaptation stage, and with the periodic decision stage.

6.4 Results and discussion

Results for the robustness experiment are given in table 1.
The best scores are achieved with recordings in which the
drums are mixed loudly, but acceptable results are also
obtained when the drums are attenuated. With balanced
mixes, which correspond to the situation encountered in
real world recordings, the performances of the system are
roughly comparable to those given in Yoshii et al. (2004),
even though direct comparison is not possible since a dif-
ferent dataset was used.

Table 1: Results of the robustness experiment

Mix Recall Precision F-measure
Drums -6dB 75.8% 71.1% 73.4%
Balanced mix | 83.9% 84.2% 84.0%
Drums +6dB | 87.4% 91.2% 89.2%
Drums only 83.7% 92.7% 88.0%

The evaluation of the stereo pre-processing stage is
given in table 2. It can be seen that this stage significantly
increases the accuracy of the transcription when the other
instruments are mixed more loudly than the drums.

Table 2: Impact of the stereo pre-processing stage

Mix Recall Precision F-measure
Drums -6dB 76.2% 78.4% 77.3%
Balanced mix | 82.0% 88.5% 85.1%
Drums +6dB | 84.3% 90.8% 87.4%
Drums only 83.7% 92.7% 88.0%

The different post-processing stages are compared in
table 3. It can be seen that none of the methods described
in section 5 improve the recognition.

Table 3: Impact of the post-processing stages

Method Recall Precision F-measure
Baseline 83.9% 84.2% 84.0%
Adaptation 78.1% 71.0% 74.3%
Periodic decision | 87.2% 78.4% 82.6%

Different reasons can explain the failure of the local-
ized models. First of all, the local models are trained using
only a subset of the detected onsets. This results in a very
small training set. Increasing the fraction of recognized
instances used to train the local model does not help ei-
ther, since it becomes more and more likely that some of
these instances are indeed misclassified. Secondly, we no-
ticed that our features set, computed on the residual noise
signal, did not exhibit a lot of variability from one track to
another, contrary to the feature set used in Sandvold et al.
(2004) which was computed on the original signal, rather
than on a residual noise signal. Finally, we noticed that
the selected instances were mostly loud or solo strokes,
most of them played off-beat. It means that the adapted
model will specialize itself in identifying such strokes,
and will become unable to identify strokes with differ-
ent timbral characteristics or dynamics appearing within
the same track. It seems that the use of localized models
would give best results with synthetic or sampled drum
tracks, in which there is very little variation between the
different snare drum or bass drum sounds.

The use of the modified decision function taking into
account the periodicity of drum patterns does not increase
the classification results either. However, a thorough anal-
ysis of the classification errors shows that this method
modifies the kind of errors made by the system. Clas-
sification errors on the steady, typical component of the
drum pattern are less frequent, while many recognition er-
rors are localized in breaks or in variations at the end of
a pattern. It is not clear which one of these two classes
of errors is more acceptable. Applications such as au-
tomatic accompaniement generation, or score following
would probably require better classification results of loud
strokes, played on strong beats. On the other hand, play-
ing style analysis probably requires a very accurate tran-
scription of breaks, soli and variations. This suggests the
use of a problem-specific evaluation metric with a differ-
ent cost for classification errors occuring on strong beats /
loud strokes; and the rest of the sequence.

Finally, the detailed results of the baseline system are
given in table 4. Drummer 2 has a very nuanced style,
with a lot of variations in the dynamic of the strokes, while
Drummer 1 has an energic, steady, style with fewer vari-
ations in the dynamic of strokes. It can be seen that the
algorithm performs better when trained on Drummer 2
and evaluated on Drummer 1. Thus, for large scale ap-
plications, our system will need to be trained on a larger
database containing multiple variations in timbre and dy-
namics. The two sequences on which the algorithm gives
the worst results, Groove 5/4 and Celtic are played by both
drummers with a lot of ghost notes - quiet beats which
help the drummer in keeping the tempo more accurately.
While we annotated ghost notes and included them in the



Table 4: Detailed results of the baseline system

Bass drum Snare drum
Sequence = Drummer Rec. | Prec. | F-meas. Rec. Prec. | F-meas.
Blues 1| 72.1% | 96.1% 0.82 95.6% | 100.0% 0.98
2 || 86.1% | 82.7% 0.84 87.8% | 87.8% 0.88
Blues rock 1 922% | 92.2% 0.92 || 100.0% | 100.0% 1.00
2 || 89.5% | 91.7% 0.91 82.2% | 80.4% 0.81
Celtic 1| 75.4% | 94.9% 0.84 77.8% | 33.3% 0.47
2 || 70.1% | 87.8% 0.78 80.3% | 68.1% 0.74
Funk 1] 79.8% | 62.5% 0.70 87.8% | 97.0% 0.92
2 || 77.6% | 90.6% 0.84 81.5% | 91.7% 0.86
Jazz funk 1 94.7% | 87.3% 0.91 97.9% | 85.2% 0.91
2 || 78.6% | 94.2% 0.86 84.6% | 76.7% 0.80
Groove 5/4 1 852% | 54.1% 0.66 82.8% | 96.0% 0.89
2| 91.9% | 77.5% 0.84 86.3% | 62.9% 0.72
Metal 11 90.3% | 77.8% 0.84 83.3% | 88.7% 0.86
21| 755% | 72.1% 0.74 77.9% | 75.9% 0.77
Rock 11 90.5% | 77.9% 0.84 88.5% | 97.7% 0.93
2 || 74.1% | 88.6% 0.81 88.0% | 89.0% 0.88
Shuffle 1| 74.4% | 81.5% 0.78 85.7% | 85.7% 0.86
2 || 67.6% | 93.1% 0.78 68.9% | 81.6% 0.75
Twist 1 97.6% | 75.0% 0.85 91.9% | 95.8% 0.94
2 || 84.8% | 98.1% 0.91 789% | 98.1% 0.87

evaluation of this work, it is not clear if errors on such
strokes are acceptable or not, and if they should be taken
into account.

7 CONCLUSION AND FUTURE WORK

This paper proposed a novel drum transcription system
for polyphonic music and evaluated its performances, as
well as the effect of different pre-processing and post-
processing stages. Promising results (83.9 % recall, 84.2
% precision) were obtained on a test database under stan-
dard recording conditions. However, the failure of the
different post-processing stages tested raises interesting
questions.

Firstly, the different kind of errors produced with or
without language modeling suggests that evaluation met-
rics could take into account the position and importance
of the misdetected events within the rhythmic patterns.
The different tasks and applications for which drum tran-
scription is needed should be clearly identified, and task-
specific evaluation metrics should be devised for each of
them.

Secondly, our results show that the use of localized
models not taking into account all the information learned
in the generic model is not the best way to perform adap-
tation. Further works will focus on the use of incremental
learning methods for support vector machines, in which
the original generic model is updated or transformed,
rather than discarded.

It is also planned to improve the noise subspace pro-
jection stage by automatically selecting the number of si-
nusoids in each frequency band. Finally, our system will
be trained and tested on a larger corpus, which will in-
clude labels for other categories of drum instruments such

as hi-hats or cymbals. Such a larger corpus could be cre-
ated by mixing pre-recorded drum loops, from which an
annotation is available, with the ”minus one” sequences.
Our present corpus could then be used as a testing set.
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